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Non-alcoholic fatty liver disease (NAFLD) affects up to a third of the population worldwide and may confer increased cardiometabolic risk
with consequent adverse cardiovascular outcomes independent of traditional cardiovascular risk factors and the metabolic syndrome. It is
characterized almost universally by insulin resistance and is strongly associated with type 2 diabetes and obesity. Non-alcoholic fatty liver
disease is a marker of pathological ectopic fat accumulation combined with a low-grade chronic inflammatory state. This results in
several deleterious pathophysiological processes including abnormal glucose, fatty acid and lipoprotein metabolism, increased oxidative
stress, deranged adipokine profile, hypercoaguability, endothelial dysfunction, and accelerated progression of atherosclerosis. This ultimately
leads to a dysfunctional cardiometabolic phenotype with cardiovascular mortality representing the main mode of premature death in
NAFLD. This review is aimed at introducing NAFLD to the clinical cardiologist by discussing in-depth the evidence to date linking
NAFLD with cardiovascular disease, reviewing the likely mechanisms underlying this association, as well as summarizing from a cardiologist’s
perspective, current and potential future treatment options for this increasingly prevalent disease.
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Introduction
The Greek physician Galen considered the liver to be the most
essential organ of the human body, stating it was ‘the principal in-
strument of sanguification’ in �200 AD.1 To today’s cardiologist,
the liver is viewed mainly as an uncelebrated obstacle to increasing
the dose of the ubiquitous statin! However, the role of non-
alcoholic fatty liver disease (NAFLD) as a potential independent
cardiovascular (CV) risk factor has now gained considerable prom-
inence such that an awareness of this multi-faceted condition is
essential for practising cardiologists, given that it affects 20–33%
of the general population.2 As the pathogenesis of the condition
is closely linked to insulin resistance (IR), its prevalence parallels
that of increasing rates of obesity and type 2 diabetes worldwide,
with up to 95% of obese persons and 75% of diabetics likely to
have NAFLD,3 with most cases unrecognized. With this in mind,
the potential future burden of NAFLD on public health-care utiliza-
tion and costs is likely to be significant.4 As such, the cardiometabolic
risk conferred by NAFLD merits increased collaborative study

between diabetologists, hepatologists, and especially cardiologists,
given that CV disease appears to largely influence major clinical
outcomes in NAFLD.5– 10 This review aims to present to the clinical
cardiologist a state-of-the-art summary of the evidence linking
NAFLD with CV disease, the potential mechanisms underlying this
association, as well as its relation to IR, obesity and the metabolic
syndrome (MetS) in the context of increased CV risk.

In preparing this review, Medline was searched for English-
language articles including the keywords ‘non-alcoholic fatty liver
disease’ combined with ‘cardiovascular disease’, ‘coronary
disease’, ‘pathogenesis’, ‘diagnosis’,‘treatment’ between 1990 and
2010. The bibliographies of identified reports were also explored
for additional sources of information.

Definition of non-alcoholic fatty
liver disease
Non-alcoholic fatty liver disease is the most common cause of
chronic liver disease in the general population and is present
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when fatty infiltration affects .5% of hepatocytes, in the presence
of ,20 g (2.5 U) of alcohol consumption per day, without
evidence of other causes of liver disease (Figure 1).11 Non-alcoholic
fatty liver disease is a slowly progressive condition and represents a
spectrum of varying severity of liver disease, ranging from simple
steatosis to co-existent inflammation with hepatocyte ballooning
and necrosis, variable grades of fibrosis, and ultimately cirrhosis
and an increased risk of hepatocellular carcinoma.11,12 Non-
alcoholic steatohepatitis (NASH) represents the more advanced
stages of this disease, i.e. the ‘inflammatory’ component in addition
to steatosis, which carries a higher risk of CV disease and mortality
than simple steatosis (Figure 2).13 Insulin resistance and obesity,
both key features of the MetS, are strongly associated with
NAFLD progression.14 The prevalence of NAFLD in subjects
with MetS is increased four-fold compared with those without
the disease and 30% of NAFLD subjects have MetS.2 Despite
MetS itself conferring an approximate doubling of CV mortality
risk,15 there is still abundant evidence linking NAFLD to increased
CV disease risk over and above that associated with the MetS
criteria, suggesting that NAFLD per se contributes to accelerated
atherogenesis.16

Diagnosis of non-alcoholic fatty
liver disease
Current laboratory and radiological methods to diagnose NAFLD
are either too insensitive or not specific enough to grade disease
presence and severity. As the early stages of NAFLD are often
asymptomatic, mildly abnormal liver enzymes are usually the only
clue pointing to the disease. However, up to 70% of NAFLD
patients may have normal liver enzymes,17 and although alanine

aminotransferase (ALT) levels have shown to be the best single
biochemical correlate of hepatic steatosis,18 they do not distinguish
between varying stages of NASH and can be normal in histologically
severe disease.19 Furthermore, ultrasound imaging can only detect
steatosis when .30% of the liver is affected, but is still recom-
mended as the first-line investigation to ‘confirm’ the presence of
fatty liver due to its widespread availability and low cost.20 Although
magnetic resonance spectroscopy (MRS) has excellent sensitivity in
detecting and accurately quantifying hepatic steatosis (Figure 3),
none of the non-invasive modalities can detect inflammation

Figure 1 (A) Histological section of normal liver tissue compared with (B) simple steatosis, showing fat accumulation in hepatocytes.

Figure 2 Variable progression of non-alcoholic fatty liver
disease (usually over several years), with different grades of sever-
ity in each stage of simple steatosis and non-alcoholic steatohepa-
titis. These stages are generally reversible, apart from more
severe forms of non-alcoholic steatohepatitis + fibrosis. Cardio-
vascular risk is increased as non-alcoholic fatty liver disease
becomes more severe.3,9,10
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and/or fibrosis, i.e. NASH. Consequently, liver biopsy is at present
the ‘gold-standard’ (taking into account potential inaccuracies of
sampling variability) for diagnosing NAFLD and staging the degree
of NASH and fibrosis by histological assessment, as well as monitor-
ing disease progression.21 Because of the highly invasive and poten-
tially risky nature of liver biopsy, various algorithms of combined
clinical and specialized blood biomarkers, along with advanced
imaging methods (e.g. MR/ultrasound elastography) are being
developed to allow improved non-invasive detection of disease
stage and activity.20

Epidemiology of cardiovascular
disease in non-alcoholic fatty
liver disease
Numerous epidemiological studies have reported an increased in-
cidence of adverse CV events in NAFLD subjects compared with
the general population5– 10,22–29 (Table 1). As NAFLD is the com-
monest cause of abnormal liver enzymes in developed countries,20

many epidemiological studies have employed these as biochemical
surrogates of NAFLD. Several studies have shown a significant
association between increased gamma-glutamyltransferase (GGT)
levels and CV mortality over an average median of 12-year follow-

up, even after adjusting for typical CV risk factors and body mass
index (BMI).22– 24 Additionally, a meta-analysis of 10 pooled
studies confirmed the independent association between elevated
GGT and adverse CV events.25 However, GGT is also expressed
in atherosclerotic plaques and has a role in oxidative stress,30 as well
as being associated with all components of the MetS.31 Alanine amino-
transferase has been reported to be more closely related to liver fat
content than GGT.14 Similarly, several large population-based
cohort studies have reported an independent association between
elevated ALT and CV mortality after adjusting for CV risk
factors.26–28 Importantly, the correlation of raised ALT or GGT
with CV disease in these studies may simply reflect their significant as-
sociation with IR,32 which is itself a strong risk factor for CV disease,
rather than as a marker for the presence or severity of NAFLD.

Employing ultrasound imaging as a more specific diagnostic de-
terminant of NAFLD than liver enzymes, three large community-
based prospective cohort studies also documented a significant
independent association with CV events5 –7 (Table 1). Of note,
Hamaguchi et al.6 undertook a prospective analysis of 1637
healthy subjects recruited from a health check-up programme,
and found 19% with ultrasound evidence of NAFLD. At 5-year
follow-up, 5.2% of the NAFLD group suffered an adverse CV
event, compared with 1.0% of the non-NAFLD group (P ,

0.001). By multivariate analysis, the association between NAFLD

Figure 3 Liver imaging of a 35-year-old man with severe diffuse hepatic fatty infiltration. (A) Ultrasound scan showing diffuse increased echo-
genicity of liver parenchyma compared with renal cortex. (B) Chemical shift magnetic resonance imaging showing marked hepatic signal drop-off
during out-of-phase image compared with in-phase (C ) image, suggesting significant diffuse fatty liver. (D) Single-voxel magnetic resonance spec-
troscopy measuring area under lipid spectrum (second peak) relative to water spectrum (first peak), allowing accurate quantification of hepatic
fat of 85% in the same patient.
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Table 1 Main epidemiological studies relating non-alcoholic fatty liver disease to increased cardiovascular risk

Authors Study characteristics [N–O
assessment of qualitya]

Diagnosis of NAFLD Main findings Risk estimates
(95% CI or P-value)

Comments/limitations

Ruttmann et al.22 Austrian population-based cohort
(n ¼ 163 944), median F/U of 12 years
[3,1,3]

Liver enzymes (GGT) CV mortality increased in NAFLD,
independent of traditional CV RFs, alcohol
and BMI

HR: men 1.66 (1.40–
1.98), women 1.64
(1.36–1.97)

Poor sensitivity of GGT in NAFLD

Wannamethee
et al.23

British population-based cohort (n ¼ 7613
middle-aged men), median F/U of 11.5
years [3,1,3]

Liver enzymes (GGT) Total and CHD mortality increased in NAFLD,
independent of CV RFs, alcohol, and BMI

RR: 1.42 (1.12–1.80) Men-only cohort. Poor sensitivity of GGT in
NAFLD

Lee et al.24 Finnish population-based cohort
(n ¼ 28 838), median F/U of 11.9 years
[3,1,3]

Liver enzymes (GGT) CHD mortality and non-fatal MI increased in
NAFLD independent of CV RFs and alcohol

HR: men 1.20 (1.10–
1.31), women 1.14
(1.03–1.27)25

Poor sensitivity of GGT in NAFLD

Fraser et al.25 Meta-analysis of 10 pooled
population-based cohort studiesb

Liver enzymes (GGT) CV events (fatal and non-fatal) increased in
NAFLD after adjustment for CV RFs and
alcohol

HR: 1.34 (1.22–1.48) Heterogeneity of studies (I2 ¼ 73%), GGT
poor marker of NAFLD

Fraser et al.25 British Women’s Heart and Health Study,
population-based (n ¼ 2961 older
women), median F/U of 4.6 years [3,1,3]

Liver enzymes (ALT
and GGT)

No independent association between NAFLD
and fatal and non-fatal CV events

ALT: HR 0.94 (0.65–
1.37), GGT: HR
1.17 (0.93–1.48)

Women-only cohort, ALT/GGT not
sensitive markers of NAFLD, relatively
short follow-up

Schindhelm
et al.26

Hoorn Study, population-based (n ¼ 1439
middle-aged), F/U of 10 years [3,2,2]

Liver enzymes (ALT) Fatal and non-fatal CHD increased in NAFLD,
independent of CV and MetS RFs

HR: 1.88 (1.21–2.92) ALT not a sensitive marker of NAFLD

Dunn et al.27 NHANES-III, population-based cohort
(n ¼ 7574), mean F/U of 8.7 years
[3,1,3]

Liver enzymes (ALT) Total and CV mortality increased in NAFLD
but only in 45–54 year age group,
independent of CV RFs

HR: 8.15 (2.00–33.20) ALT not a sensitive marker of NAFLD

Yun et al.28 Korean population-based cohort
(n ¼ 37 085), median F/U of 5 years
[3,1,3]

Liver enzymes (ALT) CV or diabetes-related mortality increased in
NAFLD, independent of CV RFs, alcohol,
BMI, and socio-economic status

RR: 2.26 (1.22–4.19) ALT not a sensitive marker of NAFLD

Targher et al.5 Valpolicella Heart Diabetes Study,
community-based diabetic cohort, free
of CV disease (n ¼ 2103), mean F/U of
6.5 years [4,2,2]

Liver ultrasound Increased fatal and non-fatal CV events in
NAFLD, independent of CV RFs, diabetes
control, and MetS

HR: 1.87 (1.20–2.60) Exclusive diabetic cohort, liver ultrasound
poor sensitivity with liver fat , 30%

Hamaguchi
et al.6

Japanese community-based healthy cohort
(n ¼ 1637), mean F/U of 5.8 years
[4,2,1]

Liver ultrasound Increased adverse CV events in NAFLD,
independent of CV RFs and MetS

OR: 4.12 (1.58–10.75) Largely volunteer-reported CV events, 25%
lost to F/U, use of ultrasound to diagnose
NAFLD

Haring et al.7 Study of Health in Pomerania
population-based German cohort
(n ¼ 4160 middle-aged), median F/U of
7.3 years [3,1,3]

GGT and liver
ultrasound

Increased CV mortality in men with NAFLD
and raised GGT (but not women) after
adjustment for cardio-metabolic RFs

HR: men 6.22 (1.22–
31.62), women 0.98
(0.11–8.84)

Significantly older age and increased baseline
CV disease in men vs. women, inadequate
NAFLD sample size in women � type 2
error?

Adams et al.9 Community-based North American
cohort (n ¼ 420), mean F/U 7.6 years
[3,0,3]

Majority had liver
ultrasound (liver
imaging or biopsy in
all subjects)

Increased total mortality (mainly CV-related or
cancer) in NAFLD compared with matched
reference population

SMR: 1.34 (1.003–
1.76)

Liver ultrasound poor sensitivity with liver
fat , 30%, wide variability of length of
follow-up
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and future CV events was shown to be independent of the MetS,
as well as conventional cardiac risk factors. Although these studies
are strongly indicative of NAFLD as a predictor of CV disease
independent of diabetic status, they are limited by the lack of
sensitivity of ultrasound determination of NAFLD.

Even so, smaller long-term prospective studies in patients with
biopsy-proven NAFLD show significantly higher total mortality
rates compared with a matched reference population, with CV
disease representing the main mode of death, outnumbering
cancer- and liver-related mortality.8,10 Of note, only subjects
with NASH rather than simple steatosis had significantly reduced
survival, although in one study even subjects with bland steatosis
showed a trend to reduced survival (P ¼ 0.06), primarily from
CV-related causes over a median follow-up of 24 years.8

However, these studies are limited by modest sample sizes and
inclusion of select cohorts requiring liver biopsy for clinical
reasons, which therefore necessitate cautious interpretation of
the reported ‘benign’ nature of simple steatosis.

Evidence of association of
non-alcoholic fatty liver disease
with cardiovascular disease

Cardiovascular risk assessment scores
in non-alcoholic fatty liver disease
Given that traditional CV risk factors are commonly prevalent in
NAFLD subjects, investigators have applied validated CV risk pre-
diction scores to evaluate the risk profile of NAFLD patients, with
most of these studies showing that NAFLD independently confers
an increased CV risk score (see Supplementary material online,
Table 2).33– 36 One study also documented that high-sensitivity
C-reactive protein, a well-established marker of adverse CV
outcome, was significantly elevated compared with the non-
NAFLD group in both sexes.34 Additionally, we have recently
shown a strong association between histological severity of
NAFLD and calculated estimates of CV risk [both QRISK2 and
Framingham risk score (FRS)] independently of markers of
glucose control and obesity.37

Although these global risk prediction studies may help to describe
part of the association between NAFLD and increased CV risk, they
are flawed by the inherent limitations of using risk scores based on
traditional CV risk factor-derived multivariable statistical models to
identify at-risk patients.38 Furthermore, we know that some of the
important determinants of NAFLD, such as IR, obesity, and raised tri-
glycerides (TGs), all of which also increase the risk of CV disease, are
not generally accounted for in these risk assessment models. Indeed,
the FRS is already known to underestimate the risk of CV disease in
MetS,39 which shares many features in common with NAFLD. It
might therefore not be appropriate to risk-stratify patients with
NAFLD solely based on current CV risk scoring systems. Further
research is necessary to determine simple and cost-effective
robust biomarkers (or algorithm-based scores) of NAFLD status in-
cluding its direct cardiometabolic effects, before we can evaluate its
added discriminant value when applied to current CV risk prediction
models in cohort studies.
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Studies evaluating coronary disease
in non-alcoholic fatty liver disease
Coronary artery calcium (CAC) scoring with cardiac computed
tomography (CT) is a very sensitive method of demonstrating
the presence and extent of coronary atherosclerosis and signifi-
cantly improving CV risk prediction in asymptomatic individuals
beyond traditional risk factor scoring systems.40 Several studies
demonstrate a significantly increased coronary atherosclerotic
burden in the presence of NAFLD (see Supplementary material
online, Table 3),41– 44 with one study also reporting a significant as-
sociation between ‘vulnerable plaque’ and NAFLD in patients
undergoing multislice CT for clinical suspicion of coronary artery
disease (CAD).42 This finding is consistent with data showing
that NAFLD patients have significantly higher plasma markers of
oxidative stress and inflammation, which are in part derived from
the diseased liver causing a systemic inflammatory and pro-
thrombotic state.45,46 Furthermore, in the Study of Inherited Risk
of Coronary Atherosclerosis (SIRCA) of 860 asymptomatic non-
diabetic participants, investigators found that the IR index was a
robust and independent predictor of CAC score even after con-
trolling for traditional CV risk factors, MetS, and C-reactive
protein.47

A strong association between NAFLD and prevalence of signifi-
cant CAD determined by coronary angiography has also been con-
sistently reported, albeit with variable thresholds of ‘significant’
CAD between studies (see Supplementary material online,
Table 4).48– 51 Although these studies indicate an independent
association between NAFLD and increased CAD in terms of
angiographic appearance even after adjusting for traditional CV
risk factors and components of the MetS, none of them evaluated
the functional significance of these coronary lesions. Given that the
presence of ischaemia rather than coronary anatomy dictate clinic-
al outcome,52,53 the significance of these findings in association
with NAFLD should not be overestimated.

Studies evaluating carotid disease
in non-alcoholic fatty liver disease
Measurement of carotid intima-media thickness (CIMT) and plaque
burden by ultrasound is a well-validated and widely accepted
screening tool for the prediction of CV disease in asymptomatic
subjects.54,55 Several studies link NAFLD independently with
carotid disease, although a few have described a weaker association
after adjusting for MetS (see Supplementary material online,
Table 5).35,56–61 Importantly, severity of histological features of
NAFLD appears to correlate independently with increasing
CIMT,58 concordant with epidemiological data documenting
NASH patients having a higher CV risk than simple steatosis. Add-
itionally, a systematic review of seven published studies (total of
3497 subjects) reported a significant association between
NAFLD and CIMT, showing an estimated increase of 13% in
CIMT for NAFLD cases compared with controls. Prevalence of
carotid plaque was also more frequent in NAFLD subjects.62

However, two subsequent studies not included in this
meta-analysis did not show an association between NAFLD
and increased CIMT (see Supplementary material online,
Table 5).63,64 Importantly, both were conducted in primarily

diabetic subjects, with one study reporting a majority of their
cohort on insulin treatment.64 Given that insulin therapy is
known to decrease liver fat in type 2 diabetics, possibly through re-
duction in glucose and free fatty acid (FFA) levels,65 these results
must be interpreted with caution. Furthermore, diabetes itself is
considered a coronary-risk equivalent and so may have masked
the association between NAFLD and carotid disease, especially
when analysing relatively small sample sizes. Additionally, neither
of these studies evaluated the presence of carotid plaque, which
appears to have similar or greater predictive power for CV
events than CIMT alone.66

Studies evaluating cardiac function
in non-alcoholic fatty liver disease
Studies in subjects with MetS have consistently shown increased
left ventricular (LV) mass index and diastolic function impairment
when compared with controls, which are in the main secondary
to the effects of IR, obesity, and hypertension on cardiac structure
and function.67,68 Only a few studies have focused specifically
on NAFLD subjects, and the finding of abnormal LV geometry
and diastolic dysfunction has similarly been reported (see Supple-
mentary material online, Table 6).69– 71 One study also demon-
strated a strong positive correlation between the degree of
diastolic dysfunction and amount of liver fat, with diastolic dysfunc-
tion and IR the only independent parameters associated with
NAFLD.70

Another study reported that echocardiographic measures of
coronary flow reserve (CFR) were significantly lower in NAFLD
compared with healthy controls, after adjusting for obesity, trad-
itional CV risk factors and the presence of MetS.72 Just under
half of NAFLD patients had an impaired CFR, whereas all controls
had normal CFR values, and histological liver fibrosis score was the
only independent predictor of impaired CFR. Although they cor-
rectly postulated that this result likely reflects impaired coronary
endothelial function in the NAFLD group, they were unable to
exclude the possibility of these patients having asymptomatic
epicardial CAD. The consistent finding of subclinical cardiac dys-
function in an asymptomatic population with NAFLD is perhaps
not surprising, given that LV dysfunction and LV mass are strongly
correlated with IR, as well as subsequent prognosis.73

Studies evaluating endothelial dysfunction
and myocardial metabolism in
non-alcoholic fatty liver disease
Endothelial dysfunction is now recognized as the earliest detectable
component in the development of atherosclerosis. In both diabetic
and non-diabetic cohorts, studies have shown an independent asso-
ciation between impaired endothelium-dependent flow-mediated
dilation (FMD) and NAFLD.36,74 In addition, lower FMD was
observed in NASH compared with simple steatosis, again confirming
the graded association of CV risk with severity of NAFLD.36

To gain further insight on the causes of subclinical cardiac dys-
function in NAFLD, the effects of hepatic steatosis on myocardial
metabolism have also been examined.75,76 One study found a novel
positive association between hepatic fat content and myocardial IR.
Patients with high liver fat content not only showed significantly
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lower whole-body insulin sensitivity as expected, but also reduced
myocardial glucose uptake and extraction rate, reduced CFR, and
increased plasma levels of inflammatory markers and vascular ad-
hesion molecules. Only liver fat content remained significantly
associated with impaired myocardial metabolism even after adjust-
ing for IR, visceral fat mass, and other important variables.75

Another study assessed myocardial energy metabolism in
NAFLD, utilizing 31P-MRS to determine the ratio of phosphocrea-
tine to ATP in a young, healthy cohort.76 The authors reported sig-
nificantly impaired LV energy metabolism as well as increased
epicardial fat in NAFLD compared with controls. This was
despite normal LV morphological features and systolic/diastolic
function in both groups, and was independent of usual CV risk
factors. This suggests that in patients with hepatic steatosis, abnor-
malities in myocardial metabolism may precede functional and
structural cardiac remodelling, leading to increased LV mass and
diastolic dysfunction.

The precipitating factor for this dysfunctional cardiac phenotype
appears to be the development of systemic and hepatic IR, leading
to hyperinsulinaemia and increased FFA availability with associated
myocardial IR. This produces inefficient energy metabolism by car-
diomyocytes, switching to fat rather than glucose oxidation in
physiologically demanding states, and yielding less ATP per
oxygen molecule consumed. With progressive workload placing
the heart under increasing strain, this potentiates myocardial dys-
function ultimately leading to myocardial adaptive remodelling
and myocardial injury. The excess FFA supply also leads to
cardiac lipotoxicity by causing intracellular lipid accumulation and
overwhelming normal cardiomyocyte oxidative capacity, resulting
in increased oxidative stress and consequent cardiac apoptosis
and dysfunction.73,77

Pathogenesis of cardiovascular
disease in non-alcoholic fatty
liver disease

Insulin resistance
The majority of the above studies point to an independent link
between NAFLD and increased CV risk or adverse CV outcome.
However, there is considerable heterogeneity in these studies in
terms of outcomes measured as well as confounding variables
not adequately adjusted for, but most importantly, in the method
of NAFLD diagnosis and quantification of severity of NAFLD.
This appears to be of paramount importance due to the disparate
pathophysiological and metabolic consequences of the various
stages of simple steatosis and NASH, both strongly linked to
hepatic and peripheral IR. In fact, liver fat content appears to be
the best independent predictor of IR in skeletal muscle, adipose
tissue, and the liver.78 Similarly, adverse CV outcome is likely to
be associated with liver fat/inflammation in a monotonic relation-
ship, progressively increasing with more advanced stages of
NAFLD.58,70 This parallels epidemiologic evidence showing a pro-
gressive relationship between glucose levels and CV disease
extending from well below the diabetic threshold.79 Ultimately,
the development and progression of IR appears to be the key

mediator in the initiation and propagation of NAFLD, primarily
through adverse changes in glucose, fatty acid, and lipoprotein
metabolism, with both conditions subsequently driving each
other in a synergistic fashion. Alterations in cellular FFA transport,
possibly through hyperinsulinaemia, are involved in the pathogen-
esis of ectopic fat distribution by diverting the accumulation of
TG away from adipose tissue and towards other key metabolic
organs, such as skeletal muscle and liver. This results in impaired
insulin signalling in these tissues, and further exacerbates IR and
the consequent cardiometabolic dysfunctional cascade.80 These
processes are also exacerbated by associated subclinical inflamma-
tion, deranged adipokines, and increased ectopic fat accumulation
in other organs including the heart, all ultimately contributing to
increased CV risk (Figure 4).

Visceral fat
Visceral adipose tissue (VAT) appears to have a strong independ-
ent positive correlation with liver fat.18 This is not surprising
given that plasma FFAs appear to be the main source of hepatic
TGs in NAFLD, arising in part by greater lipolysis from insulin-
resistant adipose tissue. This helps to explain somewhat the
close association between the MetS and NAFLD, in that increased
waist circumference is a mandatory criteria in the International
Diabetes Federation guidelines for diagnosing MetS. Additionally,
the independent link between centrally obese individuals and
increased CV morbidity and mortality is well established.81 There-
fore, could VAT itself explain the increased CV risk seen with
NAFLD, rather than liver fat content per se?

Studies show that increased VAT mass is independently asso-
ciated with impaired glucose tolerance, IR, and dyslipidaemia, con-
ferring an increased risk of CV disease, irrespective of diabetic
status.82 Furthermore, the ‘portal hypothesis’ suggests that
increased VAT lipolysis secondary to IR leads to an elevated flux
of FFAs into the portal vein for direct transport to the liver, result-
ing in increased hepatic fat, which would suggest that visceral fat is
an important mediator of liver fat content.83 In fact, in the Quebec
Cardiovascular Study, elevated FFA levels yielded a two-fold
increase in the risk of ischaemic heart disease, regardless of the
presence of diabetes.84 Additionally, high FFA concentrations in
patients with angiographic CAD independently predicted CV mor-
tality.85 Apart from being a fat-storage organ, visceral fat is also
metabolically active, secreting several adipokines, cytokines, and
hormones that serve to regulate inflammation, liver fat, IR, and
modify CV disease outcome (see Supplementary material online,
Table 7).12,77,86– 95 Importantly, obesity in certain situations repre-
sents a chronic low-grade systemic inflammatory state that contri-
butes to vasculopathy and CV risk through the release of these
proinflammatory and atherogenic bioactive molecules.96

However, the mechanisms linking visceral fat or obesity to CV
disease are strongly related to IR, which itself is robustly associated
with CV risk and atherosclerosis, already reviewed in detail.97 It is
therefore unclear whether VAT actually confers direct CV risk
through secreted factors, or indirectly via IR-related processes,
or both. Importantly, studies from patients with lipodystrophy
suggest that even with little or no adipose tissue, fatty liver, and
IR can still develop quite markedly,98 which undermines the
portal hypothesis. Epidemiological and case–control studies also
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support the key role of liver fat, rather than VAT, as a marker of
obesity-related metabolic dysfunction and a strong predictor of
multi-organ IR, which is independent of obesity, VAT, or plasma
adipokine levels.80,99,100 Despite these findings, adipose tissue is
likely to still contribute to metabolic dysfunction as it is the specific
characteristics of adipose tissue rather than the amount that is im-
portant. Accordingly, fat cell hypertrophy, macrophage infiltration
of adipose tissue causing inflammation, increased adipose tissue
lipolytic activity, and adipose tissue hypoxia are all associated
with IR.101 It is therefore plausible that the established link
between obesity and CV outcome may in fact be mediated
through both ectopic fat accumulation (i.e. liver and cardiac
tissue) as well as the effects of adiposopathy or ‘sick fat’.102 This
occurs when adipose tissue becomes chronically inflamed and
releases proinflammatory adipokines and cytokines that ultimately
contribute to atherosclerosis and CV disease. Therefore NAFLD
can be considered a sensitive marker of pathological dysfunction
of adipose tissue, which appears to be more relevant to CV
outcome than simply adipose tissue mass.

Epicardial fat
Given that NAFLD and excessive visceral abdominal fat represent
abnormal ectopic fat deposition in the body, with associated
VAT-secreted adipocytokines contributing to subclinical inflamma-
tion and atherosclerosis, what about the role of epicardial adipose

tissue (EAT), itself a visceral fat layer? Its anatomical location and
proximity to the myocardium and adventitial layer of the coronary
arteries, as well as sharing the same microcirculation, make it an
ideal entity to exert a paracrine and vasocrine effect on the
heart and its blood vessels.103 Imaging studies have already
shown that epicardial thickness or pericardial (epicardial and para-
cardial) fat volume correlate with the amount of VAT in both
obese and non-obese subjects.104– 107 Furthermore, EAT thickness
is also positively associated with the presence and severity of
angiographic CAD,106,108,109 and increased epicardial or pericardial
fat volume measured by CT are each independently associated
with the presence of CAC.110,111 Importantly, adiponectin expres-
sion was found to be significantly lower in epicardial fat isolated
from patients with severe CAD compared with those without
CAD,112 and pericardial fat volume also correlates with multiple
markers of inflammation and oxidative stress,113 thus signifying
potential similarities in proinflammatory adipokine function
between EAT and VAT.

Iacobellis et al.107 have validated a simple echocardiographic
method of quantifying EAT involving measurement over the anter-
ior right ventricular wall in the parasternal view, showing an excel-
lent correlation with magnetic resonance imaging-determined
values. Furthermore, they have proposed EAT threshold values
for cardiometabolic risk stratification,114 having reported significant
correlations of EAT with several anthropometric, CV, and

Figure 4 Schematic diagram of the pathophysiological processes involved in non-alcoholic fatty liver disease leading to increased CV risk,
highlighting the complex inter-relationships between visceral adipose tissue, adipocytokines, insulin resistance, ectopic fat accumulation and
non-alcoholic fatty liver disease. FFA, free fatty acids.
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metabolic risk factors including IR.115,116 Importantly, pericardial fat
volume appears to independently predict major adverse cardiac
event risk in asymptomatic subjects, even after adjusting for FRS,
CAC score, and BMI.117

Weight reduction through exercise training or a low-calorie diet
has been shown to decrease EAT thickness, as well as reduce VAT
and increase insulin sensitivity.118,119 Notably, improvement in LV
diastolic function correlated better with EAT than waist circumfer-
ence reduction.118 Furthermore, increased epicardial fat has a sig-
nificant negative correlation with cardiac index, and also correlates
directly with intramyocardial TG levels.120 Therefore, it remains
unclear whether the LV dysfunction is due to lipotoxicity from
excess FFA availability and subsequent oxidative stress, as well as
the deleterious effects of increased LV mass, or secondary to
adipokine-mediated myocardial inflammation and damage; or
both.121 However, it is likely that increased epicardial and myocar-
dial fat both represent abnormal ectopic fat storage and may
indeed be a marker of the cumulative effects of NAFLD and IR
in the setting of pathological adiposity,120,122 with consequent
associated adverse CV outcome.123

Inflammation
The liver is a key metabolic organ and central to the regulation of
systemic inflammation. It is a generator as well as a target of
various inflammatory and humoral factors (as summarized in see
Supplementary material online, Table 7), working in concert and
against secreted molecules from adipose tissue, macrophages,
and endothelial cells in the context of CV disease initiation and
progression.87,89,91 Increasing severity of NAFLD likely represents
worsening inflammatory and insulin-resistant states, with poorer
cardiometabolic outcomes. High-sensitivity C-reactive protein,
which is primarily produced by the liver and a marker of inflamma-
tion, is an independent predictor of CV events in several
large studies.124 Similarly, fibrinogen and plasminogen activator
inhibitor-1 (PAI-1) also originate from hepatic tissue and are acti-
vators of the coagulation system, enhancing atherothrombosis.
Targher et al. showed that biopsy-proven NASH patients had
significantly higher levels of high-sensitivity C-reactive protein, fi-
brinogen, and PAI-1 activity compared with controls. Furthermore,
the severity of NASH by liver histology correlated significantly with
these CV risk biomarkers after adjustment for potential confoun-
ders, including IR and visceral adiposity.86 A similar correlation
was found for serum IL-6 levels, as well as serum and hepatic
TNF-a in NASH patients.125 Additionally, hepatic and plasma
PAI-1 levels also correlate with the degree of hepatic steatosis.126

These studies suggest that increased liver-secreted factors in
NAFLD play an important role in the pathogenesis of systemic
inflammation and atherosclerosis.

Nuclear factor kappa-B (NF-kB) is a hepatocellular transcription
factor that plays a key role in intrahepatic inflammation. In rodent
models, a high-fat diet results in hepatic steatosis and up-regulation
of NF-kB activity, which leads to hepatic production of proinflam-
matory cytokines IL-6, IL-1b, and TNF-a, as well as activation of
Kupffer cells and macrophages, possibly worsening hepatic inflam-
mation.127 This study also demonstrated that isolated hepatic
inflammation in the absence of steatosis through selective activa-
tion of NF-kB, resulted in hepatic and skeletal muscle IR.

Hepatic steatosis can also induce hepatic inflammation through
lipotoxicity and endoplasmic reticulum oxidative stress responses,
as well as through mitochondrial dysfunction via increased oxida-
tion of excess fatty acids.128 Mitochondrial dysfunction and
damage are associated with IR and atherosclerosis in several
studies,97 representing a plausible link between NAFLD and
increased CV risk.

Dyslipidaemia
Non-alcoholic fatty liver disease is characterized by an atherogenic
lipid profile, consisting of high TG levels, low high-density lipopro-
tein (HDL) cholesterol, an increase in small, dense low-density
lipoprotein (LDL) particles, increased very low-density lipoprotein
(VLDL) cholesterol levels and elevated apolipoprotein B100 con-
centration. This type of atherogenic dyslipidaemia is strongly
linked to adverse CV outcome.129 The increased hepatic produc-
tion of TG-rich VLDL provides a limited compensatory mechanism
for reducing liver fat content.130 However, this also results in
abnormal HDL metabolism causing HDL reduction as well as com-
positional alterations. In fact, the amount of liver fat has a signifi-
cant negative correlation with subfractions of HDL known to be
athero-protective, which are reduced in NAFLD independently
of peripheral insulin sensitivity.131

Treatment of non-alcoholic fatty
liver disease
Various therapeutic modalities for NAFLD have been postulated
and trialled to date and a summary of these treatments, as well
as each of its associated CV benefits and risks, are shown in Sup-
plementary material online, Table 8.20,132 – 140 For a more detailed
overview, readers are encouraged to refer to recently published
guidelines20 as well as a meta-analysis of randomized trials for
the treatment of NAFLD.132 To summarize, there is currently no
established pharmacological treatment for NAFLD, and lifestyle
interventions such as increasing exercise, reducing dietary fat
intake, and encouraging weight loss are the only recommended
therapeutic strategies with proven benefit. From a cardiologist’s
perspective, lipid-lowering drugs (e.g. statins), insulin-sensitizers
(e.g. thiazolidinediones, metformin) and anti-hypertensive agents
have not as yet shown adequate added risk/benefit value in
NAFLD over and above already established evidence-based guide-
lines for the individual treatment of dyslipidaemia, diabetes and
hypertension. Given the increased CV risk associated with
NAFLD attributed to its pro-atherogenic and pro-inflammatory
states, it is perhaps surprising that statins, with their anti-
atherosclerotic and pleiotropic (anti-oxidant, anti-inflammatory)
effects, have thus far not shown a consistent benefit in NAFLD
outcomes. One potential explanation for this could be that
statins are also known to indirectly impair insulin sensitivity,141

which may result in an overall net neutral effect in treating
NAFLD. Other possible reasons could include inadequate trial
durations to allow inflammatory changes to translate into beneficial
clinical outcomes, or the enrolment of low-risk NAFLD cohorts. It
is noteworthy that patients with hepatic steatosis have not been
shown to be at increased risk for statin hepatotoxicity,142 and
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the Liver Expert Panel stated in a report in 2006 that statins can
indeed be safely used in NAFLD and NASH, without the need
for routine liver enzyme monitoring.143 It follows therefore that
cardiologists should not be concerned about initiating or continu-
ing statins in patients with NAFLD, unless there is evidence of
deranged synthetic liver function or decompensation. However,
given the high prevalence of NAFLD in the general population, it
would be prudent to routinely check baseline liver enzymes
prior to commencing a statin, in order to prevent mistakenly attrib-
uting subsequently discovered elevated aminotransferase levels as
statin-induced. General practitioners are often too quick to discon-
tinue a statin when confronted with raised aminotransferase levels,
when in fact there is no evidence that elevated levels in the
absence of raised bilirubin (more than two times the upper limit
of normal) reflect drug-induced liver injury.143 With high-dose
statin therapy proving beneficial in certain patient groups, e.g.
acute coronary syndromes, one unresolved question is whether
NAFLD patients with significantly raised baseline aminotransferase
levels (i.e. more than three times the upper limit of normal) should
be prescribed high doses at the outset, as these patients are at two
to three times the risk of ‘transaminitis’ compared with moderate
or low doses of statins. Until further data emerge proving its safety
in this setting, we would recommend a cautious approach and
commence statins at a lower dose, up-titrating according to clinical
and biochemical response over several weeks. This would also be
applicable to other CV drugs which are metabolized by the liver,
e.g. amiodarone, nicotinic acid, calcium-channel blockers, and
angiotensin-converting enzyme inhibitors, although the vast
majority of NAFLD patients has normal synthetic liver function
and tolerate these drugs very well.

N-3 long chain polyunsaturated fatty acids (PUFAs) represent a
potentially viable pharmacological treatment option in NAFLD.
This group of fatty acids has an excellent side-effect profile and
in high dose is effective in reducing plasma TGs and FFA
levels,136 both increased in NAFLD and associated with increased
CV risk. Animal studies have also shown n-3 PUFA to be negative
regulators of hepatic lipogenesis and the inflammatory response, as
well as improving insulin sensitivity.137 Although preliminary human
trials have already shown a beneficial effect of n-3 PUFA in treating
NAFLD, they have been limited by small sample sizes, lack of ran-
domization, or placebo arms.138 – 140 Furthermore, no studies have
yet examined the effect of reducing liver fat on proxy markers of
CV risk. We are currently undertaking a randomized double-blind
placebo-controlled trial in NAFLD patients to investigate the effect
of prolonged treatment with high-dose n-3 PUFA (Omacor) on
various proxy markers of CV risk and insulin sensitivity in relation
to changes in liver fat quantified by MRS (clinicaltrials.gov
NCT00760513).

Given the increased CV risk posed by NAFLD and the lack of
any established therapeutic option at present, what should a cardi-
ologist do when managing a cardiac patient with concomitant
NAFLD? Any patient with documented NASH should be regarded
as high risk given that CV mortality is increased approximately
two-fold compared with the age-matched general population10

and each individual CV risk factor should be controlled aggressively
to reduce the overall risk. Measurement of fasting TGs, which is
often overlooked, should also be undertaken as the TG/HDL

ratio appears to not only be a good predictor of IR, but also
able to predict CV events independently.129,144 Currently there
are no established guidelines advising assessment or monitoring
of simple measures of IR (e.g. waist circumference or TG/HDL
ratio) as already exist for LDL-C or blood pressure measurements
to optimize outcomes across all secondary care cardiac patients.
Certainly in diabetics, a TG/HDL ratio of .2.5 should prompt con-
sideration of adding in a fibrate, nicotinic acid, or n-3 PUFA treat-
ment, in addition to statins and lifestyle modification advice.145

More evidence for optimal thresholds in treating atherogenic
dyslipidaemia, common in NAFLD, is needed in younger cohorts
and the non-diabetic population.

Conclusion and future directions
Non-alcoholic fatty liver disease is a marker of pathological ectopic
fat accumulation combined with a low-grade chronic inflammatory
state affecting adipose tissue and characterized almost universally
by IR. This results in several deleterious pathophysiological
processes including abnormal glucose, fatty acid, and lipoprotein
metabolism, increased oxidative stress, deranged adipokine
profile, worsening subclinical inflammation, hypercoaguability,
endothelial dysfunction, and progression of atherosclerosis, ultim-
ately leading to a dysfunctional cardiometabolic phenotype with
potentially unfavourable CV outcome. There is convincing evi-
dence that worsening grades of NAFLD contribute to progressive
cardiometabolic risk, such that NASH represents a marker as well
as a mediator of increased CV risk more than simple steatosis.
Although future studies should quantify liver fat using MR spectros-
copy as a gold-standard, there remains an issue over how to obtain
reproducible non-invasive measures of hepatic necroinflammation
and fibrosis to document NAFLD (or specifically, NASH) improve-
ment, especially in randomized studies. Importantly, as steatohepa-
titis becomes more advanced, there is often a reduction in liver fat
due to replacement of fat-laden hepatocytes with necrosed and fi-
brotic tissue, rendering liver fat measurements as a marker of
NAFLD severity inaccurate. It is therefore imperative that future
therapeutic trials in NAFLD also aim to include measurements of
a range of validated cardiac, metabolic, and inflammatory biomar-
kers linked to clinical outcome, to serve as alternative objective
measures of the change in NAFLD status and its associated
cardiometabolic phenotype. This may also allow better risk predic-
tion when adjusting for the effect of conventional risk factors in
determining the true CV risk of NAFLD.

Importantly, current research evaluating easily accessible novel
biomarkers or combined clinical and biochemical algorithms to ac-
curately grade the severity of NAFLD tend to focus too narrowly
on liver-based outcomes, ignoring the detrimental cardiometabolic
effects which are often the main cause of adverse clinical events.
Furthermore, the cardiometabolic consequences of NAFLD are
remarkably heterogeneous in terms of its interplay with visceral
adiposity, IR, and subclinical inflammation, and given that approxi-
mately a quarter of the general population are estimated to have
this condition, a targeted strategy for pharmacological intervention
would be challenging without outcome-based risk stratification.
Therefore further research in this area is urgently needed to estab-
lish robust methods of predicting increased CV risk, as well as
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identifying novel treatments to improve the adverse CV outcome
currently associated with NAFLD.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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