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Abstract 

Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic 
medications. They prevent glucose reabsorption in the proximal convoluted tubule to de-
crease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved 
in the inflammatory response, fibrogenesis, and regulation of numerous intracellular 
signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and 
fibrogenesis and improved the function of damaged organ in animal studies, observational 
studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate 
hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular 
diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors 
are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, 
they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, 
acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can 
reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, 
and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial bio-
genesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, 
lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. 
This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovas-
cular and renal diseases and dissects the underlying molecular mechanisms in detail. 
This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and 
cardiovascular and renal diseases using the results of latest observational studies, clin-
ical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechan-
isms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
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Introduction

Diabetes is a major noncommunicable disease and a 
public health issue, which is associated with several com-
plications such as cardiovascular diseases, chronic kidney 

disease (CKD), nonalcoholic fatty liver disease (NAFLD), 
neuropathy, and gastrointestinal complications (1-3). 
These complications, particularly cardiovascular diseases 
and CKD, are the leading causes for mortality among 
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diabetic patients (4). During the last decades, new classes of 
antidiabetic drugs such as dipeptidyl peptidase 4 (DDP-4) 
inhibitors, glucagon-like peptide 1 (GLP-1) receptor agon-
ists, thiazolidinediones, and sodium glucose cotransporter 2 
(SGLT-2) inhibitors improved the management of diabetes 
(5,6). SGLT-2 inhibitors, carrying the suffix gliflozin, such 
as empagliflozin, dapagliflozin, canagliflozin, ipragliflozin, 
ertugliflozin, sotagliflozin, and luseogliflozin, increase the 
urinary excretion of glucose by inhibiting its reabsorption 
in the proximal convoluted tubule (7).

Previously, it was observed that SGLT-2 inhibitors can 
improve blood pressure, serum triglyceride, and body 
weight (8-10). Diabetic patients are often complicated with 
other components of metabolic syndrome such as cardio-
vascular diseases and SGLT-2 inhibitors showed protective 
effects on these complications (7,11,12). Regarding their 
beneficial effects on metabolic syndrome, numerous recent 
studies attempted to assess the effects of SGLT-2 inhibitors 
on cardiovascular and renal diseases. It was uncovered that 
SGLT-2 inhibitors can considerably protect against cardio-
vascular and renal diseases (13-15). Beyond their effects on 
body weight, dyslipidemia, and cardiovascular and renal 
diseases, they also protected against NAFLD (16,17). Their 
great impact on cardiovascular and renal events raised the 
question of whether we need them for their protective ef-
fects on cardiovascular and renal diseases or for their 
glucose-lowering effects.

Yet, several review articles have been published that dis-
cuss the beneficial effects of SGLT-2 inhibitors on cardio-
vascular diseases, renal diseases, and NAFLD (18-24). In 
this review, the latest observational studies, clinical trials, 
and meta-analyses, particularly those published during last 
4 years, have been referenced to enumerate the beneficial 
effects of SGLT-2 inhibitors on the liver, kidney, and car-
diovascular system. This review also comprehensively ex-
plains and illustrates the pathophysiological and molecular 
mechanisms involved in these effects and covers recent 
findings in animal studies. Most of the previous reviews 
discussed just clinical or animal studies without making a 
link between them, but this review attempts to explain the 
underlying molecular mechanisms involved in the clinical 
effects of SGLT-2 inhibitors.

Mechanism of Action, Efficacy, and Safety of 
SGLT-2 Inhibitors for Diabetes

SGLT-2 is located in the apical membrane of renal tubular 
cells in the S1 and S2 segments of proximal convoluted 
tubule and reabsorbs 90% of filtered glucose. SGLT-1 re-
absorbs the remaining filtered glucose in the S3 segment 
of proximal convoluted tubule (25). Together they prevent 

urinary glucose excretion until plasma glucose concen-
tration of ~200  mg/dL. Higher concentrations of plasma 
glucose exceeds their reabsorption capacity and leads to 
glycosuria. SGLT-2 is a cotransporter of Na+ and glucose 
(25). It utilizes the downhill transport of Na+ to provide 
energy for active reabsorption of filtered glucose. Active 
extrusion of Na+ by Na+/K+ exchanger in the basolateral 
membrane of renal tubular cells results in downhill trans-
port of Na+ between 2 sides of apical membrane (25). 
SGLT-2 inhibitors can prevent 30% to 50% of glucose re-
absorption and increase urinary glucose excretion in dia-
betic patients (26).

SGLT-2 inhibitors significantly decrease glycated hemo-
globin (HbA1c) [mean difference (MD; 95% CI) −1.35 % 
(−2.36 to −0.34)], fasting plasma glucose [MD (95% CI) 
−1.01 mmol/L (−1.98 to −0.04)], insulin requirement [MD 
(95% CI) −4.85 U/24 h (−7.42 to −2.29)] and body weight 
[MD (95% CI) −2.3 kg (−3.09 to −1.50)] among patients 
with type 2 diabetes (27).

SGLT-2 inhibitors are associated with higher risk of 
genital tract infection. They also increase the risk of dia-
betic ketoacidosis, in patients with type 1 diabetes but not 
in patients with type 2 diabetes. Despite concerns, SGLT-2 
inhibitors do not increase the risk of urinary tract infection, 
bone fracture and hypoglycemia. Likewise they do not in-
crease the risk of amputation, even in diabetic patients with 
peripheral artery disease (27-32).

The Effect of SGLT-2 Inhibitors on 
Cardiovascular Diseases

Clinical Findings

Diabetes and hyperglycemia are heavily associated with 
higher incidence and exacerbation of cardiovascular dis-
eases such as hypertension (HTN), ischemic heart disease, 
stroke, heart failure and peripheral artery disease (33,34). 
Meta-analyses of several observational studies and clinical 
trials disclosed that use of SGLT-2 inhibitors is associated 
with markedly improved outcome of cardiovascular dis-
eases among diabetic patients (15,35,36). Zheng et al un-
covered that use of SGLT-2 inhibitors is associated with 
significant decrease in all-cause mortality [hazard ratio 
(HR; 95% credible interval (Crl) 0.80 (0.71-0.89)], car-
diovascular mortality [HR (95% Crl) 0.89 (0.69-0.91)], 
heart failure events [HR (95% Crl) 0.62 (0.54-0.72)] and 
myocardial infarction ([HR (95% Crl) 0.86 (0.77-0.97)] 
among diabetic patients (35). They can also protect against 
nonfatal myocardial infarction or nonfatal stroke [relative 
risk (RR; 95% CI) 0.8 (0.70-0.94)] (37). Moreover, it was 
unveiled that use of SGLT-2 inhibitors is associated with 
lower hospitalization rate and decreased cardiovascular 
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mortality among heart failure patients with or without 
reduced ejection fraction (38,39). The meta-analysis per-
formed by Malik et al uncovered that SGLT-2 inhibitors led 
to 22% reduction in myocardial infarction, 39% decrease 
in heart failure hospitalization, and 20% decrease in major 
adverse cardiac events among diabetic patients with CKD 
grade 3 or higher (40). The authors also reported that there 
was a decremental pattern in the incidence of stroke and 
cardiovascular mortality in their study (40). Interestingly, 
it was found that SGLT-2 inhibitors are associated with 
reduced risk of atrial fibrillation and atrial flutter among 
diabetic patients [RR (95% CI) 0.76 (0.65–0.90)] regard-
less of their age, blood pressure, body weight, and HbA1c 
(41). Even, it was shown that SGLT-2 inhibitors are su-
perior to GLP-1 receptor agonists and other antidiabetic 
drugs regarding their cardioprotective effects (35,42,43). 
Likewise, it was observed that SGLT-2 inhibitors signifi-
cantly decrease both systolic and diastolic blood pressure 
in diabetic patients (10,44). Further evaluations indicated 
that their blood pressure–lowering property is comparable 
to hydrochlorothiazide as a diuretic (45).

Empagliflozin provided slightly more protection among 
patients with atherosclerotic cardiovascular disease, while 
empagliflozin, dapagliflozin, canagliflozin, and ertugliflozin 
were nearly similar regarding their effect on patients 
without atherosclerotic cardiovascular disease and patients 
with heart failure (46-50).

Pathophysiological Mechanisms

There are also several animal studies reporting the benefi-
cial effects of SGLT-2 inhibitors on cardiovascular diseases 
and explaining the underlying molecular mechanisms. 
Here, these molecular and cellular mechanisms and their 
effect on cardiovascular system are separately discussed.

Hormonal and metabolic alterations induced by SGLT-2 
inhibitors improve cardiovascular health
SGLT-2 inhibitors lead to weight loss, which indirectly 
improves cardiovascular health condition (10). SGLT-2 
inhibitors augment lipolysis and decrease insulin require-
ment, resulting in decreased body weight (51,52). These 
drugs lead to calorie loss by increasing urinary excretion 
of glucose. However, calorie loss can partly increase food 
intake, but their effect on calorie loss is greater than cal-
orie intake (53). Meanwhile, these drugs can decrease the 
release of positive regulators of appetite and body weight 
such as ghrelin and neuropeptide Y (53-55) (Fig. 4).

Overactivation of insulin and insulin-like growth factor 
1 signaling pathways is critically involved in the pathogen-
esis of heart failure and myocardial hypertrophy (56,57). As 
mentioned previously, SGLT-2 inhibitors can significantly 

decrease insulin requirement in diabetic patients (27). In 
addition to its beneficial effects on blood sugar and insulin 
dosage, empagliflozin attenuated the detrimental effects of 
insulin on the heart. This effect was mediated by decreasing 
protein kinase B phosphorylation, and glucose transporter 
4 expression (58). Long-term phosphorylation and acti-
vation of Protein kinase B results in pathological cardiac 
hypertrophy and heart failure (59). SGLT-2 inhibitors can 
directly and indirectly modulate the cardiovascular effect 
of insulin and other hormones.

Activation of Sestrin2/5' adenosine monophosphate-
activated protein kinase signaling pathway and 
autophagy by SGLT-2 inhibitors protects against different 
cardiovascular diseases such as heart failure, ischemic 
heart disease, and arrhythmia
Empagliflozin promoted Sestrin2-mediated activa-
tion of 5' adenosine monophosphate-activated protein 
kinase (AMPK), thereby inhibiting mammalian target 
of rapamycin complex 1 (mTORC1) signaling pathway. 
Activation of the Sestrin2/AMPK/mTORC1 signaling 
pathway by empagliflozin mitigated myocardial oxida-
tive stress, inflammation, and cardiac fibrosis (60,61). 
Consistently, it has been reported that Sestrin2 provides 
immense protection against several cardiovascular dis-
eases such as hypertension, myocardial infarction, arrhyth-
mias, cardiomyopathy, and atherosclerosis (62). SGLT-2 
inhibitors activate the Sestrin2/AMPK signaling pathway. 
Thereafter, AMPK activates tuberous sclerosis complex 
2, a tumor suppressor gene. Tuberous sclerosis complex 2 
directly inhibits mTORC1 (63). Similar to Sisterin2, liver 
kinase B1 (LKB1) was upregulated by empagliflozin in the 
mice model of myocardial ischemia/reperfusion (64). LKB1 
is a downstream of Sestrin2 and phosphorylates and ac-
tivates AMPK to improve the outcome of cardiovascular 
diseases (65). LKB1 deletion in myocardial cells has been 
associated with spontaneous onset of atrial fibrillation and 
atrial fibrosis in mice (66) (Fig. 1).

Sestrin2 also regulates mTORC1 through GATORs. 
Sestrin2 attenuates the inhibitory effect of GATOR2 on 
GATOR1. When liberated from GATOR2, GATOR1 in-
hibits RagB, a GTPase needed for mTORC1 activation 
(67). During nutrient deficiency Sestrin2 inhibits GATOR2 
and downregulates mTORC1 (68). mTORC1 is a nega-
tive regulator of autophagy, and its inhibition strongly en-
hances autophagy (63) (Fig. 1). Autophagy is crucial for 
removal of dysfunctional organelles and misfolded proteins 
aggregate (69). It provides the opportunity for self-renewal 
and prevents cardiomyocytes death (69). Sufficient 
autophagic response is crucial for maintenance of cardio-
vascular homeostasis, improves cardiovascular health, and 
prevents cardiac hypertrophy and cardiomyopathy (70). 
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Furthermore, autophagy confines myocardial injury and 
myocardial remodeling after myocardial infarction (71,72).

SGLT-2 inhibition also augments the Kruppel-like factor 
9/vascular endothelial growth factor A pathway to improve 
autophagy in cardiomyocytes (73). Kruppel-like factor 9 is 
a transcription factor that promotes the gene expression of 
autophagy-related proteins and activates the cellular mech-
anisms of autophagy (74). Consistently, it was observed 
that SGLT-2 inhibition augments autophagy to ameliorate 
myocardial infarction in rats (75).

SGLT-2 inhibition improves mitochondrial function 
and attenuates oxidative stress to ameliorate myocardial 
infarction, heart failure, and arrhythmia
The heart heavily relies on mitochondrial respiration for 
its energy metabolism (76). Ineffective and dysfunctional 
mitochondrial activity results in energy depletion, con-
tractile failure, reactive oxygen species (ROS) production, 
inflammation, and apoptosis of cardiomyocytes (76). These 
alterations in cellular level progress to heart failure in the 
long term (76). In addition, mitochondrial dysfunction is a 
major contributor for myocardial injury during myocardial 

ischemia/reperfusion. Impaired calcium homeostasis and 
burst of oxidative stress due to mitochondrial dysfunction 
leads to severe myocardial injury during myocardial infarc-
tion (77).

Perturbation of mitochondrial calcium and energy 
homeostasis are major players in myocardial electrical and 
contractile dysfunction (78). Empagliflozin decreased the 
cytoplasmic concentration of Ca2+ and Na+ and increased 
the mitochondrial concentration of Ca2+. This effect was 
mediated through inhibition of Na+/H+ exchanger (79). 
Previously, it was shown that increased activity of Na+/
H+ exchanger and increased cytoplasmic concentration 
of Ca2+ and Na+ are responsible for deterioration of heart 
failure (80,81). Similarly, dual SGLT-1 and SGLT-2 inhib-
ition by sotagliflozin significantly improved mitochondrial 
function of the myocardium, decreased oxidative stress, 
and improved left atrial dysfunction through modulation 
of Ca2+ release into the cytoplasm (82). Interestingly, Ye 
et  al revealed that SGLT-2 inhibition activates AMPK, 
thereby inhibiting Na+/H+ exchanger (83).

Sestrin2/AMPK pathway activates peroxisome 
proliferator-activated receptor-gamma coactivator (PGC) 

Figure 1.  The effect of SGLT-2 inhibition and Sestrin2 on mTORC1. SGLT-2 inhibition upregulates Sestrin2. Subsequently, Sestrin2 activates LKB1/
AMPK/tuberous sclerosis complex 2 signaling pathway or inhibits GATOR2/GATOR1/RagB signaling pathway to remove the deleterious effects of 
mTORC1 in damaged cardiovascular system. mTORC1 activates ribosomal protein synthesis, which can activate unfolded protein response and ER 
stress in inflammation. In addition, mTORC1 attenuates autophagy that helps to the removal of dysfunctional organelles and plays a crucial role in 
cardiovascular homeostasis. Contrary to SGLT-2 inhibition, nutrient sufficiency and overnutrition downregulates Sestrin2 and activates mTORC1.
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1α expression to improve mitochondrial and myocardial 
function after myocardial infarction (84). PGC-1α interacts 
with peroxisome proliferator-activated receptor (PPAR) 
gamma, thereby regulating the function of several tran-
scription factors, improving mitochondrial respiration, and 
decreasing ROS production (Fig. 2) (85,86). Higher PGC-
1α expression predicts more efficient mitochondrial func-
tion, inhibits vascular calcification, and improves cardiac 
function (87,88). Because of its high energy demand, the 
heart strongly relies on proper mitochondrial function to 
provide its energy requirement. Dysfunctional mitochon-
drial activity not only leads to energy depletion but also 
causes accumulation of ROS and accelerates apoptosis 
(89). Herein, a subset of autophagy named mitophagy can 
remove the dysfunctional mitochondria and prevent the 
subsequent destructive events (89).

Sestrin2 can activate nuclear factor erythroid 2-related 
factor 2 (Nrf2) by liberating it from Kelch-like ECH-
associated protein 1 sequestration (90). Nrf2 is a transcrip-
tion factor for numerous antioxidant genes and promotes 
their expression by binding to antioxidant response ele-
ment (90). This function of Sestrin2 can markedly at-
tenuate oxidative stress, subsequent to SGLT-2 inhibition. 
The protective effect of empagliflozin on oxidative stress 
and mitochondria dysfunction has been associated with de-
creased mortality after myocardial ischemia in diabetic rats 
(75,91,92).

Empagliflozin enhanced the expression of BCL2-
interacting protein 3 and led to downregulation of mito-
chondrial fission 1 protein in cardiomyocytes (75). 

BCL2-interacting protein 3 augments mitophagy in 
myocytes and prevents cell death (93). Uncontrolled ex-
pression of fission 1 protein leads to mitochondrial frag-
mentation and results in the apoptosis of cardiomyocytes 
(Fig. 2) (94).

Dapagliflozin, another SGLT-2 inhibitor, successfully re-
stricted infarct size and prevented ventricular arrhythmias 
and left ventricular dysfunction in a rat model of myocar-
dial infarction. Dapagliflozin enhanced mitochondrial func-
tion and increased antiapoptotic proteins such as BCL2 to 
improve myocardial infarction (95). Shao et  al indicated 
that empagliflozin improves mitochondrial function of 
cardiomyocytes and prevents atrial fibrillation via PGC-1α/nu-
clear respiratory factor-1/mitochondrial transcription factor 
A  (TFAM) signaling pathway. Additionally, empagliflozin 
significantly attenuated oxidative stress, decreased the serum 
concentrations of highly sensitive C-reactive protein, and in-
hibited atrial fibrosis in diabetic rats (86). TFAM preserves 
the integrity of mitochondrial DNA. Besides, it was shown 
that increased expression of TFAM can profoundly mitigate 
cardiac dysfunction (Fig. 2) (96). According to these find-
ings, amelioration of mitochondrial dysfunction accounts 
for a major proportion of cardioprotective effects of SGLT-2 
inhibitors.

SGLT-2 inhibition attenuates endoplasmic reticulum stress 
and endoplasmic reticulum stress–mediated apoptosis in 
the cardiovascular system
Endoplasmic reticulum (ER) is heavily involved in Ca2+ 
homeostasis in cardiomyocytes; hence, ER stress and the 

Figure 2.  The effect of SGLT-2 inhibition on mitochondrial homeostasis. SGLT-2 inhibition activates SIRT1/PGC-1α signaling pathway, which can 
improve mitochondrial respiration, mitochondrial biogenesis, β-oxidation, and ketogenesis and confines mitochondrial ROS production. BCL2-
interacting protein 3 and TFAM upregulation by SGLT-2 inhibitors can enhance mitophagy and maintain mitochondrial DNA integrity, respectively. 
SGLT-2 inhibitors downregulate fission 1 protein, thereby preventing mitochondrial fission and fragmentation.
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following dysregulation of Ca2+ homeostasis impair heart 
function (97). ER stress plays a pivotal role in the develop-
ment of heart failure (98). Furthermore, ER stress is dra-
matically activated and involved in atherosclerotic plaque 
rupture and myocardial injury following myocardial in-
farction (97).

SGLT-2 inhibition vigorously attenuated the detri-
mental effects of ER stress on cardiomyopathy, mediated 
through downregulation of activating transcription factor 
4 (ATF4), CCAAT/enhancer binding protein homologous 
protein (CHOP), X-box binding protein 1, tumor necrosis 
factor (TNF) receptor-associated factor 2, and caspase 12 
(99). Overactivation of ATF4/CHOP pathway results in the 
overexpression of proapoptotic proteins and activates ER 
stress-induced apoptosis (99,100). X-box binding protein 
1 and TNF receptor-associated factor 2 can also augment 
the inflammatory response after ER stress (101). mTORC1 
activation increases ribosomal protein synthesis during 

inflammation, which causes unfolded protein response, ER 
stress, and subsequently apoptosis (102). SGLT-2 inhibi-
tors can prevent the initiation of ER stress by inhibiting 
mTORC1 and also attenuate the progression of ER stress 
to apoptosis (Fig. 1).

SGLT-2 inhibitors-mediated ketogenesis enormously 
benefits cardiovascular system
SGLT-2 inhibitors vigorously stimulate ketogenesis even 
they are associated with slightly increased risk of dia-
betic ketoacidosis among diabetic patients (28,103,104). 
Ketogenesis and ketogenic diet can enormously protect 
against cardiovascular system. For instance, ketogenesis 
protects against myocardial ischemia, improves mito-
chondrial function, and prevents apoptosis and myocar-
dial dysfunction (105,106). Furthermore, ketogenesis 
promotes autophagy and prevents oxidative stress, 

Figure 3.  The protective effects of SGLT-2 inhibition on diabetic nephropathy. SGLT-2 inhibition improves mitochondrial function and expedites 
ketogenesis through PGC-1α. SGLT-2 inhibition suppresses TLR4 and RAGE signaling pathways and attenuates the inhibitory effect of mTORC1 on 
autophagy. SGLT-2 inhibitors downregulate peptidylprolyl cis/trans isomerase, peptidyl-prolyl cis/trans isomerase never in mitosis A-interacting 1/
Wnt pathway, upregulate Klotho, thereby decreasing TGF-β, α smooth muscle actin, and connective tissue growth factor and preventing mesangial 
cells activation. SGLT-2 inhibitors can reduce the expression of intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and MCP1, 
which confine immune cells infiltration and alleviate inflammation. Further, SGLT-2 inhibition suppresses RAAS and ameliorate the detrimental effect 
of RAAS on kidney fibrosis and albuminuria.
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atherosclerosis, and myocardial remodeling (107,108). 
Recent meta-analyses uncovered that ketogenic diet is as-
sociated with better body weight control, better glycemic 
control, and improvement in dyslipidemia among diabetic 
patients (109,110). SGLT-2 inhibitors enhance sirtuin 1 
(SIRT1) expression and activate SIRT1/PGC-1α/fibro-
blast growth factor 21 (FGF21) signaling pathway to pro-
mote ketogenesis. Furthermore, this pathway promotes 
autophagy and improves heart cells function and viability 
(111,112). AMPK partly mediates the positive effect of 
SGLT-2 inhibitors on SIRT1/PGC-α/FGF21 axis (113). In 
addition, potentiation of ketogenesis by SGLT-2 inhibi-
tors can protect the heart against energy depletion (114). 
Based on these findings, augmentation of ketogenesis can 
enormously support cardiovascular health during stress 
condition.

SGLT-2 inhibition prevents atherosclerotic plaque 
formation and rupture by modulating endothelial 
dysfunction, inflammation, and macrophages activity
Empagliflozin enhances the expression of endothelial ni-
tric oxide that results in vasodilation and protects against 
atherosclerosis, hypertension, and other cardiovascular 

adverse events (60). It was observed that empagliflozin 
ameliorates endothelial dysfunction in diabetic rats (115). It 
upregulated Nrf2 and strongly attenuated oxidative burst. 
Moreover, empagliflozin inhibited advanced glycation end-
products/receptor for advanced glycation end-products 
(RAGE) signaling pathway, which is a major contributor 
for vascular inflammation, oxidative stress, and macro-
phage recruitment in vascular complications of diabetes 
(115).

Dapagliflozin showed protective effect on the forma-
tion and stabilization of atherosclerotic plaques in a mice 
model of atherosclerosis. It suppressed oxidative stress, 
downregulated NLR family pyrin domain containing 3 
(NLRP3), prevented macrophages infiltration, and de-
creased inflammatory cytokines such as interleukin (IL) 
1β and IL18 (116-118). Indeed, SGLT-2 inhibition ac-
tivated AMPK signaling, thereby suppressing NLRP3 
inflammasome (118). Furthermore, SGLT-2 inhibition sig-
nificantly reduced monocyte chemoattractant protein 1 
(MCP-1) and vascular cell adhesion molecule 1 (VCAM-
1) to prevent inflammatory cells infiltration into vessels’ 
wall (119). Oxidized lipoproteins, ROS, and ER stress ac-
tivate NLRP3, thereby stimulating macrophages response 

Figure 4.  The protective effect of SGLT-2 inhibitors on obesity, lipid metabolism, and NAFLD. SGLT-2 inhibition leads to urinary excretion of glucose 
in the kidney and decreases insulin requirement and lipogenesis in the liver and adipose tissue. Further, SGLT-2 inhibition can suppress the appe-
tite through downregulation of neuropeptide Y and ghrelin. SGLT-2 inhibition stimulates ketogenesis and gluconeogenesis and prevents fat and 
glycogen accumulation in the liver. SGLT-2 inhibition also increases adiponectin and glucagon that can mitigate NAFLD.
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in atherosclerosis (120). SGLT-2 inhibition vigorously 
modulates the deleterious effects of numerous harmful 
mechanisms.

Dapagliflozin also decreased inducible nitric oxide ex-
pression and attenuated Toll-like receptor 4 (TLR4)/nuclear 
factor kappa B (NF-κB)/tumor necrosis factor alpha (TNF-
α) signaling pathway to prevent lipid accumulation and 
hinder atherosclerosis (121). The TLR4/NF-κB pathway 
promotes the expression of inflammatory and fibrogenic 
molecules such as MCP-1 and transforming growth factor 
β (TGF-β) that can aggravate atherosclerosis (122).

Sestrin2 knockout led to decreased AMPK phosphoryl-
ation and increased NF-κB phosphorylation in mouse aorta 
endothelial cells. In addition, Sestrin2 knockout led to ER 
stress and burst of oxidative stress in these cells (123). 
Hyperglycemia and oxidized low-density lipoprotein can 
downregulate Sestrin2/AMPK pathway in monocytes and 
accelerate mTORC1 signaling. Activation of mTORC1 
signaling increases the expression of inflammatory me-
diators and differentiation of M1 macrophages (124). 
Genetically augmented Sestrin2/AMPK pathway reversed 
these effects and increased M2 macrophage differentiation 
(124). Sestrin2-mediated inhibition of mTORC1 also in-
duces autophagy in macrophages and enhances their M2 
polarization (125). Autophagy is crucial for atheroscler-
otic plaque stability. Attenuation of autophagy results in 
increased oxidative stress and apoptosis of lesional macro-
phages and leads to atherosclerotic plaque necrosis (126). 
Similarly, it has been demonstrated that higher proportions 
of M2 subtype of macrophages are associated with plaque 
stability, while increased abundance of M1 subtype predicts 
atherosclerotic plaque instability (127). Hence, SGLT-2 
inhibition can protect against atherosclerotic plaque for-
mation and increase plaque stability partly through 
upregulation of Sestrin2/AMPK/mTORC1 pathway and 
downregulation of NF-κB and NLRP3 signaling pathways 
in macrophages and endothelial cells.

SGLT-2 inhibitors mitigate hypertension though several 
mechanisms
SGLT-2 inhibition decreased blood pressure in human and 
animal studies (128,129). SGLT-2 inhibition can augment 
the blood pressure lowering effect of angiotensin receptor 
blockers (130). Furthermore, luseogliflozin abrogated high-
salt diet-induced high blood pressure in rats. This finding 
shows that SGLT-2 inhibition is useful to attenuate the 
salt sensitivity of blood pressure (131). Takeshige et  al 
unveiled that SGLT-2 inhibition by empagliflozin can en-
hance urinary sodium excretion to lower blood pressure 
(132). It was also shown that SGLT-2 inhibition acceler-
ates circadian fall of blood pressure and decreases noc-
turnal blood pressure in hypertensive rats with a nondipper 

pattern of blood pressure (132). Indeed, SGLT-2 inhibition 
improves circadian rhythm of sympathetic nerve, thereby 
ameliorating nondipper hypertension (133). The inhibitory 
effect of SGLT-2 inhibitors on sympathetic nervous system 
accounts for a major proportion of their anti-hypertensive 
effects (134).

Interestingly, it has been reported that angiotensin II 
upregulates SGLT-2 expression in the kidney. Furthermore, 
canagliflozin reverted the deleterious effect of angiotensin 
on the kidney (135). Regarding the mutual link between 
renal dysfunction and hypertension and the beneficial ef-
fects of SGLT-2 inhibition on both of them, SGLT-2 in-
hibitors are a good therapeutic option for diabetic patients 
who are at higher risk of both hypertension and renal dys-
function (136,137). Schork et  al observed that SGLT-2 
inhibitors were associated with a transient decrease in 
extracellular fluid volume and activation of the renin-
angiotensin-aldosterone system (RAAS) in the first days of 
use, but these changes returned to their baseline after 3 to 
6 months of use (138). According to these results, there is 
no concern about RAAS activation during long-term use 
of SGLT-2 inhibitors, and they can decrease blood pressure 
without compensatory increase in RAAS.

As mentioned previously, SGLT-2 inhibitors can increase 
nitric oxide production, thereby decreasing vascular ton-
icity (60). Moreover, it was observed that empagliflozin 
prevents arterial remodeling by ameliorating mitochondrial 
dysfunction in rats, which helps to mitigate the effect of 
long-term hypertension on the vasculature (86).

SGLT-2 inhibition improves circadian rhythm of blood 
pressure, enhances urinary excretion of Na+, contributes 
to vasorelaxation, and prevents arterial remodeling. These 
properties of SGLT-2 inhibitors heavily improves hyper-
tension, itself, and hypertension-associated cardiovas-
cular diseases such as heart failure, stroke, and myocardial 
infarction.

SGLT-2 inhibition mitigates cardiomyopathy by 
upregulating reversion-inducing cysteine-rich protein 
with Kazal motif and attenuating NLRP3- and NF-κB-
mediated cardiomyocytes apoptosis
SGLT-2 inhibition decreased myocardial content of inflam-
matory cytokines such as IL6 and increased the produc-
tion of anti-inflammatory cytokines such as IL10. SGLT-2 
inhibition also increased M2 subtype of macrophages and 
reduced their M1 subtype. Furthermore, SGLT-2 inhibi-
tors hindered the activation of NF-κB in the mice model of 
cardiomyopathy, which is a major driver for inflammation 
and promotes the expression of inflammatory cytokines 
(58,139). Interestingly, NF-κB expression in patients with 
asymptomatic or mildly symptomatic hypertrophic cardio-
myopathy predicts progression to heart failure in the long 
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term (140). Downregulation of NF-κB also alleviates myo-
cardial ischemia/reperfusion injury and enhances athero-
sclerotic plaque stability (141,142).

Previous studies unveiled that NLRP3 inflammasome 
is involved in the pathogenesis of cardiomyopathy and 
mediates the production of several inflammatory cyto-
kines (143). In addition, NLRP3 gene silencing has been 
associated with notable improvement in cardiomyopathy 
(144). Dapagliflozin, in an AMPK-dependent manner, 
could downregulate NLRP3/apoptosis-associated speck-
like protein containing a C-terminal caspase recruitment 
domain (apoptosis-associated speck-like protein con-
taining a C-terminal caspase recruitment domain) signaling 
pathway in the rat model of cardiomyopathy (118). 
NLRP3/apoptosis-associated speck-like protein containing 
a C-terminal caspase recruitment domain pathway acti-
vates caspase 1 and stimulates apoptosis; hence, SGLT-2 
inhibition can prevent cardiomyocytes apoptosis in cardio-
myopathy (118).

Empagliflozin significantly increased reversion-inducing 
cysteine-rich protein with Kazal motif (RECK) expression 
in the mice model of diabetic cardiomyopathy. RECK pre-
vents fibroblast migration and negatively regulates cardiac 
fibrosis (58,145,146). Even so, the detrimental effect of 
angiotensin II on cardiac fibrosis and cardiac remodeling 
heavily depends on downregulation of RECK (145). 
Therefore, SGLT-2 inhibition can alleviate cardiomyopathy 
by preserving cardiomyocytes viability and enhancing the 
antifibrotic effects of RECK.

This section attempted to illuminate the complex and 
interwoven molecular mechanisms involved in the pro-
tective effects of SGLT-2 inhibitors on cardiovascular 
diseases. It has been clarified that SGLT-2 inhibition can 
improve cardiovascular diseases through diverse mechan-
isms, and it is worth expanding their clinical application in 
the management of cardiovascular diseases.

The Effects of SGLT-2 Inhibitors on Kidney 
Diseases

Clinical Findings

The meta-analysis performed by Tadashi et al revealed that 
SGLT-2 inhibitors ameliorated the annual decline in esti-
mated glomerular filtration rate [placebo subtracted dif-
ference (95% CI) 1.35  mL/1.73 m2/year (0.78-1.93)] in 
diabetic patients. They also improved the composite renal 
outcome [HR (95% CI) 0.71 (0.53-0.95)] (37). Similarly, 
Zelniker et al performed a meta-analysis, including 34 322 
diabetic patients, and found that SGLT-2 inhibitors de-
creased the risk of progression of renal disease by 45% 
[HR (95% CI) 0.55 (0.48-0.64)]. Meanwhile, SGLT-2 

inhibitors had the same effects on those with and without 
atherosclerotic cardiovascular diseases, but they were 
more effective in the early stages of CKD (15). Recent 
meta-analysis published in JAMA Cardiology showed that 
SGLT-2 inhibitors are associated with significant improve-
ment in the kidney outcome [HR (95% CI) 0.62 (0.56-
0.70)] among diabetic patients (147). SGLT-2 inhibitors 
lowered albumin/creatinine ratio (weight mean differences 
(95% CI) −14.64 mg/g (−25.5 to −4.12)] and significantly 
decreased the risk of microalbuminuria [relative risk (RR; 
95% CI) 0.69 (0.49 to 0.97)], macroalbuminuria [RR 
(95% CI) 0.49 (0.33-0.73)], exacerbation of nephropathy 
[RR (95% CI) 0.73 (0.58-0.93)], and end-stage renal dis-
ease [RR (95% CI) 0.70 (0.57-0.87)] in diabetic patients 
(148). Furthermore, SGLT-2 inhibitors reduced the risk of 
acute kidney injury in both clinical trials [RR (95% CI) 
0.64 (.53-0.78)] and observational studies [RR (95% CI) 
0.40 (0.33-0.48)] (149).

The renoprotective effect of SGLT-2 inhibitors is greater 
than the renoprotective effect of GLP-1 receptor agon-
ists and other antidiabetic medications (43). It seems that 
dapagliflozin and canagliflozin have slightly better im-
pact on urine albumin-to-creatinine ratio, followed by 
empagliflozin and ipragliflozin, respectively (150-153). 
Furthermore, canagliflozin and empagliflozin are slightly 
superior in terms of glomerular filtration rate preserva-
tion, compared with dapagliflozin and ipragliflozin (148). 
However, these comparisons were not statistically ap-
proved and replicated by all clinical trials.

Pathophysiological Mechanisms Involved in the 
Renoprotective Effects of SGLT-2 Inhibitors

Diabetes is associated with extensive molecular and cellular 
alterations in the kidney. Diabetes leads to mitochondrial 
dysfunction, oxidative burst, and increased activity of in-
flammatory molecules such as NF-κB in the kidney (154).

Diabetes and hyperglycemia significantly increase 
the expression of SGLT-2 in the kidney of rats (155). 
Animal models have shown that SGLT-2 inhibitors such 
as tofogliflozin and dapagliflozin can protect against renal 
tubular cells injury and prevent their apoptotic cell death 
(156,157). Besides, SGLT-2 inhibitors effectively mitigate 
diabetic tubulopathy by improving mitochondrial dys-
function (158,159). Empagliflozin consistently decreased 
the markers of tubular epithelial cells injury such as neu-
trophil gelatinase-associated lipocalin and kidney in-
jury molecule 1, measured in the kidney tissue and urine 
of diabetic rats (160). SGLT-2 inhibition also augments 
autophagy in podocytes and renal tubular cells that im-
proves their viability and prevents apoptotic cell death 
(158,161,162). Besides, SGLT-2 inhibitors effectively 
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mitigate diabetic tubulopathy by improving mitochondrial 
function (158,159).

Similar to the heart, activation of Sestrin2/AMPK 
pathway improved hyperglycemia-induced mitochondrial 
dysfunction in the kidney and hindered podocytes apop-
tosis (163). Mitochondrial dysfunction has been impli-
cated in the pathogenesis of CKD, particularly in diabetic 
nephropathy (164). Suppression of Sestrin2 expression has 
been implicated in the pathogenesis of diabetic nephrop-
athy (165). SGLT-2 inhibitors positively regulate Sestrin2 
expression that can profoundly ameliorate oxidative stress, 
inflammation, mitochondrial dysfunction, ER stress, and fi-
brosis in the kidney (60,61,163,165).

SGLT-2 inhibition improves renal cortex hypoxia and 
simultaneously confines the deleterious effects of hypoxia 
such as oxidative stress, inflammation, apoptosis, and fi-
brosis in the kidney (166,167). As mentioned previously, 
SGLT-2 inhibitors stimulate ketogenesis (168). Using ke-
tone bodies as the source of energy alleviates inflamma-
tion and protects against tubular cells apoptosis and renal 
fibrosis (169,170). Empagliflozin protected against dia-
betic nephropathy by attenuating mTORC1 signaling and 
enhancing ketogenesis. Inhibition of ketogenesis reverted 
the protective effects of empagliflozin on diabetic neph-
ropathy (168). SGLT-2 inhibitors activate SIRT1/PGC-α/
FGF21 pathway to promote ketogenesis in the kidney (Fig. 
2) (171).

Empagliflozin was administered in a rat model of unilat-
eral ureteric obstruction that leads to kidney injury. The re-
sults revealed that SGLT-2 inhibition could upregulate klotho 
and prevent TLR4/NF-κB and Wnt signaling pathways in 
the damaged kidney. Besides, empagliflozin decreased the 
expression of fibrogenic molecules such as TGF-β, con-
nective tissue growth factor, α smooth muscle actin, and 
fibronectin and reduced renal fibrosis in histopathological 
measurement (172,173). Similarly, canagliflozin could 
decrease IL6, TNF-α receptor, fibronectin and matrix 
metalloproteinase 7, which are critically involved in renal 
inflammation and fibrosis (174). Klotho is a major mol-
ecule for preventing renal fibrosis. Consistently, decreased 
Klotho expression in human renal biopsy specimens has 
been associated with renal fibrosis (175). Furthermore, 
Klotho inhibits Wnt and NF-κB signaling pathways, de-
creases TGF-β expression and attenuates ER stress; hence, 
SGLT-2 inhibition can prevent renal fibrosis by enhancing 
the expression of klotho (176-179). Overactivation of Wnt 
signaling pathway is frequently observed in the kidney 
of diabetic patients and results in podocytes dysfunction, 
epithelial-mesenchymal transition, renal fibrosis, and pro-
gression of diabetic nephropathy (180,181).

Canagliflozin attenuated inflammation and fibrosis in 
the mice model of diabetic nephropathy. It suppressed the 

renal expression of TNF-α, connective tissue growth factor, 
collagen 1A1, and MCP-1 through activation of AMPK 
and downregulation of peptidyl-prolyl cis/trans isomerase 
never in mitosis A-interacting 1 (182). As a regulator of cell 
mitosis, Peptidylprolyl cis/trans isomerase never in mitosis-
interacting 1 is essential for development of renal fibrosis. 
It stimulates the proliferation of mesangial cells to increase 
fibrotic lesions in the kidney (182-184).

In addition to attenuating NF-κB signaling, 
empagliflozin reduced the expression of high mobility 
group box 1 (HMGB1) and RAGE in the damaged kidney. 
Attenuation of HMGB1/RAGE signaling pathway pre-
vents the release of several inflammatory cytokines such 
as TNF-α, IL6, and MCP-1 (185). Similarly, dapagliflozin 
ameliorated renal injury in a rat model of diabetic neph-
ropathy via inhibition of HMGB1/RAGE/NF-κB signaling 
pathway. Attenuation of this pathway by dapagliflozin has 
been associated with decreased production of fibronectin, 
MCP-1, intercellular adhesion molecule 1, collagenase 
type 1, superoxide dismutase, and ROS (156). TLR4 and 
RAGE are major members of pattern recognition receptors 
(PRRs) and provoke innate immunity response (186,187). 
HMGB1 is a damage-associated molecular pattern and 
HMGB1/RAGE/TLR4/NF-κB/TNF-α axis plays a pivotal 
role in the activation of immune system and pathogen-
esis of kidney injury (188). Likewise, it was observed that 
blockade of HMGB1 can alleviate diabetic nephropathy 
in mice (189).

Shin et al showed that dapagliflozin attenuates RAAS to 
protect against kidney damage (190). Similarly, canagliflozin 
attenuated hyperglycemia-induced augmentation of RAAS 
and decreased renal proximal tubular angiotensinogen 
(191). Interestingly, a strong correlation was observed be-
tween the response of albuminuria to RAAS inhibitors and 
the response of albuminuria to SGLT-2 inhibitors. Patients’ 
weak response to RAAS inhibitors predicted their weak re-
sponse to SGLT-2 inhibitors (192). RAAS inhibition pre-
vents renal fibrosis, improves albuminuria, and slows down 
the annual decline of renal function (193-195). Interestingly, 
it was observed that combination of an SGLT-2 inhibitor 
and an angiotensin converting enzyme inhibitor can more 
effectively hinder the development and progression of 
kidney injury in diabetic rats, compared with monotherapy 
with each one these drugs (196). Regarding their additive 
effect on the kidney, the combination of SGLT-2 inhibitors 
and RAAS inhibitors can be a good combination to restrict 
the progression of CKD in diabetic patients.

SGLT-2 inhibitors suppressed kidney inflammation and 
fibrosis in animal models and improved acute kidney in-
jury and CKD among diabetic patients. The question re-
mains whether these drugs can replicate the same results in 
nondiabetic population or not (Fig. 3).
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The Effects of SGLT-2 Inhibitors on NAFLD

Clinical Findings

Recently, the meta-analysis of previous clinical trials 
showed that 24-week administration of SGLT-2 inhibitors 
for overweight or obese patients with NAFLD can effect-
ively decrease alanine aminotransferase [weighted mean 
differences (WMD; 95% CI) −10.0 IU/L (−12.2 to −7.79)], 
gamma-glutamyl transferase [WMD (95% CI) −14.49 IU/L 
(−19.35 to −9.36)], as well as the absolute percentage of 
liver fat content on magnetic resonance imaging [WMB 
(95% CI) −2.05% (−2.61% to −1.48%)] (197). The prom-
ising results of previous studies revealed that SGLT-2 in-
hibitors can improve liver steatosis in their long-term use 
and contribute to the management of NAFLD (198,199). 
According to the results of clinical trials, dapagliflozin, 
and empagliflozin were slightly superior to other SGLT-2 
inhibitors such as canagliflozin and ipragliflozin regarding 
their effect on alanine aminotransferase, gamma-glutamyl 
transferase, and liver fat content (197,200-204).

SGLT-2 inhibitors moderately decrease body weight 
in both diabetic [WMD (95% CI) −1.86  kg (−2.03  kg 
to −1.7  kg), P  <  0.01] and nondiabetic patients [WMD 
(95% CI) −1.34  kg (−1.51  kg to −1.17  kg)] (205-207). 
Adding SGLT-2 inhibitors to GLP-1 receptor agonists or 
metformin resulted in much more improvement in body 
weight, blood pressure, and HbA1c, compared with mono-
therapy with each one of them (208,209). Weight loss can 
profoundly help to alleviate liver steatosis and improve 
NAFLD (210,211). Moreover, SGLT-2 inhibition decreases 
plasma triglyceride and increases high-density lipoprotein 
to improve dyslipidemia (212). Dyslipidemia is a major 
coexisting condition of NAFLD and increases the risk of 
cardiovascular events in patients with NAFLD (213).

Pathophysiological Mechanisms Involved in the 
Protective Effects of SGLT-2 Inhibitors on NAFLD

Dapagliflozin decreased liver steatosis and fibrosis in high-
carbohydrate, high-fat–induced NAFLD. It attenuated in-
flammation and decreased TNF-α, IL1β, and IL18 in the 
liver homogenate (214,215). Similarly, empagliflozin de-
creased the production of several inflammatory cytokines 
such as IL1β, IL6, and IL8 to improve hepatic steatosis 
(216-218). Similarly, ipragliflozin attenuated oxidative 
stress and inhibited the production of IL6, TNF-α, and 
MCP-1 to mitigate liver injury and improve hepatic stea-
tosis (219). Likewise, canagliflozin increased BCL2 and de-
creased caspase 3 to prevent hepatocytes apoptosis (220).

Empagliflozin increased the decreased expression 
of SIRT1 to expedite fatty acid oxidation. Meanwhile, 
empagliflozin inhibited hepatic lipogenesis, which is mark-
edly involved in the pathogenesis of NAFLD (216-218).

In addition, empagliflozin suppressed the gene expres-
sion of CHOP, ATF4, and growth arrest and DNA damage-
inducible protein (Gadd45) to prevent the deleterious 
effects of ER stress on hepatocytes (221). As mentioned 
previously, CHOP mediates ER stress-induced apoptotic 
cell death (222,223). Hence, SGLT-2 inhibition can effect-
ively alleviate ER stress and prevent ER stress-mediated 
apoptosis in the liver.

Empagliflozin increased the decreased expression 
of SIRT1 to expedite fatty acid oxidation. Meanwhile, 
empagliflozin inhibited hepatic lipogenesis, which is 
markedly involved in the pathogenesis of NAFLD (216-
218). Activation of SIRT-1/PGC-α/PPAR-α pathway by 
SGLT-2 inhibitors promotes fatty acid oxidation (224). 
Consistently, empagliflozin augmented β-oxidation to de-
crease the lipid content of liver. In addition, it increased 
the expression of PPAR-α and decreased the expression of 
PPAR-γ, sterol regulatory element-binding transcription 
factor 1c and fatty acid synthase to hinder hepatic lipo-
genesis (221). PPAR-α promotes β-oxidation and enhances 
lipid catabolism while sterol regulatory element-binding 
transcription factor 1c/PPAR-γ/fatty acid synthase pathway 
is a major driver for free fatty acid synthesis (225,226). 
Furthermore, it was shown that the beneficial effects of 
canagliflozin on NAFLD is associated with increased ex-
pression of zinc alpha-2 glycoprotein (220). Zinc alpha-2 
glycoprotein activates extracellular signal-regulated kinase 
(ERK). Subsequently, ERK activates β3-adrenergic recep-
tors to promote lipolysis (227-230). Based on these find-
ings, SGLT-2 inhibition can expedite the conversion of 
triglycerides into free fatty acids and simultaneously accel-
erate free fatty acids catabolism.

SGLT-2 inhibition decreases insulin levels (219). SGLT-2 
inhibition accelerates hepatic gluconeogenesis and reduces 
hepatic glycogenesis (231,232). Excessive glycogenesis 
and lipogenesis leads to hepatic steatosis and attenuation 
of these pathways contributes to the treatment of NAFLD 
(221,233-235). The increase in hepatic gluconeogenesis 
cannot impair glycemic control because SGLT-2 inhibitors 
increase the urinary excretion of glucose and finally de-
crease blood glucose level.

SGLT-2 inhibition by empagliflozin attenuated NLRP3 
inflammasome activation in the liver of rats (236). NLRP3 
inflammasome has a key role in the liver inflammation. 
Additionally, activation of NLRP3 inflammasome is es-
sential for development of liver fibrosis and possesses a 
pivotal role in the progression of NAFLD to nonalcoholic 
steatohepatitis (NASH) (237,238). As mentioned previ-
ously, SGLT-2 inhibition significantly downregulates α 
smooth muscle actin, TGF-β, and collagen 1A1 to im-
prove liver fibrosis in the rat model of NAFLD (239,240). 
TGF-β activates janus kinase 1/signal transducer and ac-
tivator of transcription 3 signaling pathway, which leads 
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to expression of a group of genes, contributing to liver 
fibrosis (241).

Twenty-four-week treatment with dapagliflozin reduced 
the serum levels of soluble DPP-4 in patients with diabetes 
and NAFLD (242). DPP-4 inhibitors activate AMPK and 
suppress hepatic lipogenesis to improve NAFLD (243-
245). DPP-4 degrades GLP-1 and prevents its beneficial 
effects on NAFLD (246). Recent meta-analysis performed 
by Mantovani et al revealed that 26-week treatment with 
GLP-1 receptor agonists markedly improved liver fat con-
tent on magnetic resonance imaging, decreased liver fibrosis 
in histopathology, and reduced serum aminotransferases in 
patients with or without diabetes (247).

Ipragliflozin increased the plasma concentration of 
adiponectin, while it decreased the plasma concentration 
of leptin and FGF21. It significantly improved oxidative 
stress, inflammation, and fibrosis in the mice model of 
NAFLD (248,249). Lower adiponectin/leptin ratio is asso-
ciated with metabolic syndrome, presence of NAFLD, and 
severity of NAFLD and liver fibrosis (250,251). Likewise, 
higher levels of FGF21 are detected in patients with NAFLD 
(252). Dapagliflozin decreased liver fat content, suppressed 

liver inflammation, alleviated hepatocellular injury, and, 
consequently, reduced the plasma levels of FGF21 and hep-
atic enzymes in diabetic patients after 8 and 12 weeks of 
treatment (201,253). However, SGLT-2 inhibitors typically 
increase FGF21 level (254,255). FGF21 enhances fatty acid 
oxidation and ketogenesis, attempts to alleviate liver in-
jury, and, as a compensatory mechanism, increases during 
liver injury (256,257). Decreased levels of FGF21 following 
administration of dapagliflozin may be due to decreased 
hepatocellular injury after 8 to 12 weeks, similar to what 
happened for hepatic enzymes (253).

SGLT-2 inhibitors can slightly increase glucagon secretion 
and also improve insulin resistance (258,259). It was shown 
that stimulation of glucagon receptor and GLP-1 receptor 
can inhibit intrahepatic lipogenesis and mitigate NAFLD 
(260,261). Similar to SGLT-2 inhibitors, glucagon promotes 
ketogenesis (103,262). Ketogenic diet decreases body weight, 
intrahepatic triglyceride accumulation, hepatic insulin resist-
ance, and plasma leptin. In addition, ketogenic diet signifi-
cantly enhances hepatic mitochondrial redox state (263,264).

Accumulating evidence shows that SGLT-2 inhibitors 
can partly improve NAFLD. SGLT-2 inhibitors decrease 

Figure 5.  The effect of SGLT-2 inhibitors on several intracellular signaling pathways. SGLT-2 inhibitors activate Sestrin2/LKB1/AMPK signaling 
pathway, thereby regulating several cellular events. AMPK upregulates SIRT1/PGC-1α to enhance mitochondrial biogenesis. SGLT-2 inhibitors can 
also downregulate NF-κB, mTORC1 and CHOP. Accordingly, SGLT-2 inhibitors negatively regulate ribosomal protein synthesis, inflammatory cyto-
kines production and ER stress-mediated apoptosis. In addition, SGLT-2 inhibitors increase autophagy by inhibiting mTORC1 and enhancing BINP1 
function. These drugs prevent lipogenesis by decreasing SREBP1c. SGLT-2 inhibitors, in a Sestrin2-dependent manner, liberate Nrf2 from Keap1 
anchoring and potentiate the production of numerous endogenous antioxidants. Finally, SGLT-2 inhibitors effectively confine fibrogenesis in the 
damaged organ by upregulating klotho and RECK and suppressing PIN1 expression.
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intrahepatic lipid accumulation. They also prevent the 
progression of NAFLD to NASH and liver fibrosis by 
ameliorating liver inflammation and apoptosis of hepato-
cytes. These effects can be helpful in diabetic patients who 
are complicated with NAFLD. Future studies should an-
swer whether SGLT-2 inhibitors can improve NAFLD in 
nondiabetic patients (Fig. 4).

Conclusion and Future Research Direction

SGLT-2 inhibitors are a new class of antidiabetic drugs 
that can effectively improve the coexisting conditions of 
diabetes such as cardiovascular diseases, kidney diseases 
and NAFLD in diabetic patients. This review article at-
tempted to explain how these drugs can interact with 
numerous signaling pathways and molecular mechan-
isms to improve these diseases (Fig. 5). Now, the ques-
tion is whether we should use SGLT-2 inhibitors for 
nondiabetic patients who are suffering from these con-
ditions. Another question is whether these drugs effect-
ively improve other diseases that were not addressed or 
measured in previous human studies. Future studies will 
answer these questions and expand our knowledge of the 
biological function of SGLT-2.
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