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Abstract

This study evaluates the economic effects of land fragmentation on agricultural pro-
duction and hypothesises that fragmentation may benefit farmers by diversifying pro-
duction risk among separate land plots with heterogeneous agronomic conditions.
Applying a stochastic production frontier model to the Tanzania Living Standards
Measurement Study data, we find robust evidence to support the risk-reduction
hypothesis, as well as indications that fragmentation is positively associated with
technical efficiency. We argue the low level of fragmentation in Tanzania may have
limited its negative impact on efficiency, while crop diversification concurrent with
fragmentation may have increased efficiency, leaving the net effect to be positive.
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1. Introduction

Land fragmentation — that is, a single farm consisting of numerous discrete
plots scattered over a wide area (Binns, 1950) — has long been deemed an
impediment to agricultural production and rural development. Policy makers
describe it as ‘the blackest of evils’ (Farmer, 1960); researchers claim that it
undermines efficiency and lowers profits (e.g. Jabarin and Epplin, 1994;
Nguyen, Cheng and Findley, 1996; Wan and Cheng, 2001; Fan and Chan-
Kang, 2005; Tan et al., 2008). Until recently, however, land fragmentation
remained a common phenomenon in both developed and developing coun-
tries. For example, Japanese rice growers operated more than four plots on
average during the period 1985-2005 (Kawasaki, 2010), Albanian farmers
owned an average of four plots per farmer in 2005 (Deininger, Savastano and
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Carletto, 2012) and Tanzanian farms in the Mount Kilimanjaro regions culti-
vated an average of 2.5 plots per family in 2000 (Soini, 2005). This raises
the question — why has land fragmentation been so prevalent and persistent?

Scholars have provided various explanations for the prevalence and persist-
ence of land fragmentation, including demographic, cultural and institutional
reasons (e.g. Heston and Kumar, 1983; Bentley, 1987; Blarel et al., 1992;
Niroula and Thapa, 2005). Meanwhile, economists have attempted to re-
interpret land fragmentation’s role in agricultural production from the perspec-
tive of risk management. McCloskey (1976) was among the first to argue that
cultivation on scattered plots with different soil types and locations can reduce
risk, even though it incurs additional travel costs and other inconveniences.
Several empirical studies (e.g. Blarel et al., 1992; Goland, 1993; Di Falco et al.,
2010) have corroborated the risk-reducing function of land fragmentation.

In practice, voluntary land exchanges among farmers have been extremely
rare (Bentley, 1987). Many governments have been advised to launch con-
solidation programs in the hope that farmers will benefit from more concen-
trated land holdings. Some of those programs were successful at creating
more consolidation across farms, while others have failed due to resistance
from farmers (see Heston and Kumar, 1983 for the failure cases in India;
Niroula and Thapa, 2005 for the failure cases in India, Pakistan and
Thailand). Therefore, it remains largely inconclusive whether the existence of
land fragmentation is economically justifiable.

Fluctuations in agricultural production and income have profound implica-
tions for the well-being of farmers in developing countries. Unlike their
counterparts in developed countries, who can often access crop insurance and
other resources (e.g. irrigation and pest control chemicals) to protect them-
selves from adversities, farmers in developing countries are faced with lim-
ited options for risk control and have to rely on their use of conventional
inputs. Further, farmers’ aversion to risk may discourage them from adopting
new technologies and crop varieties despite the higher expected returns (Liu
2013). Understanding farmers’ risk management strategies and the implica-
tions on productivity and income has been of keen interest to both research-
ers and policy makers.

To investigate the role of land fragmentation in agricultural production,
this study will discuss the economic implications of land fragmentation and
evaluate its effects on both technical efficiency and production risk. Applying
a stochastic frontier model to analyse land fragmentation, we aim to derive
an improved characterisation of this phenomenon through a careful discus-
sion of determinants of technical efficiency and production risk. Our findings
will shed light on future land tenure reforms that aim to secure agricultural
production and improve farmers’ well-being.

2. Land fragmentation and plot heterogeneity

There is no single metric of land fragmentation to capture the economic
implications of its multiple aspects. King and Burton (1982) proposed a

20z Iudy 61 U0 1sonB Aq G/GEE L G/609/7/9t/oI0IHE/RIS/W0D dNO dIWspEese)/:SA]jY WO} POPEOUMOQ



Land fragmentation with double dividends 611

six-parameter characterisation: farm size, plot number, plot size, plot shape,
plot spatial distribution and the size distribution of the fields, while Bentley
(1987) argued that efforts to quantify the notion of land fragmentation will
be flawed if they fail to account for measures of distance. Among econo-
mists, the predominant measure has been the Simpson Index (SI), which is
often used along with other metrics of land fragmentation (e.g. Blarel et al.,
1992; Hung, MacAulay and Marsh, 2007; Tan et al., 2008; Kawasaki, 2010).
For a farm cultivating a total number of J plots, denoting the area for plot j
(j=1,2...J) by Aj, the S is defined as:

J

SI=1—i 4 2:1—;EA»2=1—LEA-2 (1)
XA (Z;Aj)z 5 s

where A = Zf A; is the total farm area. This index returns a value ranging
from zero to one and increases as a farm becomes more fragmented. SI = 1
represents an infinite fragmentation scenario and SI = O represents one-plot
farms. SI is jointly determined by the number of plots, the farm size, the plot
size and the plot size distribution.

One confounding phenomenon in characterising land fragmentation is the
concurrence of heterogeneous soil quality and growing conditions across
plots, or plot heterogeneity for short. It is believed to be a cause of land frag-
mentation and a restricting condition for the implementation of land consoli-
dation (Mearns, 1999; Niroula and Thapa, 2005). What is significant about
plot heterogeneity is its risk-controlling role discussed in the literature. By
cultivating plots with varying micro-environments, farmers are able to reduce
output variations by spreading out the risk caused by drought, flood and dis-
eases (Hung, MacAulay and Marsh, 2007). Bentley (1987) reviewed several
studies from this perspective and concluded that the risk management advan-
tage of fragmented farms is applicable to many contexts.

Another value of plot heterogeneity is that it may encourage crop diversifi-
cation (Bellon and Taylor, 1993; Hung, 2006), a popular strategy for risk
reduction. By matching the proper crop portfolio with the agro-ecological
conditions across the entire farm, farmers tend to increase crop diversity and
stabilise farm outputs. Di Falco et al. (2010) found empirical evidence that
land fragmentation fosters crop diversification.

To summarise, previous studies have spent a great deal of attention on the
impact of land fragmentation on efficiency and productivity. Meanwhile, the
risk management hypothesis of land fragmentation has not received much
empirical scrutiny, even though risk management plays an equally vital role
in agriculture. The few existing studies examining the risk effect of land frag-
mentation have focused solely on the dispersion of fields without considering
plot heterogeneity. Considering the observation that land consolidation pro-
grams have succeeded mostly in places with uniform soils but failed in places
with heterogeneous soils (Heston and Kumar, 1983; Mearns, 1999; Niroula
and Thapa, 2005), it is reasonable to speculate that the risk-reducing benefit
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of land fragmentation may be jointly determined by both plot dispersion and
plot heterogeneity.

3. Conceptual framework

This section will provide a formal framework to evaluate how land fragmen-
tation affects both technical efficiency and production risk. The latter is often
measured by variation in output. A common approach to efficiency analysis
is the stochastic frontier model developed by Aigner, Lovell and Schmidt
(1977) and Meeusen and Van den Broeck (1977). We write the yield y, (in its
level form) of farmer i (i = 1, 2...N) as:

yi = F(Xi; ) = exp(—u;) = exp(vi). 2

In equation (2), F (X;; p) is the deterministic production frontier, where X;
is the input vector, including a constant term and f is the corresponding par-
ameter vector. The inefficiency term u;, also known as the one-sided error
term, is assumed to be greater than or equal to zero such that exp(—u;) lies
within the unit interval and represents the proportion of F (X;; p) that is actu-
ally produced. When exp (—u;) = 1, the production is fully efficient and lies
on the frontier; if not, inefficiency exists and production lies below the fron-
tier. Lastly, the term exp (v;) contains the regular error term v; (also known as
the two-sided error term), which captures all random factors such as noise
and model misspecifications. Having two separate error terms, the stochastic
frontier model — also known as the compound error model — allows the esti-
mation of a stochastic production frontier with individual-specific efficiency
scores.

Empirical studies often assume the deterministic production function to
take either the Cobb-Douglas form or the transcendental logarithmic (trans-
log) form. This study will assume the translog functional form due to its
ﬂexibility.l This transformation allows us to see the three components of y
more clearly:

Iny, = f (InX;; B) + vi — u;. 3)

The primary interest of stochastic production frontier analysis usually falls
on the inefficiency term u;, which is often assumed to follow a certain statis-
tical distribution. With a truncated normal distribution for u;, Kumbhakar,
Ghosh and McGuckin (1991) and Huang and Liu (1994) proposed a model
to parameterise the mean of the pre-truncated inefficiency distribution, y;. In
this way, inefficiency can accommodate a group of exogenous explanatory
variables Z;, including a constant term through a linear function, that is:

1 Supplementary Material Section 2 (at ERAE online) reports the model estimates under the two
alternative assumptions (i.e. Cobb-Douglas and translog) on the frontier functional form and
conduct a likelihood-ratio (LR) test to choose between the two models. The statistics (LR = 65.65
and p-value = 0.0013) reject the null hypothesis at the 5 per cent significance level and suggest
the translog form as the more appropriate option.
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ui ~N*(u;, o) 4)

where
Wi =Ziy Q)

The vector of parameters y, also called inefficiency effects, can be esti-
mated. We will adopt the truncated normal assumption on u; for the purpose
of this study. Following the majority of the literature, we assume the two-
sided error v; to be normally distributed as N (0, avz), and u; and v; to be
independent of each other” and independently and identically distributed
across observations.

In linear models with one error term, heteroskedasticity can easily be
tackled with robust estimation procedures. In stochastic frontier models, how-
ever, heteroskedasticity is a more challenging problem and will lead to incon-
sistent estimates of the inefficiency effects and the frontier parameters
(Caudill, Ford and Gropper, 1995; Hadri, 1999). Even worse, heteroskedasti-
city may appear in either or both the one-sided error term u; and the two-
sided error term v;, and misspecification of either variance term, avz or auz,
will result in inconsistent estimates (Hadri, 1999). Therefore, a reliable sto-
chastic frontier model demands a careful analysis of its two variance terms.

As reviewed previously, land fragmentation is likely related to production
risk. In this study, we make the formal hypothesis that land fragmentation
can diversify production risk among separate land plots such that it reduces
the risk on the entire farm. Following a decomposition similar to that by
Blarel et al. (1992: 250), we denote the actual yield (in its level form) on the
Jjth plot of the ith farm as y;; such that

yijE)7i+dij+9ij+eij 6)

In equation (6), y. is the expected farm-level yield. The term d;; captures
plot-specific fixed effects (e.g. soil attributes) that cause y,; to deviate from
y,. For example, if one plot is more fertile than other plots on the same farm,
the yield on this plot will be higher than the average farm yield. Compared to
d;j, 0 is also plot-specific but stochastic, and it is associated with precipita-
tion, insolation, wind and other random factors that define the microclimatic
environment on each plot. In general, the distribution of 6 varies from plot
to plot and hence we assume E (¢;) = 0 and Var(0;) = ogzl-j for any j. Finally,
e;; captures all stochastic effects (e.g. measurement errors) that are identically

2 The independence between the inefficiency term () and the error term (v) has been a ubiqui-
tous assumption in the frontier literature mainly for the ease of econometrical estimation
(Kumbhakar, Wang and Horncastle, 2015). Recently, researchers have started to challenge the
orthogonality assumption based upon conceptual grounds and develop copula-function-based
approaches to allow for correlated u and v. Given the peculiar specifications on inefficiency and
heteroskedasticity in this study, we decided to maintain the independence assumption while
admitting that this strict assumption may generate bias in our estimates for efficiency scores
and marginal inefficiency effects.
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distributed for any plot on any farm, and we assume E (e;) = 0, Var(e;) = 062
and Cov (0;, e;;) = 0 for any i and j.

With such a decomposition, we take the production on the farm level as a
portfolio of production on all individual plots, each of which has its own dis-
tribution of returns. To aggregate into the farm-level yield y,, we have

J J
1 1 -
%= > A = T D[+ dy) * Ay + (65 + e) * Ay 7
i P

Since we are concerned with the farm-level risk, we take the variance of y;
to get

J
1
Var(y) = Var| - D [0 + ep) * Ay
J

J J
= ALI_ZVar > @ Ap |+ ﬁ > o2A}
j j
Eagz,-+(1—SI)>x<cre2 ®)

The second term on the right-hand side of equation (8), (1 — SI) = 662,
shows that variance on the whole farm is reduced by spreading out the com-
mon stochastic effects 62 across the plots. The first term, oz, represents the
aggregation of stochastic effects that are specific to each plot, and its effect
on yield variability is generally unknown unless the distribution (or at least
the variance) of each 0 is given. We expect 092i to relate to soil heterogeneity
for reasons argued in Hung, MacAulay and Marsh (2007). Moreover, if farm-
ers can match the growing conditions on all plots with the proper crop port-
folio (Bellon and Taylor, 1993; Hung, 2006), we expect o4 to be negatively
associated with crop diversification, which is a common strategy for risk
reduction.

In this way, yield variance is shown to vary among farms and to depend
on several farm-specific factors, justifying our concerns of heteroskedasticity.
Specifically, the variance of the common error term v; has its own explana-
tory variables; that is

o2 = exp(ha) ©)]

where h; includes a constant, the SI, and variables for plot heterogeneity and
crop diversification. Further, some inputs such as labour and fertiliser (Hadri,
Guermat and Whittaker, 2003) may affect either or both variance terms. To
avoid potential bias in the model estimates, we retain the most general speci-
fication of ¢ at this step by allowing its own vector of determinants, k;, with

ui

the coefficient vector @:
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on = exp(ki@) (10)

If heteroskedasticity is found to be absent from ¢ by the empirical estima-
tion, k; will contain only a constant term as in the homoskedastic case.

To summarise, the conceptual framework of this study incorporates both
the efficiency and risk effects of land fragmentation into an integrated model
and allows estimating them simultaneously. Previous studies (e.g. Blarel
et al., 1992; Goland, 1993; Kawasaki, 2010) directly regressed output vari-
ance on certain fragmentation index regardless of the probable efficiency
effects. Therefore, our model builds upon more solid conceptual and statis-
tical grounds and can generate more reliable results.

4. Context and data

To empirically assess the impact of land fragmentation, this study examines
Tanzanian agriculture, which accommodated 75 per cent of the national
population and accounted for 45 per cent of the GDP in 2008. Although a
vast area of cropland is available for intensive cultivation, small-sized farm-
ing has been the predominant form of production with scarce use of inputs
and low levels of productivity overall. In 2008, 37 per cent of the rural popu-
lation, i.e. more than one-quarter of the national population, lived below the
poverty line. Efficient and stable food production carries great significance
for Tanzania’s millions of impoverished rural citizens as well as its national
economy.

There is one interesting historical fact about Tanzanian agriculture. Right
after its independence in 1961, Tanzania adopted a communist approach by
promoting collective land cultivation and shared labour for its agricultural
production. The government relocated about 75 per cent of the population
from scattered homesteads and smallholdings to communal villages of
2,000—4,000 residents (Dondeyne et al., 2003; Maoulidi, 2004). Despite gov-
ernmental efforts, Tanzanian farmers showed strong preferences for individu-
ally allocated and cultivated farmland (USAID, 2011). The following
administration in the 1980s quickly abandoned the communist approach and
installed a new legal framework that supported private property rights and
individualised control of farming. The law acknowledged personal rights to
land and encouraged productive and sustainable use of land. Since then,
farmers have the right to buy, sell, lease and mortgage their plots and to
decide on matters such as crop choices and land use. Interestingly, most
farmers have chosen to keep multiple plots on their farms rather than consoli-
date all their land holdings through sales or transfers. In 2008, each rural
family owned or cultivated an average of 2.5 plots. The changes in
Tanzania’s land tenure system in the past several decades may have high-
lighted the role of scattered land holdings in agricultural production.

The empirical analysis uses the Tanzania Living Standards Measurement
Study (LSMS) 2008-2009 data collected by the World Bank. This survey
adopted a stratified, multi-stage cluster design to obtain a nationally

20z Iudy 61 U0 1sonB Aq G/GEE L G/609/7/9t/oI0IHE/RIS/W0D dNO dIWspEese)/:SA]jY WO} POPEOUMOQ



616 X Rao

representative sample. Enumerators interviewed rural family members regard-
ing family socioeconomics and agricultural activities. Information on location,
ownership, soil conditions, crop varieties, input use and harvest was collected for
each cultivated plot. This study focuses on plots that were grown either partially
or fully with annual crops in the long rainy season (March-May), because the
production of annual crops differs significantly from that of perennial crops and
trees. Our sample contains 1,503 farms with 2,756 plots. Maize is the predomin-
ant crop both in terms of occurrence and planting area; other popular annual
crops include beans, groundnuts, paddy rice and sorghum.

5. Empirical model

5.1. Deterministic frontier function

The dependent variable of the frontier function is an implicit output quantity
derived by dividing the gross returns (in Tanzanian shillings) of all annual
crops on each farm by the corresponding composite output price. The com-
posite output price is the sum of individual crop prices weighted by crop
value shares. Since farms have different crop portfolios, the composite output
price varies among farms and depends on the crops grown and their quan-
tities. Most studies on land fragmentation have adopted a similar method to
aggregate multiple outputs in spite of the potential aggregation bias.” In the
Tanzanian case, almost 70 per cent of the farms produce more than one type
of crop. Focusing on one crop (such as maize) will not only significantly
reduce the sample size but also overlook the concurrence between land frag-
mentation and crop diversification and the associated implications (to be dis-
cussed later). Table 1 presents the definitions and descriptions of all the
explanatory variables, which are also discussed below.

Explanatory variables of the frontier function include land (in acres) and
three types of labour (in person-days), i.e. labour on land preparation/plant-
ing, weeding and harvesting. Other inputs such as fertiliser, irrigation and
pesticide are rare in Tanzania and are thus excluded. Few farmers have access
to draft animals or farm machinery. Instead, the most common farm imple-
ment is the hand hoe with all the households in the sample having at least
one. Hence, this model includes the number of hand hoes as well as a dummy
variable for the use of any draft animal or machinery. To account for weather
effects, explanatory variables also include the average temperature and aver-
age precipitation during the wettest quarter in the long rainy season of
2008-2009.

5.2. Explanatory variables of inefficiency

The mean inefficiency function in equation (5) contains explanatory variables
related to land fragmentation, household characteristics, other productive
activities and growing conditions for crops. Specifically, we use the SI, farm

3 One recent exception is Kawasaki (2010), which focuses exclusively on rice farms in Japan.
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Table 1. Variable definitions

Label Definition and description

labourl Total person-days of both family labour and hired labour spent on
land preparation and planting of annual crops on each farm

labour?2 Total person-days of both family labour and hired labour spent on
weeding of annual crops on each farm

labour3 Total person-days of both family labour and hired labour spent on
harvest of annual crops on each farm

labour Sum of all three types of labour; i.e. labour = labourl + labour2 +
labour3

land Area (in acres) of annual crops

precipitation
temperature

hoe
machinery dummy

perennial
age
education
male labour
children
hired labour
nutrientl
nutrient2
oxygenl
oxygen2
workability]
workability2
SI

distancel

distance?2
distance3

plot area
plot heterogeneity

crop
diversification
crop_SI

Precipitation (in millimetres) of wettest quarter, from monthly
climatology

Average temperature (in Celsius) of the wettest quarter, from monthly
climatology, multiplied by 10

Number of hand hoes for farming in each household

=1 if using any farm machine (e.g. tractor, thresher) or draft animals;
=0 otherwise

Ratio of land area for perennial crops/fruit trees to area for annual crops

Average age (in years) of family workers working on family farm

Average education (in years) of family workers working on family farm

Male labour as a proportion of the sum of male labour and female labour

The number of children younger than five divided by family labour

Hired labour as a proportion of the sum of hired labour and family labour

=1 if nutrient availability reports ‘No constraint’; =0 otherwise

=1 if nutrient availability reports ‘Moderate constraint’; =0 otherwise

=1 if oxygen availability reports ‘No constraint’; =0 otherwise

=1 if oxygen availability reports ‘Moderate constraint’; =0 otherwise

=1 if workability reports ‘No constraint’; =0 otherwise

=1 if workability reports ‘Moderate constraint’; =0 otherwise

The SI to measure land fragmentation, as calculated in equation (1)

Average distance (in kilometres) of all plots to farm owner’s home,
weighted by plot area

Average distance (in kilometres) of all plots to the most nearby road,
weighted by plot area

Average distance (in kilometres) of all plots to the closest market,
weighted by plot area

Area (in acres) of each plot

The number of different land profiles (including soil type, erosion type
and steepness of slope), divided by the number of plots on each farm

The number of crop varieties on each farm

The SI to measure crop diversification, similar to SI in equation (1) but
replacing the area for each plot (A;) with area for each crop variety
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size, an interaction term between the two and three distance-related variables
(i.e. the average distance from farm to home, to the closest road and to the
closest market, weighted by plot area) to characterise land fragmentation.
Household characteristics include the average age (in years) and average edu-
cation (in years) of family workers. Two variables, male labour and hired
labour, are constructed to account for the potential efficiency differences
between genders and between family labour and hired labour. Activities other
than growing annual crops may affect efficiency as well. We include the vari-
ables children and perennial to represent the relative intensity. Finally, we
consider three factors most relevant to crop growth, i.e. nutrient availability,
oxygen availability to roots and workability for field management, to
represent the growing conditions on each farm.”*

Table 2 provides the summary statistics for the key variables in this study.
It shows that most farms in the sample have a small size with a mean of 4.96
acres, and 95 per cent of them is smaller than 15 acres. The SI reports a mean
value of 0.25 and a median of 0.20. Finally, about three-quarters of the plots
are located within 3 km from either home or the nearest road.

5.3. Explanatory variables for heteroskedasticity

The two variance terms in equations (9) and (10) include explanatory vari-
ables related to plot heterogeneity, crop diversification and fragmentation.
Since geo-referenced data of growing conditions are available only at the
farm level, we use farmers’ self-reported information on soil type, erosion
type and steepness of slope to construct a plot heterogeneity measure, which
is calculated as the number of soil profiles divided by the number of plots.
Crop diversification is measured as the number of crops on each farm.

Furthermore, researchers have long assumed certain inputs, such as labour
and fertiliser, to affect production risk in addition to output (Hurley, 2010).
For example, Antle and Crissman (1990) found labour to be risk reducing,
while Villano and Fleming (2006) argued that labour increases output vari-
ability. In stochastic production frontier models, the variance of either or
both the one-sided and two-sided errors may be affected by producers’ input
use (Schmidt, 1986; Hadri, 1999; Hadri, Guermat and Whittaker, 2003).
Hadri, Guermat and Whittaker (2003) reported that expenditure on labour
and machinery increases the variability in efficiency, whereas land area and
fertiliser cost have the opposite effect. This study considers labour for its pos-
sible effects on production risk.

4 Using geo-referenced homestead location data, the LSMS survey has imported soil and terrain
data from the Harmonized World Soil Database at a resolution of 0.083 degree (approximately
10-km grids). The area in each grid is large enough to cover a typical farm, but not fine enough
to generate plot-level information. To include categorical variables in the estimation, we use
‘severe constraints’ as the reference and create respective dummy variables for the other two
categories, ‘Moderate constraints’ and ‘No or slight constraint’.
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Table 2. Summary statistics of key variables

Unit Mean SD Min. First quartile Median Third quartile Max.
labourl person-day 66.23 72.34 1 22 44 84 645
labour2 person-day 62.07 72.16 1 21 41 76 703
labour3 person-day 50.35 77.06 1 11 25 59 1,282
precipitation millimetre 580.90 190.03 231 419 542 706 1,284
temperature degree 233.34 27.08 157 214 232 255 282
hoe (count) 3.17 1.83 1 2 3 4 17
perennial (ratio) 0.05 0.24 0.00 0.00 0.00 0.00 5.00
age year 36.50 13.58 0.00 27.00 32.67 42.00 97.00
education year 4.74 2.67 0.00 3.00 5.00 7.00 12.00
male labour (ratio) 0.45 0.25 0.00 0.33 0.50 0.57 1.00
children (ratio) 0.37 0.46 0.00 0.00 0.25 0.50 3.00
hired labour (ratio) 0.09 0.17 0.00 0.00 0.00 0.10 1.00
land acre 4.96 11.88 0.01 1.25 2.50 5.25 337.50
SI - 0.25 0.26 0.00 0.00 0.20 0.49 0.88
distancel kilometre 3.11 6.44 0.00 0.00 1.5 3.00 90
distance?2 kilometre 1.90 3.01 0.00 0.06 1.00 2.5 42
distance3 kilometre 7.76 9.03 0.00 2.00 5.00 10.00 90.00
plot area acre 1.74 4.60 0.0025 0.50 1.00 2.00 150.00
plot heterogeneity (ratio) 0.88 0.22 0.20 0.75 1.00 1.00 1.00
crop diversification (count) 2.18 1.11 1 1 2 3 7
crop_SI - 0.36 0.27 0.00 0.00 0.45 0.57 0.83
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6. Estimation and results

This study uses the Stata® package sf model developed by Kumbhakar,
Wang and Horncastle (2015) to estimate a stochastic production frontier,
assuming a truncated normal distribution for the inefficiency term. This mod-
el allows for exogenous explanatory variables for inefficiency and heteroske-
dasticity in both variance terms. Before proceeding to model estimates, we
first address two problems in the empirical production literature.

The first problem is the endogeneity associated with inputs in the produc-
tion function. For non-experimental data like the LSMS data, endogeneity
may exist because the observed use of inputs, especially labour, is not prede-
termined but is chosen by producers in some optimal fashion, such as profit
(or returns) maximising or cost minimising. Failure to control for the unob-
servable factors, such as risk preferences or expectations, will generate incon-
sistent frontier estimates and efficiency scores (e.g. Marschak and Andrews,
1944; Mundlak, 1994).

Nevertheless, we have sufficient reasons to question the extent to which
the above arguments for endogeneity apply to the Tanzanian context, and we
believe endogeneity should not be a primary concern for this study. Among
many others, Collinson (1983) and Makeham and Malcolm (1986) distin-
guished between two basic types of farm-operating objectives: profit-
maximisation on market-oriented farms and household sustenance on
subsistence-oriented farms. Most Tanzanian farmers belong to the second
type and their primary farming objective is to produce enough food and fibre
for household consumption. It is very likely that Tanzanian farmers use avail-
able resources (land, labour etc.) to maximum capacity instead of premediat-
ing some optimal plans. In this sense, use of inputs can be taken as ‘fixed’ or
‘independent’ so that the usual exogeneity assumption can be adopted in this
context.’

The second problem is the theoretical consistency (e.g. monotonicity and
quasi-concavity) of the estimated production frontier. Although the functional
form of the production (or cost, distance etc.) frontier may seem tangential to
the main interest of studies with stochastic frontier applications, it is neces-
sary to check those regularity conditions to ensure the estimated function
behaves well and satisfies the underpinning theoretical assumptions. Supplementary
Material Section 3 (in supplementary data at ERAE online) provides a thorough dis-
cussion of this issue and the possible implications on the estimates.

6.1. Model selection and hypothesis tests

This study follows Kumbhakar and Lovell’s procedure (2003) to determine
the variance structure. Specifically, we start with the model HUV where

5 As pointed out by one reviewer, unobserved characteristics of farmers and farm households
may affect their input capacity and agricultural production. Although the mean inefficiency func-
tion includes a few variables related to farmers’ characteristics, it still may not completely elim-
inate the concerns over endogeneity, thus leading to biased estimates.
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labour appears in both variance terms, while SI, plot heterogeneity and crop
diversification appear in the variance of the two-sided error term. Then we
estimate the model HU where heteroskedasticity appears only in the one-
sided error u and model HV where heteroskedasticity appears only in the
two-sided error v. Finally, model HO is estimated with homoskedasticity in
both error terms (Table 3). Using likelihood-ratio tests, we find the model
HYV to be the statistically preferred model with four explanatory variables: SI,
labour, plot heterogeneity and crop diversification (Table 3, Parts 3 and 4).
Discussions below are based on model HV unless otherwise noted.

Table 3, Part 4 shows that the coefficient estimate of the SI in the variance
function for v (equation (9)) is —0.568 and statistically significant at 1 per
cent level. The negative sign suggests that the higher the SI (i.e. more frag-
mented farm), the lower the output variability, a relation that is consistent
with the conceptual framework. The same relation is also reported for crop
diversification with an estimate of —0.098. Plot heterogeneity reports a posi-
tive, although statistically insignificant, coefficient estimate. Lastly, labour is
reported to be risk increasing with a statistically significant coefficient esti-
mate, a finding consistent with those in many studies. As a tentative explan-
ation, labour is likely to become more heterogeneous in quality and
productivity as its quantity increases, thus causing more variations in output.

Regarding the determinants of inefficiency (Table 3, Part 2), coefficient
estimates for perennial and male labour have the expected signs and both
are statistically significant at the 1 per cent level. For example, the more
effort is required for perennial crops, the less efficient is the production of
annual crops. In comparison, age, education and children result in statistic-
ally insignificant estimates, suggesting these household characteristics are
unlikely to affect technical efficiency in this sample. Curiously, the coeffi-
cient estimate for hired labour is —3.79 with a p-value of 0.017. The nega-
tive sign in the inefficiency function indicates that proportionally, more
hired labour is linked to higher technical efficiency. This finding contradicts
the common belief that hired workers are less efficient than family workers
since the former lack farm-specific experience and are difficult to supervise
(Feder 1985; Binswanger and Rosenzweig, 1986). This counter-intuitive
estimate for hired labour may be attributed to bias caused by omitted vari-
ables such as the age and sex of hired workers. In Tanzania’s rural labour mar-
ket, men are more likely to work outside than women, such that hired labour has
a relatively higher ratio of male workers than family labour does. If we believe
men are more productive in farming than women but fail to control for the gen-
der differential, hired labour will seem to be more efficient than family labour,
ceteris paribus. Unfortunately, the LSMS data do not contain the necessary
information for a further exploration. For variables associated with soil condi-
tions, the only counter-intuitive estimates are reported for nutrient availability.
The two associated dummy variables, nutrient! and nutrient2, report positive
estimates that are significant only at the 10 per cent level. This confusing finding
may arise from measurement errors in this factor since the data are collected on
the pixel level instead of on the farm level.
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Table 3. Model estimates and model comparisons (N = 1,503)

Part 1: Production frontier function (equation (3)):

Models* HUV HU HO HV HV_crop
labourl X labourl -0.0114 —0.00301 —0.00748 —0.0166 —-0.0156
(0.0305) (0.0278) (0.0268) (0.0286) (0.0286)
labourl X labour2 —0.0456 —0.0282 —0.0624 —0.0497 —0.0487
(0.0531) (0.0499) (0.0505) (0.0517) (0.0517)
labourl X labour3 0.0715 0.0384 0.0537 0.0733* 0.0729%*
(0.0451) (0.0425) (0.0425) (0.0429) (0.0428)
labourl X land —-0.0226 —0.0412 —-0.0110 —-0.0171 —-0.0150
(0.0430) (0.0432) (0.0417) (0.0417) (0.0416)
labourl X precipitation 0.00411 —0.0205 0.0370 0.00834 0.0105
(0.131) (0.127) (0.129) (0.131) (0.131)
labourl X temperature 0.601* 0.656%** 0.584* 0.621%* 0.636**
0.317) (0.319) (0.320) (0.315) (0.315)
labourl X hoe —0.0587 —0.0345 —-0.0631 —0.0600 —0.0589
(0.0765) (0.0875) (0.0768) (0.0763) (0.0762)
labourl X dummy —0.0264 0.0408 0.0486 —0.0370 —0.0425
(0.111) (0.134) (0.105) (0.108) (0.108)
labour2 X labour2 0.0125 —0.00320 0.0166 0.0110 0.0119
(0.0377) (0.0422) (0.0380) (0.0375) (0.0374)
labour2 X labour3 0.0317 0.0370 0.0432 0.0301 0.0286
(0.0397) (0.0383) (0.0395) (0.0391) (0.0391)
labour2 X land —0.0268 —0.0145 —-0.0299 —-0.0246 —0.0281
(0.0419) (0.0465) (0.0420) (0.0413) (0.0413)
labour2 X precipitation —0.0151 —0.0302 0.00782 0.000177 0.0174
(0.145) (0.150) (0.140) (0.140) (0.140)
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labour2 X temperature 0.0531 —0.0137 0.0718 0.0655 0.0307
(0.314) (0.349) (0.321) (0.314) (0.315)
labour2 X hoe 0.0342 —0.00682 0.000740 0.0338 0.0363
(0.0802) (0.0926) (0.0811) (0.0798) (0.0797)
labour2 X dummy 0.182 0.146 0.215* 0.191 0.200
(0.135) (0.170) (0.128) (0.133) (0.133)
labour3 X labour3 —0.0924*#* —0.0797*** —0.102%** —0.0983*** —0.0985%**
(0.0252) (0.0227) (0.0218) (0.0220) (0.0219)
labour3 X land 0.0329 0.0382 0.0734%* 0.0349 0.0356
(0.0350) (0.0368) (0.0349) (0.0348) (0.0348)
labour3 X precipitation 0.0975 0.0787 0.0840 0.0942 0.0892
(0.103) (0.101) (0.102) (0.102) (0.102)
labour3 X temperature —0.0441 0.0273 —0.0377 —0.0598 —0.0511
(0.254) (0.235) (0.255) (0.251) (0.251)
labour3 X hoe 0.0905 0.110 0.0784 0.0882 0.0870
(0.0619) (0.0681) (0.0610) (0.0610) (0.0610)
labour3 X dummy —0.0187 —0.0297 —0.0826 —-0.0150 —0.0146
(0.110) (0.122) (0.107) (0.110) (0.110)
land X land 0.0448%* 0.0378%##* 0.0198 0.0428%* 0.0415%*
(0.0182) (0.0138) (0.0184) (0.0176) (0.0176)
land X precipitation 0.0699 0.107 0.0139 0.0514 0.0423
(0.118) (0.118) (0.115) (0.113) (0.112)
land X temperature —0.479%* —0.567** —0.523%* —0.492%* —0.494*
(0.262) (0.288) (0.269) (0.261) (0.261)
land X hoe —0.0640 —0.0434 0.0294 —0.0563 —0.0555
(0.0673) (0.0633) (0.0631) (0.0644) (0.0641)
(continued)
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Table 3. (continued)

Part 1: Production frontier function (equation (3)):

Models* HUV HU HO HV HV_crop
land X dummy 0.0239 0.00419 0.0631 0.0191 0.0169
(0.0969) (0.111) (0.0958) (0.0971) (0.0969)
precipitation X precipitation 0.327 0.231 0.289 0.337 0.346
(0.238) (0.251) (0.249) (0.237) (0.238)
precipitation X temperature —0.614 —0.226 -0.415 —0.617 —0.643
(0.749) (0.695) (0.774) (0.747) (0.750)
precipitation X hoe 0.217 0.250 0.292* 0.227 0.217
(0.172) (0.195) (0.175) (0.172) (0.172)
precipitation X dummy 0.154 0.0331 0.0970 0.172 0.179
(0.339) (0.383) (0.328) (0.335) (0.335)
temperature X temperature 1.355 2.229 1.753 1.201 1.161
(1.520) (1.431) (1.498) (1.496) (1.497)
temperature X hoe —0.645 —0.536 —0.487 —0.646 —0.650
(0.427) (0.477) (0.440) (0.427) (0.427)
temperature X dummy 0.716 0.518 0.690 0.701 0.652
(0.972) (1.254) (0.927) (0.970) (0.970)
hoe X hoe 0.120 0.0962 0.0952 0.119 0.114
(0.0814) (0.0988) (0.0804) (0.0814) (0.0814)
hoe X dummy 0.0347 0.0275 —0.0298 0.0437 0.0383
(0.168) (0.178) (0.164) (0.169) (0.169)
labourl —3.153* —3.347* —3.223% —3.252% —3.360*
(1.890) (1.840) (1.865) (1.883) (1.882)
labour2 —0.298 0.244 —0.525 —0.440 -0.361
(2.024) (2.063) (2.018) (2.004) (2.004)
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labour3 —0.0282 —0.283 0.0947 0.108 0.0970
(1.542) (1.378) (1.521) (1.513) (1.511)
land 2.738* 2.956* 2.713* 2.890* 2.960*
(1.552) (1.641) (1.595) (1.542) (1.537)
precipitation —-1.351 —2.100 -2.101 —-1.531 —1.525
(5.070) (5.024) (5.296) (5.086) (5.103)
temperature —-12.93 —24.96 —18.61 —11.32 —10.70
(17.36) (16.12) (17.06) (17.01) (16.99)
hoe 1.970 1.162 0.750 1.924 2.004
(2.544) (2.774) (2.600) (2.548) (2.551)
dummy —5.004 —3.238 —4.695 —5.046 —4.829
(5.773) (7.676) (5.566) (5.784) (5.783)
constant 51.87 86.78%* 70.97 48.34 46.71
(53.28) (49.33) (53.08) (52.56) (52.49)
Part 2: Mean inefficiency function (equation (5)):
Models HUV HU HO HV HV_crop
perennial 0.520%* 0.913%* 0.583%** 0.4827%#* 0.467%%*
(0.206) (0.382) (0.145) (0.134) (0.129)
age 0.00458 0.0216* 0.00814** 0.00338 0.00284
(0.00551) (0.0127) (0.00387) (0.00298) (0.00269)
education 0.000462 0.0101 0.00110 —0.00443 —0.00539
(0.0226) (0.0456) (0.0204) (0.0163) (0.0148)
male labour —0.461%* —-0.897 —0.478%** —0.386%** —0.365%**
(0.273) (0.586) (0.174) (0.150) (0.137)
children —-0.103 0.00299 —-0.101 —0.0642 —0.0542
(0.137) (0.235) (0.106) (0.0937) (0.0847)

(continued)
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Table 3. (continued)

Part 2: Mean inefficiency function (equation (5)):

Models HUV HU HO HV HV_crop
hired labour —4.818 —6.934* —1.832%** —3.793** —3.382%**
(3.850) (3.679) (0.539) (1.587) (1.289)
nutrientl 0.335 0.530 0.170 0.306* 0.266
(0.230) (0.497) (0.194) (0.178) (0.175)
nutrient2 0.348 0.560 0.321* 0.321* 0.286*
(0.222) (0.499) 0.177) (0.170) (0.168)
oxygenl —-0.477 —1.505%* —0.775%* —0.376* —0.355*
(0.397) 0.777) (0.326) (0.197) (0.187)
oxygen2 —0.668 —2.040%* —0.976%** —0.499* —0.468**
(0.638) (1.081) (0.370) (0.258) (0.236)
workability] —0.309 —0.862* —0.383%%* —0.266** —0.250%*
(0.237) (0.518) (0.175) (0.113) (0.0998)
workability2 —0.244 —0.903* —0.329% —0.194* -0.176*
(0.228) (0.515) (0.181) (0.113) (0.106)
land 0.0155 0.0119 —0.665%** 0.0126 0.0110
(0.0143) (0.0773) (0.156) (0.00910) (0.00857)
land * SI —0.000241 0.0154 0.0541 0.000449 0.00138
(0.0111) (0.0896) (0.204) (0.0101) (0.00996)
SI —-0.546 —2.196** —0.542* —0.466%*** —-0.201
(0.364) (0.923) (0.284) (0.167) (0.229)
crop_SI — — — — —-0.337
- - - - (0.247)
distancel -0.0718 —-0.106 -0.0311 —0.0636%** —0.0601%*
(0.0484) (0.0724) (0.0199) (0.0294) (0.0274)
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distance?2 0.0354 0.0598 0.0266 0.0286 0.0274
(0.0311) (0.0571) (0.0247) (0.0219) (0.0209)
distance3 —0.0136 —0.0316 —0.0194%** —0.00995 —0.00939
(0.0156) (0.0217) (0.00978) (0.00856) (0.00798)
constant 1.288%%* 1.650%%* 3.058%*** 1.166%%* 1.173%%*
(0.514) (0.816) (0.481) (0.353) (0.330)
Part 3: One-sided error variance function (equation (10)):
Models HUV HU HO HV HV_crop
labour 0.00120 0.000778%** - - -
(0.000878) (0.000393) - - -
constant —2.525 —0.0305 —0.701%** —3.342%% —3.689%%*
(2.378) (0.467) (0.235) (1.576) (1.747)
Part 4: Two-sided error variance function (equation (9)):
Models HUV HU HO HV HV_crop
SI —0.616%** - - —0.568%*** —0.564%#:%*
(0.213) - - 0.172) 0.171)
labour 0.000396* - - 0.000440%** 0.000440%**
(0.000231) - - (0.000208) (0.000207)
plot heterogeneity 0.0340 - - 0.0446 0.0476
0.211) - (0.201) (0.201)
crop diversification —0.0888 - - —0.0980* —0.101%*
(0.0585) - - (0.0511) (0.0508)
(continued)
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Table 3. (continued)

Part 4: Two-sided error variance function (equation (9)):

Models HUV HU HO HV HV_crop

constant 0.148 —0.439%** —0.422%** 0.162 0.169
(0.244) (0.0573) (0.0619) (0.228) (0.228)

Log Likelihood —1,989.97 —2,009.46 —2,003.59 —1,990.20 —1,989.37

Note: “In the HUV model labour appears in both variance terms, while SI, plot heterogeneity and crop diversification appear in the variance of the two-sided error term. In the model, HU hetero-
skedasticity appears only in the one-sided error u and in model HV heteroskedasticity appears only in the two-sided error v. Model HO is estimated with homoskedasticity in both error terms.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1.

All explanatory variables (except dummy) in the frontier model are in the logarithmic form.
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6.2. Land fragmentation and technical efficiency

Our primary interest lies in the variables related to land fragmentation. The coef-
ficient estimate for the SI in the mean inefficiency function is —0.466 with a
p-value of 0.005. This can be interpreted as follows: the more fragmented the
farm is, the more efficient the production. This relationship contradicts traditional
wisdom, although it is robust to various model specifications. Other dimensions
of land fragmentation (i.e. farm area, its interaction term with the SI and the
three distance variables) are jointly significant according to a log-likelihood test
(LR = 19.07, p = 0.0019). This finding confirms the need to use more than one
measure to characterise land fragmentation.

The intriguing positive relationship between land fragmentation and tech-
nical efficiency reported in this study demands re-examining the arguments
surrounding fragmentation and the underlying assumptions. In a general
sense, Simons (1987) summarised that disadvantages of land fragmentation
include the need for higher physical inputs due to increased labour and travel
time among plots, the inability to use certain farming equipment and greater
difficulty with pest control and supervision. However, Bentley (1987) empha-
sised that fragmentation would become a constraint to productivity only if it
impedes the ability to use machinery in areas with decreasing agricultural
population. Further, Fenoaltea (1976) argued that fragmentation could even
benefit productivity by smoothing out seasonal labour use over a portfolio of
plots with different attributes and in various locations. At low levels of mech-
anisation, it is possible that the benefits outweigh the costs. Recently, Di
Falco et al. (2010) showed that land fragmentation could benefit farm prod-
uctivity and profitability by fostering crop diversification. The reason being
that polyculture, compared to monoculture, can facilitate complementary
resource use and thus improve productivity (Cardinale et al., 2007).

The ambivalence in the conceptual assessments of land fragmentation is in
line with the mixed empirical evidence. Most studies so far use the number
of plots as the metric for land fragmentation. Some (e.g. Wan and Cheng,
2001) find a negative efficiency impact, while others (e.g. Tan et al., 2008)
report statistically insignificant results. Applying stochastic frontier models to
the 2005 Albanian LSMS data, Deininger, Savastano and Carletto (2012) dis-
covered that the number of plots has a statistically significant, positive effect
on output. Including both a SI and the number of plots for Chinese data,
Chen, Huffman and Rozelle (2009) found that technical efficiency increases
when the number of plots falls in the first quartile and starts to decrease
when the number falls in the highest quartiles.

In Tanzania, each farm cultivates on average less than three plots when all
crops are considered, and less than two plots when only annual crops are
considered. The average farm size in this sample is about five acres (i.e. two
hectares) and the median is only 2.5 acres (Table 2). The low level of frag-
mentation and small farm size are likely to have limited the negative impact
of fragmentation. For the potential gains from fragmentation, the LSMS data
do not allow an investigation of the labour-smoothing hypothesis. As a
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tentative exploration of the indirect effect of fragmentation through biodiver-
sity, we construct a SI for crop varieties, crop_SI, as a rough metric of bio-
diversity. Specifically, crop_SI is calculated using the cultivated area for each
crop in the same fashion as in equation (1); the higher the value the higher
the biodiversity. The correlation coefficient between SI and crop_SI is as
high as 0.88. Further, crop_SI is included in the mean inefficiency function
as an additional explanatory variable. The results (Table 3, Part 2, model HV
Crop) show that the coefficient estimate for SI remains negative but becomes
statistically insignificant, and the same is true for crop_SI; the two estimates
are jointly significant and negative with a p-value of 0.004. This finding may
suggest that land fragmentation can benefit technical efficiency by way of
biodiversity, although the causal relationship cannot readily be established.
Crop diversification may result from other causes, such as risk management.
We need to examine the extent to which land fragmentation has caused crop
diversification before assigning the efficiency effects.

6.3. Efficiency scores and marginal efficiency effects

After discussing the coefficient estimates, we further derive farm-specific effi-
ciency scores and the marginal efficiency effects of explanatory variables in
equation (5). The JLMS estimator proposed by Jondrow et al. (1982) and the
BC estimator by Battese and Coelli (1988) indicate very similar efficiency
scores for this sample (Table 4). Consider, for example, the BC estimator.
The average efficiency for the sample is 0.73, implying that these farms pro-
duce on average 73 per cent of the output predicted by the frontier function.
It also shows the large variations between the most and least efficient farms,
with a standard deviation of 0.18. This confirms the observation that agricul-
tural production in Tanzania is characterised by low productivity and a tre-
mendous variation across its many agro-ecological zones (USAID, 2011).
Table 5 reports the summary statistics for marginal inefficiency effects,
which are calculated from the parameter estimates in the mean inefficiency
function (equation (5)) and vary from observation to observation. Increasing
male labour by 0.10 will on average decrease/increase the inefficiency/effi-
ciency by 2.5 percentage points (= 0.10 x 0.25). Upgrading the workability
of land from ‘Severe Constraints’ (the base category) to ‘No or Slight
Constraints’ will increase efficiency by about 17 percentage points. The

Table 4. Summary statistics of efficiency score estimates (N = 1,501)

Mean SD  Min. Firstquartile Median Third quartile Max.

JLMS estimates 0.72  0.18 0.05 0.58 0.72 0.89 0.99
BC estimates 073  0.18 0.06 0.59 0.73 0.89 0.99

Note: The JLMS estimates are derived using the estimator proposed by Jondrow et al. (1982); the BC estimates are
derived using the estimator proposed by Battese and Coelli (1988). Two observations are dropped out by the soft-
ware during the calculation.
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Table 5. Marginal inefficiency effects (N = 1,501)

Mean SD  Min. First quartile Median Third quartile ~Max.

perennial 031 0.18 0.00 0.13 0.38 0.47 0.48
age 0.00 0.00 0.00 0.00 0.00 0.00 0.00
education —-0.00 0.00 -0.00 -0.00 —0.00 —0.00 —0.00
male labour —0.25 0.14 -0.39 -0.38 -0.31 —0.11 —0.00
children —-0.04 0.02 -0.06 -0.06 —0.05 —0.02 —0.00
hired labour —-2.42 141 =379 -=3.72 -3.01 —1.04 —0.01
nutrientl 0.20 0.11 0.00 0.08 0.24 0.30 0.31
nutrient2 0.20 0.12 0.00 0.09 0.25 0.31 0.32
oxygenl -0.24 0.14 -0.38 -0.37 —0.30 -0.10 —0.00
oxygen2 -032 0.19 -0.50 -0.49 -0.40 -0.14 -0.00
workabilityl —0.17 0.10 -0.27 -0.26 -0.21 -0.07 —0.00
workability2 —0.12 0.07 -0.19 -0.19 -0.15 —0.05 —0.00
land 0.01 0.00 0.00 0.00 0.01 0.01 0.01
SI -0.30 0.17 -047 -0.46 —0.37 -0.13 —0.00
distancel —-0.04 0.02 -0.06 -0.06 —0.05 —0.02 —0.00
distance2 0.02 0.01 0.00 0.01 0.02 0.03 0.03
distance3 -0.01 0.00 -0.01 -0.01 -0.01 -0.00 -0.00

estimated marginal inefficiency effects of the SI range from 0.00 to —0.47, sug-
gesting widely varying effects from farm to farm. We use a thought experiment
of land consolidation to give two rough interpretations of those farm-specific
marginal effects. At the sample mean of —0.30, consolidating all the multi-plot
farms into single-plot farms in our sample (the average SI = 0.25) will increase
the average inefficiency by about 0.075 (i.e. 0.30 X 0.25), causing the average
efficiency score to drop from 0.73 to 0.66. Alternatively, and aggregating from
the marginal changes on each farm, the same consolidation experiment would
reduce the average efficiency score from 0.73 to 0.58.°

For robustness, we explore alternative model specifications, such as using
aggregated labour input instead of three disaggregated labour inputs, using
alternative weather variables and using an alternative measure of crop diver-
sification, and find no substantial changes to our major conclusions.’

7. Summary and concluding remarks

To summarise, this study develops a framework incorporating land fragmen-
tation into both technical efficiency and production risk, to quantitatively

6 Usually, marginal effects in nonlinear models should not be interpreted over such a large range
in the associated independent variable, so neither interpretation provided here is accurate.
However, a marginal change in the Sl is difficult to interpret practically, and the most meaning-
ful counterfactual for comparison would be the case where all farms are consolidated. So our
goal here is to give a rough interpretation of the marginal effects instead of an accurate esti-
mate of productivity changes. We thank one reviewer for pointing out this issue.

7 The detailed results are available from the author upon request.
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evaluate its impact on agricultural production. We hypothesise that land frag-
mentation can mitigate risk by diversifying production among separate land
plots with different agro-ecological conditions. Applying a stochastic produc-
tion frontier model to the Tanzania LSMS data, this study finds robust evidence
to support the risk-reduction hypothesis. Meanwhile, land fragmentation is found
to be positively associated with technical efficiency, thus benefiting farmers in
terms of both efficiency and risk management (i.e. ‘double dividends’). The
positive relationship between fragmentation and technical efficiency contradicts
conventional wisdom. Further explorations suggest that the low level of frag-
mentation in Tanzanian agriculture may have limited its negative impact on
technical efficiency, while crop diversification spurred by fragmentation may
have increased technical efficiency, leaving the net effect to be positive.
Compared to previous studies, this study emphasises and confirms the need to
fully characterise land fragmentation and its various effects.

Given the improved analytical framework and robust results, this study
generates useful insights for countries such as Tanzania, where smallholding
and traditional agriculture practices still prevail. Our analysis suggests that
the small plot size and rare use of machinery can minimise the potential gains
from land consolidation beyond the associated transaction costs, while land
fragmentation may provide the desired benefits for farmers as a partial insur-
ance against risk. Nevertheless, the findings in this study should not be inter-
preted as a conclusive recommendation on land fragmentation, whose roles
depend crucially on the specific contexts. The vast differences in agro-
ecological conditions, socio-economic constraints and farming traditions
warn against any hasty generalisation of land fragmentation and once-and-
for-all consolidation efforts.

Last but not least, future research on land fragmentation can improve on
the work in this study in a few ways. Due to data availability, this study
aggregates multiple crops by value into an implicit output index without
comparing the associated production costs. Obtaining better data and estimat-
ing a profit frontier model could avoid potential aggregation bias and allow
explicit consideration of the effects of fragmentation on labour costs as well
as allocative efficiency. Better data can also allow researchers to relax some
of the restrictive assumptions in this study, such as input exogeneity and
independence between the two error terms. These assumptions may be vio-
lated in certain situations and bias the results and conclusions of this study.
Future research should also develop a more general analytical framework that
incorporates efficiency, production risk and risk preferences, and allow deci-
sion makers to make trade-offs between risk reduction and efficiency losses.®
This effort will be meaningful not only to the immediate topic of land frag-
mentation but also to the broad field of efficiency analysis.

8 Kumbhakar (2002) developed an analytical model that allows the specification and estimation
of risk preferences, production risk and technical efficiency. The empirical applications of his
model have been very limited, probably due to the complicated estimation procedure.
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