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In the past decade since kisspeptin/neurokinin B/dynorphin (KNDy) cells were first identified in the
mammalianhypothalamus, a plethoraof new research has emergedadding insights into the role of this
neuronal population in reproductive neuroendocrine function, including the basis for GnRH pulse
generation and themechanismsunderlying the steroid feedback control ofGnRH secretion. In thismini-
review, we provide an update of evidence regarding the roles of KNDy peptides and their postsynaptic
receptors in producing episodic GnRH release and assess the relative contribution of KNDy neurons to
the “GnRH pulse generator.” In addition, we examine recent work investigating the role of KNDy
neurons asmediators of steroid hormonenegative feedback and reviewevidence for their involvement
in the preovulatory GnRH/LH surge, taking into account species differences that exist among rodents,
ruminants, and primates. Finally, we summarize emerging roles of KNDy neurons in other aspects of
reproductive function and in nonreproductive functions and discuss critical unresolved questions in our
understanding of KNDy neurobiology. (Endocrinology 159: 3219–3234, 2018)

Nearly four decades ago, Ernst Knobil (1) identified
the presence of a hypothalamic pulse generator that

regulates the episodic release of GnRH from the hypo-
thalamus. Changes in the frequency and amplitude of
pulsatile GnRH release, and in turn pulsatile release of
the gonadotropins LH and FSH from the anterior pitu-
itary gland, are essential for the appropriate control of
fertility through steroid hormone production and gamete
development at the level of the gonads (1–4). In a
feedback loop, steroid hormones act through an affer-
ent neuronal network to provide critical information to
GnRH neurons, regulating their pattern of activity.
Identification of the neuronal structures comprising the
pulse generator, and the afferent pathways through
which gonadal steroids (in addition to other internal
and external cues such as stress, nutrition, and day
length) regulate pulsatile GnRH release, have been and
remain fundamentally unresolved questions in repro-
ductive neuroendocrinology.

In 2003, it was discovered that mutations in the gene
encoding the kisspeptin receptor G protein-coupled re-
ceptor 54 (GPR54) or otherwise known as Kiss1R, led
to hypogonadotropic hypogonadism (5, 6), providing
compelling evidence that kisspeptin-positive afferents to
GnRHneurons are critical for maintaining GnRH release
needed for fertility. Subsequent studies testing the role of
kisspeptin in animal models confirmed that kisspeptin
activates GnRH neurons via GPR54 to robustly stimu-
late LH (and therefore GnRH) release (7, 8). The ne-
cessity of kisspeptin-GPR54 signaling at GnRH neurons
was later highlighted by the specific deletion of GPR54
from GnRH neurons, which resulted in infertility, and
impressively by the restoration of fertility in a GPR54-
global knockout mouse by GPR54 expression in GnRH
neurons alone (9).

Kisspeptin-expressing neurons in the rostral periven-
tricular area of the third ventricle (RP3V) of rodents or
the preoptic area (POA) of other mammals and the
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arcuate nucleus of the hypothalamus (ARC) are sites of
the highest density of kisspeptin expression within the
mammalian brain (10). The vast majority of these neurons
express receptors critical for steroid hormone feedback by
estrogen, progesterone, and testosterone: estrogen receptor
a (ERa), progesterone receptor, and androgen receptor,
respectively (11–16). Estradiol increases Kiss1 mRNA
levels in neurons located within the RP3V but reduces
Kiss1 in the ARC, introducing the possibility of pop-
ulations with divergent roles in positive and negative
steroid hormone feedback (14) (discussed further below).
Specifically, the suppression of ARC Kiss1 expression by
estradiol, along with its expression of gonadal steroid
receptors, was one of the first clues suggesting that kiss-
peptin cells in this region may play an important role in
negative feedback control of pulsatile GnRH release.

In 2007, multiple-label immunofluorescence studies in
the sheep made the critical discovery that almost all kiss-
peptin neurons in the ARC coexpressed the tachykinin
neurokinin B (NKB), as well as the endogenous opioid
peptide (EOP) dynorphin (17). This was consistent with
previous immunofluorescence studies in the rat (12) and
sheep (18) that recorded high coexpression of NKB with
dynorphin in neurons of the ARC. The importance of NKB
as a regulator of fertility was highlighted by the 2009 study
that revealed human mutations in the genes encoding NKB
(TAC3) or its receptor (TAC3R) manifest as defects in
GnRH release and subsequent hypogonadism (19). These
human mutations provided a strikingly similar neuroen-
docrine profile to human and murine GPR54 mutations,
although the genetic knockout of TAC3R in mice elicited a
milder subfertile phenotype (20). Given robust functional
support for dynorphin as a mediator of progesterone neg-
ative feedback in the ewe, this single ARC population
appeared to contain three distinct neuropeptides, each of
which was strongly implicated in the control of GnRH
release. Due to the high degree of colocalization of the
three peptides, and for simplicity, this population was ab-
breviated as “KNDy” (kisspeptin/neurokinin B/dynorphin)
neurons (21). The colocalization of KNDy peptides was
later demonstrated in the mouse (22), rat (23), cow (24),
goat (25), and nonhuman primate (26). Because immuno-
histochemistry studies have been primarily based on mul-
tiple combinations of fluorescent visualization of two of the
three neuropeptides, we recently used fluorescent in situ
hybridization for simultaneous visualization of mRNA
transcripts for all three peptides within individual ARC cell
bodies (Fig. 1), confirming that virtually all ARC kisspeptin
cells coexpress NKB and dynorphin mRNA (27). Although
the KNDy population is conserved across most mamma-
lian species, the degree of coexpression varies between
species, sex, and gonadal steroid hormone status. Further,
although prodynorphin mRNA has been reported within

the infundibular nucleus of pre- and postmenopausal
women (28), immunohistochemical labeling detects few
dynorphin-positive cell bodies in the infundibular nucleus of
young human males (29). Therefore, although questions
remain as to their presence in humans, the unique coloc-
alization of three KNDy peptides, each of which were im-
plicated in the control of fertility andGnRHepisodic release,
provided a strong candidate for the GnRH pulse generator,
long suspected to be located within the mediobasal
hypothalamic/ARC region (30, 31).

This mini-review will serve as an update of our
original review of KNDy neurons (32) and highlight
evidence generated within the last decade on their role
in the central control of reproductive neuroendocrine
function. We will review anatomical, physiological, and

Figure 1. In situ hybridization using RNAscope technology permits
three-plex detection of ARC cells colocalizing kisspeptin (Kp), NKB, and
dynorphin (Dyn) mRNA. (A) Confocal image (1-mm optical section, 360
magnification) of kisspeptin (blue), NKB (green), and Dyn (red) mRNA
transcripts within ARC cell bodies in the ovariectomized, estradiol-
treated ewe. Kp, NKB, and Dyn mRNA is expressed above background
threshold levels within all cell bodies except the cell marked with an
arrow, which only expresses NKB. (B) High-magnification example
image of (i) Kp, (ii) NKB, and (iii) Dyn transcripts expressed in a single
cell body (iv, merged image).
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pharmacological studies that implicate KNDy neurons as
critical components of the GnRH pulse generator, as
well as evidence for the role of KNDy neurons in ste-
roid hormone feedback regulation, taking into consid-
eration species differences that appear to exist in the
precise roles of each KNDy peptide. Finally, we will
summarize other roles, including nonreproductive ones,
which have emerged for KNDy neurons and present
some critical unanswered questions about this pop-
ulation as a basis for future research.

The “KNDy Hypothesis” and GnRH
Pulse Generation

Where do kisspeptin, NKB, and dynorphin act?
The hypothesis that KNDy neurons form a critical

component of the GnRH pulse generator was initially
based on the colocalization of three neuropeptides with
opposing effects on GnRH/LH release, kisspeptin and
NKB being stimulatory and dynorphin inhibitory. In
brief, the so-called “KNDy hypothesis” stated that NKB
was the signal responsible for pulse onset by triggering
activation among KNDy neurons, kisspeptin served as
the output signal from KNDy neurons driving GnRH
secretion, and dynorphin served as the signal terminating
each pulse. This hypothesis was supported by evidence
that (1) axons containing KNDy peptides were in direct
synaptic contact with the majority of KNDy cell bodies,
forming an interconnected population perhaps capable
of producing bursts of synchronized firing to coordinate

pulsatile release of GnRH, (2) receptors for kisspeptin
and NKB were anatomically segregated in GnRH and
KNDy neurons, respectively, and (3) pharmacological
manipulation of the postsynaptic receptors for kiss-
peptin, NKB, and dynorphin, GPR54, NK3R, and
k-opioid receptor (KOR), respectively, altered pulsatile
GnRH release in manners consistent with their predicted
roles (25, 33–37). However, many aspects of the roles
and sites of action of each peptide for initiating, driving,
and terminating GnRH release to create an individual
pulse remained unclear. The pharmacological, genetic,
electrophysiological, and anatomical evidence described
below outlines the latest evidence on the neuronal cir-
cuitry and cellular location of postsynaptic receptors that
generate pulsatile GnRH secretion, and a summary of the
updated KNDy hypothesis can be found in Fig. 2.

Within KNDy circuitry
The presence of reciprocal connections between

KNDy neurons suggests the population is capable of
producing synchronized firing to generate and coordi-
nate the pulsatile release of GnRH. To support this
hypothesis, KNDy neurons must express the appropri-
ate postsynaptic receptors for KNDy peptides. As
predicted, multilabel immunofluorescence confirmed
expression of NK3R in the majority of KNDy neurons of
the mouse, rat, and sheep (12, 22). In the last decade, the
generation of transgenic mice that conditionally ex-
press green fluorescent protein (GFP) under the control of
Kiss1 or Tac2 has allowed for in vitro electrophysiological

Figure 2. Proposed model for the control of KNDy neuron activity to drive episodic GnRH/LH secretion. Each GnRH pulse is initiated by NKB
(green) acting upon reciprocally-connected KNDy neurons to stimulate kisspeptin (blue) release. Kisspeptin drives GnRH (gray) secretion and
activates unidentified GPR54/Kiss1R containing ARC neurons (orange) that reinforces the stimulatory actions of NKB on KNDy neurons. GnRH
release is then terminated by the release of dynorphin (red) from KNDy neurons acting directly on KNDy neurons, GnRH neurons, and/or
unidentified KOR-containing neurons. The color in each terminal indicates the biologically active transmitter (potentially due to selective
expression of postsynaptic receptor) and does not reflect selective transport of that peptide to the terminal. Dashed oval represents the ARC.
RDyn, KOR; RKp, GPR54/Kiss1R; RNKB, NK3R.
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characterization of ARC KNDy neurons in acute brain
slices (38–41), which confirmed KNDy neuron action
potential firing activity was increased by both NKB
and the NK3R agonist senktide (41, 42). However, it
should be noted that there is considerable redundancy
in the control of episodic GnRH secretion by different
tachykinin receptors (discussed in the “Redundancy in
tachykinin signaling” section below).

KOR, the EOP receptor with highest affinity for
dynorphin, was detected by in situ hybridization within
only 20% and 6% of KNDy neurons in the female and
male mouse, respectively (22, 43). As Navarro et al. (22)
suggested, this unexpectedly low colocalization may be
due to insufficient sensitivity of in situ hybridization for
low levels of mRNA. This was supported by single-cell
RT-PCR analysis that detected KOR in 41% of KNDy
neurons in male mice (41). In contrast, a recent immu-
nofluorescence study in the sheep reported KOR in over
90% of KNDy neurons (44). The species difference in
KOR colocalization is consistent with pharmacological
data that suggests dynorphin may play different func-
tional roles in pulse generation in the rodent than in the
goat and sheep (discussed further in “The role of
dynorphin in pulse termination” below). Interestingly,
the majority of KNDy neurons recorded in mouse brain
slices have reduced firing activity following bath ap-
plication of dynorphin, an effect that is mimicked by
KOR agonists (41, 42). Although this may indicate a
higher percentage of KNDy neurons express KOR than
previously reported in rodents, an indirect action of
dynorphin on KNDy neuron activity is also possible.
Therefore, the role of dynorphin action directly on KNDy
neurons to alter GnRH pulse release is not yet clear in the
rodent brain. It should also be noted that a number of
non-KNDy neurons in the sheep ARC express KOR, and
therefore a role for these neurons in the actions of
dynorphin on episodic GnRH release cannot be ruled
out (44).

The kisspeptin receptor GPR54 has been detected in
the ARC of the primate brain using in situ hybridization,
with expression levels increasing between the juvenile
period and midpuberty in correspondence with rising LH
levels (45). Although a transgenic LacZ knockin mouse
model did not find evidence for GPR54 in the ARC (46),
mRNA for this receptor has been detected by in situ
hybridization within the ARC of sheep and mice (47–49).
However, dual in situ hybridization and immunohisto-
chemistry experiments in sheep (49) and rat (50) indicate
that GPR54 is not localized within KNDy neurons and
instead suggest these receptors are expressed within ARC
pro-opiomelanocortin (POMC) and tuberoinfundibular
dopamine neurons (50). Further, kisspeptin does not have
an effect on ARC kisspeptin neuron electrical activity in

mouse brain slices (42), indicating that, unlike NKB and
dynorphin, kisspeptin likely does not act directly upon
KNDy neurons to modulate pulsatile secretion. This
lack of evidence for direct actions of kisspeptin upon
KNDy neurons aligns with data that GPR54 expression
in GnRH neurons is sufficient for fertility in mice (9).
However, kisspeptin activation of arcuate neurons has
been recorded in mouse brain slices collected from
GPR54 knockout mice (51), indicating kisspeptin may
act through other postsynaptic receptors in the ARC.
The role of these receptors in pulse generation is less
clear and may instead reflect subpopulations of neurons
involved in nonreproductive functions.

Projections to GnRH neurons: kisspeptin
and dynorphin

A lack of robust evidence for GPR54 expression
within KNDy neurons suggests kisspeptin does not act
through reciprocal connections to control pulse gener-
ation. Far more likely, kisspeptin acts as a stimulatory
output to directly drive GnRH neuron activity. In the
ewe, 78% to 86% of preoptic GnRH neurons contain
GPR54 (49), and 45% to 60% of these neurons in both
the POA and mediobasal hypothalamus (MBH) receive
inputs from KNDy neurons that colocalize kisspeptin
and the vesicular glutamate transporter vGlut2 (52). In
the mouse, approximately 80% of GnRH neurons ex-
press GPR54 (7, 46) and respond to kisspeptin in mouse
brain slices (9), an effect that is eliminated in global- and
GnRH neuron-targeted GPR54 knockout mice (9). Al-
though this might reflect kisspeptin input from non-ARC
populations, the knockdown of ARC kisspeptin ex-
pression using virally delivered kisspeptin antisense or
lesion of these neurons with a saporin conjugate in female
rats disrupts estrous cyclicity and reduces the frequency
of pulsatile LH release (53–55). In a recent study, the
temporary inhibition of ARC kisspeptin neuron activity
using optogenetic techniques reduced LH pulse fre-
quency and amplitude during illumination (56). NK3R is
not expressed by GnRH cell bodies in the sheep (57) and
rodent (58, 59) brain, although NK3R protein has been
reported to be localized in GnRH neuron axon terminals
in the rat (59). In support of the latter finding, activation
of NK3R at GnRH nerve terminals in the median emi-
nence induces GnRH release in an effect that is inde-
pendent of kisspeptin (60). However, the GnRH neuron
soma does not respond to NKB in mouse brain slices (43,
60), supporting the notion that kisspeptin, but not NKB,
acts as a stimulatory drive of LH release at GnRH
neurons through GPR54 signaling.

In addition to the inhibition of KNDy neuron activity,
dynorphin may also inhibit GnRH neurons directly.
There is significant evidence from studies in sheep that
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ARC dynorphin neurons mediate progesterone negative
feedback (61, 62), and approximately 40% of POA
GnRH neurons and 90% of MBH GnRH neurons in the
ewe receive synaptic contact from dynorphin fibers (61).
Although prior work did not find evidence for KOR
mRNA colocalization within GnRH neurons in the ro-
dent brain (63, 64), a recent study detected KOR im-
munoreactivity in the vast majority of GnRH neurons in
both the rat and sheep brain (44). Therefore, as discussed
in more detail below, it is possible that dynorphin acts
both within the KNDy network and at GnRH neurons to
inhibit neurosecretory activity and effectively terminate a
GnRH pulse.

In conclusion, the ability of kisspeptin and dynorphin
to modulate the activity of GnRH neurons, along with
evidence for the expression of the appropriate receptors
in these cells, supports functional projections to GnRH
neurons. Although KNDy neurons project directly to the
GnRH neuron soma in the sheep (32), tract tracing from
ARC kisspeptin (presumably KNDy) neurons inmice and
rats showminimal evidence for close contact with GnRH
cell bodies (23, 65, 66). Although this may indicate
the presence of interneurons in the control of GnRH
secretion, conditional anterograde transsynaptic tracing
studies indicate that KNDy neurons form synaptic
connections with GnRH neurons during development in
the mouse (67). Therefore, KNDy neurons may target
GnRHneuron subcellular compartments not in immediate
proximity to the GnRH soma and proximal dendrite in
rodents. Filling of GnRH neurons with a low-molecular-
weight dye to study the structure of distal GnRH
projections revealed a surprising dendritic morphology
that transitions into axons near the median eminence
(68). These dendritic-axonal projections, termed den-
drons, appear to contain sites of synaptic contact as shown
by the presence of spines and closely opposed synaptic
markers (68). The presence of GnRH dendrons is yet to be
reported in other mammalian species but raises the pos-
sibility that KNDy neurons form synaptic connections
close to the site of GnRH release in the median eminence
for fine control of pulsatile secretion. In addition to
synaptic regulation, axon terminals from KNDy neurons
have been reported in both the internal (23, 66, 69, 70)
and external zone (65) of the median eminence and
therefore may regulate GnRH pulsatile release through
volume transmission to GnRH nerve terminals (71).

Development of KNDy circuitry
Given the proposed role of KNDy neurons in co-

ordinating pulse generation, the functional onset of cir-
cuitry between KNDy and GnRH neurons should be
timed with the development of pulse generation. Genetic
strategies in the mouse revealed that kisspeptin neurons

in the ARC (putative KNDy neurons) are first expressed,
gain steroid hormone sensitivity, and form connections
with GnRH neurons during fetal life (67). Surprisingly,
although LH release at this time is low, the measure-
ment of GnRH release in acute brain slices from em-
bryonic mice using fast-scan cyclic voltammetry revealed
a strikingly high level of release from embryonic day 18.5
through to postnatal week 1 (72). Although kisspeptin
contacts are formed during elevated GnRH secretion,
fast-scan cyclic voltammetry–recorded GnRH release dur-
ing early development remains high inKiss1-knockout mice
(72). Therefore, although the neurocircuitry is present, it
remains to be elucidatedwhether the formation of kisspeptin
synapses is necessary to initiate high GnRH release in the
neonatal period. Alternatively, high neonatal GnRH release
may be an intrinsic feature of GnRH neurons or driven by a
nonkisspeptin upstream neuronal population.

Redundancy in tachykinin signaling
Another important addition to our understanding of

KNDy neuron function in the last few years is recognition
of the considerable redundancy in the control of GnRH
secretion in rodents among the three major tachykinin
receptor pairs: substance P (SP)–NK1R, neurokinin A
(NKA)-NK2R, and NKB-NK3R (73). In retrospect, re-
dundancy in the roles of these tachykinins could have
been inferred from the modest reproductive effects of
Tacr3 knockouts in mice (20), but it was not directly
proposed until a report that antagonists to all three
tachykinin receptors were needed to inhibit LH secretion
in ovariectomized (OVX) rats (74). Similarly, all three
receptors had to be blocked to prevent the stimulatory
actions of NKB on KNDy neurons in vitro (42). These
data are consistent with the similar affinities of NKB for
these receptors (ED50s: NK1R, 70 nM; NK2R, 25 nM;
NK3R, 4 nM) (75) and raise the possibility that SP and
NKA might also contribute to the control of LH secre-
tion. It should be noted, however, that a specific NK3R
antagonist delayed puberty in rats (76), so the degree of
redundancy may vary with age and/or endocrine status.
There also appear to be some differences between rats
and mice in the actions of NK1R and NK2R agonists.
Thus, both SP and NKA depolarized murine KNDy
neurons in vitro (42), and NK1R and NK2R agonists
increased LH secretion in gonadally intact mice (77).
However, only the NK2R agonist was stimulatory in
intact rats (78). Although these specific agonists all ul-
timately act by altering kisspeptin release (77), they likely
use different signaling pathways because they produce
different effects in OVXmice: the NK1R agonist increased
LH secretion, whereas the NK2R and NK3R agonists
inhibited LH (77). SP most likely acts via NK1R (ED50s:
NK1R, 2 nM; NK2R, 2200 nM; NK3R, 18,000 nM),
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which are found in 49% of KNDy neurons by single-cell
quantitative PCR (77). Although the NK2R agonist and
NKA produced similar effects to the NK3R agonist in
intact and OVX rodents, NKA is unlikely to act via NK3R
(ED50s: NK1R, 6 nM; NK2R, 3 nM; NK3R, 1300 nM).
However, KNDy neurons do not contain NK2R (77) or
respond in vitro to a specific NK2R agonist (79), so
the signaling pathway by which NKA acts remains to
be determined.

Although these data suggest considerable redundancy
in tachykinin signaling, knockout studies (20, 79–81) of
Tac2 (NKB), Tacr2 (NK3R), and Tac1 (SP and NKA),
have shown that other tachykinins cannot completely
compensate for the loss of one signaling pair, particularly
in females. Only modest effects were observed in males,
with a slight decrease in testicular weight in Tacr3–/– and
delayed puberty in Tac1–/–mice, but no effect on fertility.
An increase in expression of Tacr2 and a decrease in
expression of Pdyn may contribute to the apparent
compensation in Tac1 knockout male mice (79). Females
of all three genotypes were subfertile, with a decrease in
number of pups per litter and a corresponding decrease in
number of corpora lutea/ovary. The deletion of Tacr3
had no effect on puberty (20), but disrupted ovarian
cycles in adults, whereas the effects of deletion of agonists
waned with age: puberty was delayed and estrous cycles
were irregular in younger, but not older, mice (80, 81). A
similar phenomenon may occur in some humans with
disruption of NKB-NK3R signaling who can show
spontaneous recovery of fertility as they age (82).

It should be noted that there is little evidence that the
redundancy in tachykinin signaling seen in rodents also
occurs in sheep, goats, or primates. Thus, although SP-
containing fibers make close contacts with KNDy neu-
rons in sheep (73) and goats (83), much higher doses of
SP (10- to 20-fold) and NKA (50- to 100-fold) than NKB
were needed to stimulate LH secretion in anestrous ewes
(84). All three tachykinins are likely acting via NK3R in
this species because their relative potency matches the
selectivity of this receptor, and few (6%) KNDy and no
GnRH neurons contain NK1R in sheep (84). In male
monkeys, SP failed to increase LH concentrations at
doses that produced flushing of the face (85). In multi-
unit recording of burst activity in the ARC of goats,
1000 nmol of a specific NK2R agonist was needed to
produce the same effect as 10 nmol of an NK3R agonist,
whereas the highest dose of a NK1R agonist had no effect
(33). Even stronger evidence for a lack of redundancy
comes from the ability of specific NK3R antagonists
alone to inhibit LH secretion in gonadectomized sheep
(86–89), primates (88), and normal men (90) and women
(91). This is in marked contrast to the lack of effect of a
NK3R antagonist in OVX rats and the modest effect of

NK3Rmutations in mice (20, 74, 80) and consistent with
the much more dramatic effects on puberty and fertility
of mutations that disrupt NKB-NK3R signaling in
humans (19).

To conclude, neuroanatomical and pharmacological
data indicates that tachykinins can act via NK1R, NK2R,
or NK3R for the regulation of GnRH/LH release in
rodents. In ruminant and primate species, this appears to
occur predominantly through NK3R, indicating robust
differences in the development of redundant circuits
between rodent and nonrodent species. However, the
spontaneous restoration of fertility in human patients
with TAC3/TAC3R mutations may indicate compensa-
tion by other tachykinin circuits that are yet to be fully
elucidated in nonrodent species.

The role of dynorphin in pulse termination
There may also be important species differences in

the role of dynorphin in the generation of GnRH
pulses between ruminants and rodents. In sheep and
goats, data with both dynorphin and the KOR antago-
nist nor-binaltorphimine (nor-BNI) support a critical
role for dynorphin in pulse termination. Thus, intra-
cerebroventricular (icv) injection of dynorphin inhibited
both LH pulses and the associated bursts of multiunit
activity of ARC neurons in OVX goats (25). Likewise,
administration of nor-BNI icv to OVX goats (25) or into
the ARC of OVX sheep (34) increased LH pulse fre-
quency. The recent identification of KOR in both KNDy
and GnRH neurons in sheep (44) raises the possibility
that dynorphin could be acting at both sites, and recent
preliminary data using internalization of KOR as a
marker for dynorphin release support this possibility.
Specifically, increased KOR internalization was seen in
KNDy neurons shortly after the start of an NKB-induced
LH pulse and this internalization increased in tissue
collected near the end of a pulse (92). Thus, dynorphin
release onto KNDy neurons begins shortly after the start
of a pulse and continues for the duration of GnRH
secretion, a time course consistent with the stimulatory
effects of naloxone on GnRH secretion during a pulse
(93). In contrast, KOR internalization into MBH GnRH
neurons was observed near the end of the LH pulse, but
not at the beginning (94), indicating that dynorphin likely
acts at both KNDy and GnRH neurons to terminate
each pulse.

In rats and mice, there is compelling evidence that
dynorphin can inhibit LH pulses via KNDy neurons, but
scant data that this normally occurs. Thus, icv admin-
istration of dynorphin in castrated rats (95) and intra-
ARC (35) and intravenous treatment (22) with a KOR
agonist in OVX rats and mice, respectively, inhibited LH
secretion. Similar inhibitory effects of dynorphin on the
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electrical activity of KNDy neurons have been observed
in vitro (41, 42, 96). In contrast, nor-BNI has generally
been ineffective. It failed to affect LH pulse frequency
when given into the third ventricle (97) or ARC (35) of
rats. nor-BNI also had no effect on spontaneous electrical
activity of murine KNDy neurons in vitro (41, 42), al-
though it blocked the inhibitory actions of dynorphin in
this preparation (42). The lack of effect of nor-BNI in
vivo was not due to technical problems, because this
KOR antagonist was able to block the inhibitory actions
of senktide in OVX rats (35, 36) and augment the
stimulatory actions of this NK3R agonist in intact male
and female rats (78). Thus, most data in rodents indicates
that the anatomical substrates (i.e., dynorphin and KOR)
are present in KNDy neurons, but that they are only
activated in response to an exogenous stimulus (i.e.,
senktide) and not during normal episodic GnRH secre-
tion. The one exception to this is the recent report that
nor-BNI can prolong the slow excitatory postsynaptic
potentials induced by optogenetic stimulation of KNDy
neurons in vitro that may be important for the syn-
chronization of this neuronal population (37). However,
this finding might be considered another example of
dynorphin only playing an important role in response to
an exogenous stimulus (i.e., optogenetic depolarization).
In summary, whereas dynorphin appears to play a key
role in the normal termination of GnRH pulses in ru-
minants and plays a significant role in mediating pro-
gesterone negative feedback during the luteal phase of the
estrous cycle of both ruminants and primates (discussed
further below), it is unlikely to be critical in rodents.
Whether this reflects redundancy in EOP signaling
similar to that seen with tachykinin signaling in rodents
or a completely different mechanism for pulse termina-
tion in these species remains to be determined.

What are the minimal components of the
pulse generator?

Are KNDy neurons sufficient?
Although it is clear that KNDy neurons play a vital

role in generating LH pulsatile release, it is possible that
they only form a component of the pulse generator. To
address the relative importance of this population in
maintaining pulsatile LH release, sophisticated manip-
ulation of genetically identified KNDy neurons in adult
mice has recently been achieved. A report using in vivo
GCamp fiber photometry recording of the KNDy neuron
population in unanesthetized mice revealed synchronized
calcium events in near-perfect correlation with the ini-
tiation of pulsatile LH secretion (56). This study strongly
supports that KNDy neurons compose the GnRH pulse
generator identified in earlier multiunit recording studies
in the ARC of the primate (98), rat (99, 100), and goat

(25). Moreover, conditional activation of KNDy neu-
rons using stimulatory optogenetics was sufficient to
elicit pulse-like LH secretion in anesthetized and un-
anesthetized mice (56, 101). The authors further noted
that termination of an inhibitory light stimulus evoked a
rebound pulse that was followed by a second pulse after
35 minutes, regardless of endogenous LH pulse fre-
quency, suggesting that silencing of KNDy neurons was
sufficient to reset the pulse generator. However, it is not
clear how many KNDy neurons were required to drive
LH release, as no markers of neuronal activation have
been reported in these studies. Surprisingly, use of mice
genetically modified to analyze kisspeptin-GnRH neuron
connections found that only 36% of RP3V and 22% of
ARC kisspeptin neurons were upstream afferents or
downstream targets of GnRH neurons (67). These results
suggest potential functional heterogeneity among KNDy
subpopulations, with only a subset directly regulating
GnRH release, although it is possible that a larger per-
centage of KNDy neurons are recruited via reciprocal
connections. In support of the latter, optogenetic stim-
ulation of KNDy neurons in the unilateral ARC pro-
duced synchronized activation of contralateral KNDy
cells in the in vitro mouse brain slice, suggesting re-
cruitment of bilateral connections to elicit a robust
synchronized activation of the KNDy population (37).
This suggestion is consistent with tract-tracing studies in
rats and goats that examined projections between the
ARC on each side of the third ventricle (102, 103) and the
synchronized increase in multi-unit activity in the ARC
of goats.

Do other neurons contribute?
Although KNDy neurons are clearly critical regulators

of episodic GnRH release, a number of other neuro-
peptides and transmitters have been implicated in the
regulation of GnRH pulses from earlier pharmacological
studies. Some of these neuropeptide/transmitter systems
may act through direct actions on GnRH neurons;
however, others may act through KNDy neurons and
other circuitry in the ARC. In this regard, it is of interest
that the administration of a GPR54 antagonist into the
ARC of the ewe and rat increases the LH interpulse
interval (34, 104). As mentioned previously, it is likely
that KNDy neurons do not express GPR54 (50).
Therefore, this observation suggests that kisspeptin may
act on non-KNDy ARC neurons to stimulate pulsatile
GnRH release. Such non-KNDy cell activation may re-
inforce the initial stimulation of KNDy neurons byNKB to
drive the GnRH pulse. Although further studies are re-
quired to identify the neurons involved, GPR54 is
expressed within POMC and tuberoinfundibular dopa-
mine neurons (50) and a GPR54 antagonist partially
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blocks the activation of ARC POMC neurons by kiss-
peptin (47). Therefore, it is possible that kisspeptin me-
diates LH release via local inputs to these cells. For
example, it is tempting to speculate that kisspeptin-
induced release of b-endorphin from POMC neurons
might provide redundancy in the EOP-induced termina-
tion of GnRH pulses in rodents. However, the role of this
circuitry, if any, in pulse generation requires further study.

Role in Steroid Hormone Feedback

Negative feedback
In males, and for the majority of the female cycle,

GnRH episodic secretion is reduced by gonadal steroid
hormone negative feedback via afferent populations. A
key indicator that KNDy neurons mediate steroid hor-
mone feedback comes from widely reported evidence
that KNDy peptide expression correlates with changes
in circulating steroid hormone levels. In rodents and
ewes, the removal of steroid hormones by gonadec-
tomy increases kisspeptin and NKB expression, whereas
the reintroduction of estrogen reduces this expression,
suggesting a suppression of excitatory peptides that is
consistent with negative feedback (14, 105, 106). Simi-
larly, increased kisspeptin and NKB gene expression and
hypertrophy of kisspeptin and NKB neurons occur in the
infundibular nucleus of postmenopausal women (28,
106, 107), a state associated with reduced estradiol
(106, 107).

In contrast, in some species, steroid hormones have an
opposing effect on dynorphin in the ARC, potentially
providing an increase in inhibitory tone to GnRH neu-
rons. Dynorphin is reduced in postmenopausal women
that have increased LH secretion, suggesting a mecha-
nism where decreased inhibitory tone elevates LH despite
ovarian failure (28). In the ARC of ewes, estradiol in-
creases dynorphin expression so that there is an increase
in the number of cell bodies containing this peptide
(108). In addition, progesterone increases dynorphin
mRNA expression in the POA, anterior hypothalamic
area, and ARC (109), and microimplantation of antag-
onists to KOR (61) or progesterone receptor (62) in the
ARC increases LH pulse frequency. This is consis-
tent with a large body of work from multiple species
(110–112), including humans (28, 113, 114), that rec-
ognized endogenous opioids as a significant mediator of
progesterone negative feedback and identified ARC
dynorphin neurons as a key site that mediates pro-
gesterone negative feedback. However, these results
stand in contrast to findings in mice, in which estradiol
treatment dramatically reduces ARC dynorphin ex-
pression despite lowering LH release (22, 115). This
anomaly likely reflects physiological differences in the

estrous cycle between species because rodents lack a true
luteal phase.

Despite evidence for correlative changes in KNDy
neuropeptide expression related to negative feedback,
until recently, studies have failed to detect differences in
KNDy neuron activity in castrated vs intact mice, as
shown by cFos expression in KNDy neurons (116) and
recordings of spontaneous firing activity from Kiss-GFP
ARC neurons inmouse brain slices (117, 118). Due to the
variation in KNDy cell firing responses, a recent study
aimed to detect changes in long-termKNDy neuron firing
patterns in male mice brain slices that fluctuate in similar
intervals to that of LH pulses. This study identified an
increase in episodic activity by castration that was re-
duced to intact levels by estradiol and DHT (119). In
another study, NK3R-mediated activation and KOR-
mediated inhibition of KNDy neurons were attenuated
and enhanced, respectively, by gonadal steroids in slices
from castrated male mice, suggesting direct inhibitory
actions of gonadal steroids (41).

ERa is critical for estrogen feedback and subsequent
fertility (120–122), and the deletion of ERa specifically
from the ARC of adult mice leads to infertility and im-
paired estradiol negative feedback (123). Although a high
percentage of KNDy neurons are coexpressed with ERa
(11–16), estradiol is capable of suppressing LH secretion
in adult transgenic mice with ERa specifically removed
from kisspeptin neurons [kisspeptin estrogen receptor
a–knockout (KERKO) mice], despite failing to suppress
ARC Kiss1 mRNA, indicating intact negative feedback
in spite of high kisspeptin expression (124). In contrast
to adult (124) and postpubertal (125) KERKO mice,
estradiol failed to suppress ARC Kiss1 mRNA expres-
sion and gonadotropin secretion in prepubertal OVX
KERKO mice, indicating ERa in kisspeptin cells is re-
quired to restrain LH secretion before the onset of pu-
berty (125). In line with these results, KERKO mice
exhibit precocious puberty and increased LH secretion
until postnatal day 35 (38). This may indicate that
kisspeptin neurons containing ERa are highly sensitive to
low levels of estradiol prior to puberty, resulting in low
ARC kisspeptin expression and GnRH and LH release.
However, over puberty, it is possible that these KNDy
neurons acquire resistance to estrogen negative feedback
so that other ERa-expressing neural circuits are required
for full negative feedback control of GnRH release. It
should be noted that the deletion of ERa from POMC
neurons impairs estradiol negative feedback and fertility
in female mice, suggesting that ERa-expressing non-
KNDy ARC neurons may be involved (126). Finally,
although initial results from adult KERKO mice based
on single blood samples did not show any change in
estradiol negative feedback, a more recent study using
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serial blood sampling detected an increase in LH pulse
frequency in adult KERKO mice compared with wild-
type controls, likely through increased glutamate release
by KNDy-KNDy or other glutamatergic upstream inputs
(127). Together, these studies support that KNDy neu-
rons are a component of the circuitry mediating estradiol
negative feedback but do not exclude the role of other
inputs to KNDy or GnRH neurons.

Although it is widely accepted that ERa is an essential
component in steroid hormone negative feedback, other
estrogen-responsive receptors may be involved. Classical
genomic signaling through ERa is sufficient to drive
estradiol positive feedback (124, 128). In contrast, mice
that possess a mutation within the ERa gene that ren-
ders the receptor unable to initiate gene transcription
still display 50% of estradiol-induced suppression of
LH release and inhibition of kisspeptin expression
(129). Although ERa is capable of both genomic and
rapid membrane-initiated steroid actions (130), the viral-
mediated ablation of the ERa gene in the ARC of the
mouse impairs the long-term chronic negative feedback
control of LH but leaves the acute suppression of LH by
estradiol intact (123). Further, studies of estradiol actions
using immortalized cell lines from either RP3V or ARC
mouse kisspeptin populations (131, 132) concluded that
GPR30 combined with either ERa or ERb was required
to mediate changes in Kiss1 gene expression in the ARC
(132). Therefore, it is likely that multiple receptors
expressed in KNDy neurons are required for full ex-
pression of estradiol negative feedback, although this is
clearly an area for additional future work.

The role of KNDy neurons in positive feedback
During the midfollicular phase in females, rising es-

trogen levels drive a switch from negative to positive
feedback (133), leading to a surge in GnRH and LH
release (134, 135) that is necessary for ovulation to occur
(136). There is strong support in rodents for the role of
RP3V kisspeptin neurons in mediating estradiol positive
feedback, and the surge is unable to be driven by high
estradiol in KERKO mice (124). However, there is also
growing evidence that KNDy neurons play a role in
regulating surge secretion of LH in nonrodent species.
The sheep and primate ARC host a much larger kiss-
peptin neuron population and exhibit far fewer preoptic
kisspeptin neurons compared with the rodent (137). In
the ewe and primate, ARC kisspeptin expression in-
creases prior to the GnRH surge (138, 139), and ARC
kisspeptin neurons express cFos during LH surge se-
cretion in the ewe (140, 141). Although kisspeptin
POA neurons are also activated during surge secretion
in the ewe (140–142), it is possible their participation
in estradiol positive feedback is redundant as surgical

isolation of theMBHdoes not block the LH surge in ewes
(143) or primates (144). It has not yet been determined
whether the negative and positive feedback effects of
estradiol are mediated through the same KNDy neurons
or distinct subgroups within the KNDy population.

In contrast to the primate and ewe, there is no current
evidence for KNDy neuron involvement for generating
the LH surge in the rodent brain. However, the ablation
of KNDy neurons in the rat increases the magnitude of
the LH surge (145, 146). This most likely reflects an
inhibitory input from dynorphin into the POA that limits
the magnitude of the LH surge in rodents.

Other Roles of KNDy Neurons

In addition to their roles in pulse generation and steroid
negative feedback, the past few years have also seen in-
creasing evidence of the involvement of KNDy cells in a
number of other functions, including those related to other
aspects of reproduction as well as other physiological sys-
tems. These include the role of KNDy cells as a key central
node for external and internal signals regulating seasonal
breeding (108, 147–149), puberty (150–152), the effects of
stress on the reproductive axis (153, 154), the interaction
between metabolic cues and reproduction (155, 156), the
influence of gonadal steroids on prolactin secretion (157)
and of prolactin on reproduction (158), and the control of
thermoregulation (159–161). It is noteworthy that much of
this work, as well as that investigating KNDy cells in pulse
generation and steroid feedback, has spawned a new
frontier for translational work, applying the basic discov-
eries to development of new treatments for reproductive as
well as nonreproductive disease. For example, discovery of
the role of KNDy cells andNKB in thermoregulation has led
to recent success in the use of NK3R receptor antagonists in
randomized, double-blind trials for the treatment of post-
menopausal hot flushes (162, 163). Space limitations
preclude a full discussion of the recently extended functions
of KNDy cells and their therapeutic implications, but the
interested reader is referred to the recent papers and reviews
cited above.

Unanswered Questions and Opportunities
for Future Research

Although much has been learned since the original
identification of KNDy cells in 2007, there are still many
unanswered questions about this population and its
functions, as well as opportunities to apply new tech-
nologies to their study. Although strong evidence has
accumulated in recent years to support the role of KNDy
cells in generating GnRH pulses, identification of the full
complement of neurons, and connections responsible for
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individual GnRH pulses, their dynamics and modulation
by internal and external signals remain a major goal; for
example, do non-KNDy or kisspeptin cells in other re-
gions, such as the amygdala (164), participate in the
regulation of pulse frequency and/or amplitude? A key
unresolved question inherent in the “KNDy hypothesis”
of pulse generation is how the time lag between pulse onset
and termination occurs ifNKB and dynorphin are released
at the same time. If dynorphin is not the obligatory “stop”
signal for pulses in rodents, and is lacking in the human
kisspeptin/NKB cell population, then what are the
mechanisms in those species responsible for pulse termi-
nation? Similarly, a number of questions remain with
respect to the role of KNDy neurons in mediating steroid
negative feedback. As discussed above, an important area
for future research will be to determine the relative roles of
different types of estrogen receptors and signaling path-
ways (genomic and nongenomic) in the normal physiology
of KNDy cells. Recent evidence suggests that neuronal-
derived estrogens may play a role in positive feedback
regulation of GnRH in the primate (165); whether these
actions are in part mediated through KNDy or other
kisspeptin cells needs to be investigated.

Coupled to research to address these questions are some
technical challenges as well as opportunities. For example,
there is a pressing need for the ability to achieve inducible,
region- and cell-specific manipulation of KNDy peptides/
receptors in adult animals; this would allow for discrete
testing of their roles in adult physiology, distinct from their
influences during development and puberty. In addition,
previous studies of KNDy neuroanatomy using immuno-
histochemical labeling have required tissue sectioning,
limiting analysis to subsets of neurons and losing valuable
three-dimensional information about the population. Re-
cent developments in wholemount immunohistochemistry
and optical tissue clearing combined with improvements in
deep-brain imaging now permit three-dimensional imaging
of the complete KNDy population in multiple mammalian
species (166, 167). These advances in imaging have the
potential to reveal unique features that may be critical for
dissecting functionally distinct KNDy populations. Further,
recent advances in voltage sensing and calcium imaging
technologies have made it possible to assess KNDy activity
in freely moving animals (56), and these approaches can be
applied to study other functions of KNDy cells as well as
their dysfunction in animal models of disease (168, 169).
Finally, recent technical innovations now allow single-
cell, transcriptional profiling of neurons based on their
neuropeptide or connectional phenotype (170, 171) and
applying this to KNDy cells under a variety of condi-
tions has the potential to reveal unique components of inter-
and intracellular signaling pathways important for their
biological function.

Summary

Despite the remaining questions and issues, there has
been significant progress in the last decade in our un-
derstanding of the neuroendocrine role and functional
organization of KNDy cells in the mammalian brain.
Compelling evidence has accumulated indicating that
KNDy neurons are both necessary and sufficient for
driving pulsatile GnRH secretion, supporting the hy-
pothesis that KNDy neurons represent the long-sought
“GnRH pulse generator.” Complementing this are
findings supporting specific roles for each of the KNDy
peptides and receptors in the generation of individual
pulses, resulting in modifications of the original KNDy
hypothesis (Fig. 2). At the same time, there is recognition
that significant species differences exist in these roles, as
for example with multiple tachykinins and receptors
serving as redundant signals for initiating pulses in ro-
dents as opposed to the predominant role that NKB and
NK3R play in initiating pulses in ruminants. And al-
though initial data provided contradictory evidence as to
whether KNDy cells were required for steroid negative
feedback, more recent findings appear to support this
functional role but do not exclude the involvement of
additional circuitry either upstream or in parallel to
KNDy neurons. Finally, the use of new technologies and
approaches that allow cell-specific manipulation exper-
iments to be performed in the same animals in which
episodic LH is sequentially monitored (56, 127, 168) has
been critical in testing the neuroendocrine functions of
KNDy cells in vivo. In the near future, application of
these approaches and others will likely significantly ex-
tend our knowledge not only of KNDy cell function in the
normal brain, but also under conditions that mimic re-
productive dysfunctions seen in human disease.
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