
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLINICAL RESEARCH
Prevention

ABCA1 mutation carriers with low high-density
lipoprotein cholesterol are characterized
by a larger atherosclerotic burden
Andrea E. Bochem1, Diederik F. van Wijk1, Adriaan G. Holleboom1,
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Aims Low HDL-C is a potent risk factor for cardiovascular disease (CVD). Yet, mutations in ABCA1, a major determinant
of circulating HDL-C levels, were previously not associated with CVD risk in cohort studies. To study the conse-
quences of low plasma levels of high-density lipoprotein cholesterol (HDL-C) due to ATP-binding cassette transport-
er A1 (ABCA1) dysfunction for atherosclerotic vascular disease in the carotid arteries.

Methods
and results

We performed 3.0 Tesla magnetic resonance imaging (MRI) measurements of the carotid arteries in 36 carriers of
high impact functional ABCA1 mutations and 36 normolipidemic controls. Carriers presented with 42% lower HDL-C
levels (P , 0.001), a larger mean wall area (18.6+6.0 vs. 15.8 + 4.3 mm2; P ¼ 0.02), a larger mean wall thickness
(0.82+0.21 vs. 0.70+0.14 mm; P ¼ 0.005), and a higher normalized wall index (0.37+ 0.06 vs. 0.33+ 0.04;
P ¼ 0.005) compared with controls, retaining significance after adjustment for smoking, alcohol consumption, systolic
blood pressure, diabetes, body mass index, history of CVD, LDL-C, and statin use (P ¼ 0.002).

Conclusion Carriers of loss of function ABCA1 mutations display a larger atherosclerotic burden compared with age and sex-
matched controls, implying a higher risk for CVD. Further studies are needed to elucidate the full function of
ABCA1 in the protection against atherosclerosis. These data support the development of strategies to up-regulate
ABCA1 in patients with established CVD.
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Introduction
Prospective studies have consistently shown that high-density lipo-
protein cholesterol (HDL-C) is inversely correlated with cardio-
vascular risk.1– 3 As a consequence, HDL-increasing strategies
have been studied intensively to reduce the residual cardiovascular
risk in statin-treated patients.4– 6 The lack of specific and potent
HDL-increasing compounds, however, has precluded us from
answering the question whether HDL-C is a truly causal factor
in atherogenesis.7 In fact, Briel et al.8 reported the absence of a

correlation between HDL-C increase and CVD risk in a recent
meta-analysis comprising data from �300 000 subjects having
received lipid-modulating therapies, whereas low-density lipopro-
tein cholesterol (LDL-C) decrease was invariably associated with
a decrease in cardiovascular risk. None of these lipid-modulating
therapies, however, had as its primary objective to raise HDL-C.
The absolute increases in circulating HDL-C levels in these
studies were modest, raising the possibility of a power problem
of the analyses. Moreover, the lack of effect of CETP inhibition,6,9

and nicotinic acid has increased the concerns regarding HDL-C as
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a suitable target for the prevention of CVD, although these trials
were troubled by either off-target effects10,11 or design issues.12

Combined with the fact that HDL-C levels are confounded by
other risk factors, such as body mass index (BMI), triglycerides
(TG), and smoking;13,14 this has cast doubt on the causal role of
the HDL particle in atherogenesis.

The most widely characterized mechanism by which HDL-C
protects against atherosclerosis is reverse cholesterol transport.15

In this pathway, pivotal steps comprise the ABCA1 (adenosine
triphosphate-binding cassette transporter A1)-mediated cholesterol
efflux (GenBank No. AF275948) followed by esterification of chol-
esterol via lecithin–cholesterol acyltransferase (LCAT).16,17 Hetero-
zygous ABCA1 mutation carriers are characterized by half-normal
HDL-C levels. Schaefer et al.18 reported that 19% of ABCA1 hetero-
zygotes and 45% of ABCA1 homozygotes had evidence of coronary
artery or cerebrovascular disease, compared with 4% in the control
population. In line, van Dam et al.19 reported the loss of efflux cap-
acity in ABCA1 mutation carriers with a correspondingly increased
carotid intima-media thickness (cIMT). In contrast, Frikke-Schmidt
et al.20 reported that in 109 ABCA1 mutation carriers compared
with 41 852 controls, the multifactorially adjusted OR for ischaemic
heart disease was 0.93 (59% CI: 0.53–1.62) for heterozygous ABCA1
mutation carriers compared with controls.

We, therefore, decided to assess the effects of loss of function
ABCA1 mutations on atherosclerosis. We performed carotid
3.0 Tesla magnetic resonance imaging (MRI) as well as cIMT
imaging in ABCA1 mutation carriers and controls. Functionality of
each ABCA1 mutation was verified using in vitro cholesterol efflux
assays.

Methods

Study design
Subjects with low HDL-C levels, defined as HDL-C ,5th percentile,
were selected from a cohort of hypoalphalipoproteinaemia patients21

and screened for ABCA1 mutations. Family members of ABCA1 muta-
tion carriers were actively recruited. Carriers of functional ABCA1
gene mutations (n ¼ 36) and controls (n ¼ 36) matched for age and
gender were enrolled in this study. Index patients were excluded if
CVD was present at the time of referral. Furthermore, blood was
obtained from 36 unaffected family members for lipid analysis. All par-
ticipants provided written informed consent. The study was conducted
at the Academic Medical Center in Amsterdam, the Netherlands from
March 2010 to November 2011. The study protocol was approved by
the Institutional Review Board.

The presence of cardiovascular risk factors, the use of medication,
and a family history of CVD were assessed by a questionnaire. Blood
pressures were measured using an oscillometric blood pressure
device (Omron 705IT, Hoofddorp, the Netherlands). The BMI was cal-
culated from weight and length. The HOMA index was calculated as
(glucose × insulin)/22.5. Blood was obtained after an overnight fast
and stored at 2808C. Plasma cholesterol, LDL-C, HDL-C, and TG
were analysed using commercially available kits (Randox, Antrim, UK
and Wako, Neuss, Germany). Plasma apolipoprotein AI and apolipo-
protein B were measured using a commercially available turbidometric
assay (Randox, Antrim, UK). All analyses were performed using the
Cobas Mira autoanalyzer (Roche, Basel, Switzerland).

Genotyping
Mutation detection was performed as published previously.21 In short,
the sequence reactions were performed using a BigDye terminator ABI
prism kit (Applied Biosystems, Foster City, CA, USA). Sequences were
analysed with the Sequencher package (Gene Codes Co, Ann Arbor,
MI, USA).

Cholesterol efflux assays
ABCA1 mutation functionality was tested using skin fibroblasts (passage
number 5–15), cultured in 24-well plates until 80% confluency. The
cells were loaded with media containing 0.2% BSA, 30 mg/mL choles-
terol, and 0.5 mCi/mL 3H-cholesterol for 24 h. After washing, the chol-
esterol efflux was started by the addition of 10 mg/mL apoA-I. After
4 h, the medium was collected and the amount of 3H-cholesterol
was quantified by liquid scintillation counting. Cellular concentrations
of 3H-cholesterol were measured after extraction of the cells with
2-propanol. The percentage efflux was calculated by dividing the
counts in the efflux medium by the sum of the counts in the
medium plus the cell extract.

Carotid magnetic resonance imaging
Scans were performed as described previously.22 In short, scans were
obtained in a 3.0 Tesla Philips whole-body scanner (Philips, Best, the
Netherlands), using a single-element microcoil (Philips, Hamburg,
Germany). Ten slices were scanned of the distal 3.0 cm of the left
and right common carotid artery. A total of 20 images were obtained
per scan. Images were saved in DICOM format using standardized
protocols.22,23

Quantitative image analysis was performed using the semi-
automated measurement software (VesselMass, Leiden University
Medical Center, the Netherlands).24 One trained reader, with excel-
lent scan–rescan and intra-observer variability analysed all the
images using standardized protocols for reading and rating images
combined with dedicated semi-automated software,22,23 blinded for
all data of the participants. The mean wall thickness (MWT), lumen
area (LA), outer wall area (OWA), and total wall volume (TWV)
were measured. The normalized wall index (NWI) was calculated as:
NWI ¼ MWA/OWA. The mean wall area (MWA) is calculated as:
MWA ¼ meanOWA 2 meanLA. The prevalence of plaque compo-
nents (PC) and the total PC volume (mm3) were also assessed.
Plaque component was defined as an area with lower signal intensity
within the arterial wall on a T1-weighted image, representing either
lipid-rich tissue or calcification.25 The prevalence of PC was reported
as the percentage of the total number of images that showed PC. The
volume of PC’s was reported as the sum of all PC volumes of all sub-
jects per group. A total of 46 slides, corresponding to 3% of the total,
were excluded from the PC analysis due to insufficient quality.

Carotid ultrasound imaging
Carotid B-mode ultrasound scans of the left and right common, bulb,
and internal carotid arterial far walls were assessed as previously pub-
lished.26 One reader analysed all the images, blinded for group and any
other data of the participants. The ultrasound parameter was the mean
common carotid intima-media thickness (CcIMT), defined as the
average far wall IMT of the left and right distal 1 cm of the common
carotid artery.

Outcome parameters
The NWI was the primary outcome parameter of the study. Secondary
MRI outcome parameters were MWA (mm2), MWT (mm), and TWV
(mm3). The secondary ultrasound parameter was CcIMT (mm). Plaque
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component analysis, expressed as PC prevalence and total PC volume
(mm3), was an exploratory endpoint.

Statistical analysis
Continuous variables are expressed as means+ standard deviations,
unless otherwise specified. Possible differences in demographic, bio-
metrical, and biochemical parameters between carriers of ABCA1
mutations and controls were assessed using unpaired Student’s
t-tests, x2 tests, or Mann–Whitney U test, where appropriate. Differ-
ences in carotid imaging parameters between ABCA1 mutation carriers
and controls were assessed using unpaired Student’s t-tests, unless
otherwise specified. In addition, a linear regression model was used,
in which carriership, smoking, alcohol consumption, systolic blood
pressure, diabetes, BMI, history of cardiovascular disease (CVD),
LDL-C, and statin use were indicated as independent variables and
NWI, MWA, MWT, TWV, and CcIMT were indicated as dependent
variables. The authors had full access to the raw data and take respon-
sibility for its integrity.

Results

Baseline characteristics
ABCA1 mutation carriers from 14 separate families were included,
comprising 2 homozygous, 2 compound heterozygous, and
32 heterozygous patients. Subjects were carriers of the follow-
ing mutations: c.6401+2T.C, p.Ser930Phe, p.Ser824Leu,
p.Arg587Trp, p.Thr929Ile, p.Asn935Ser, c.3535+1G.C,
p.Asp571Gly, p.Asn1800his, p.Leu1056Pro, p.Gln1038Ter,
c.1195-1G.C, p.Arg579Gln, and p.Phe1760Valfs*21. Controls
from the general population were matched for age and gender
(Table 1). Carriers displayed a 16% lower total cholesterol (P ¼
0.004; Table 1), largely due to a 42% reduction in HDL-C levels
(P , 0.001). Apo B levels were higher by 10% in carriers (P ¼
0.19), while carriers had 32% lower apo A-I levels (P , 0.001;
Table 1). Other parameters were not significantly different
(Table 1).

Lipid profiles were measured in 36 unaffected family members
of ABCA1 mutation carriers, matched for age and gender. Total
cholesterol (4.35+1.31 vs. 5.23+ 1.10 mmol/L, P ¼ 0.003) and
HDL-C (0.84+ 0.38 vs. 1.57+0.41 mmol/L, P , 0.001) were
lower in carriers compared with unaffected relatives, whereas
LDL-C was comparable (3.11+1.04 vs. 3.23+0.92 mmol/L,
P ¼ 0.60). Triglycerides were higher in carriers compared with un-
affected relatives [1.06 (0.78–1.39) vs. 0.77 (0.57–1.06) mmol/L,
P ¼ 0.002].

Cholesterol efflux assays
Fourteen mutations were found in the carriers. Five of these
mutations have already been shown to have a significant
impact on ABCA1 function (p.Asn1800his,27 p.Thr929Ile,27

p.Arg587Trp,28,29 p.Leu1056Pro,21 and p.Phe1760Valfs*21.30).
The efflux capacity of the remaining nine mutations:
p.Asn935Ser, c.3535+1G.C, p.Ser824Leu, p.Ser930Phe,
p.Gln1038Ter, c.1195-1G.C, c.6401+2T.C, p.Asp571Gly, and
p.Arg579Gln are listed in Figure 1. The cholesterol efflux capacity
was assessed in heterozygotes, except for mutation
p.Gln1038Ter which was tested in homozygous patient. Efflux

measured in fibroblasts from a heterozygous p.Cys1477Arg
carrier was used as a positive control since the efflux capacity
has consistently been shown to be impaired.19,27 One patient com-
pound heterozygous for mutation p.Arg579Gln and p.Val771Met
was included. In the view of contradictory statements on function-
ality of mutation p.Val771Met,31 we assumed that the major part of
the efflux impairment of the p.Arg579Gln and p.Val771Met com-
bination is attributable to p.Arg579Gln.

Carotid magnetic resonance imaging and
ultrasound
Magnetic resonance imaging data are shown in Table 2. The NWI
was significantly higher in carriers compared with controls (P ¼
0.005) (Figure 2). Adjustment for differences in smoking, alcohol
consumption, systolic blood pressure, diabetes, BMI, history of
CVD, LDL-C, and statin use resulted in an even stronger statistical
significance (P ¼ 0.002). The mean wall area, MWT, and TWV
were also significantly higher in carriers compared with controls
(P ¼ 0.02, 0.005 and 0.02, respectively) and retained significance
after adjustment for the above mentioned risk factors (P ¼ 0.03,
0.002, and 0.03, respectively). Plaque components related to
lipid-rich tissue or calcification (PC prevalence) were 2.5 times
more prevalent in carriers compared with controls (P ¼ 0.01,
Figure 3) with a concomitant higher total PC volume (Table 2).

Ultrasound CcIMT was not higher in carriers compared with
controls.

Discussion
In the present study, we show that carriers of the loss of function
ABCA1 mutations exhibit more carotid artery wall thickening as
assessed by MRI compared with age- and sex-matched controls.
Both normalized wall index and MWA as well as thickness and
TWV were significantly higher in carriers compared with controls.
These differences retained significance after adjustment for trad-
itional risk factors. In support, PCs were more prevalent in carriers
compared with controls. Collectively, these findings support the
concept that functional ABCA1 mutations, resulting in lower chol-
esterol efflux capacity, lead to more atherosclerotic vascular
disease.

Our results show a higher burden of carotid atherosclerosis in
ABCA1 mutation carriers. As expected, carriers presented with
decreased cholesterol efflux capacity, which has been shown to
be negatively correlated with an atherosclerotic burden.32 Carriers
also presented with more arterial wall thickening. Carotid artery
wall thickening is associated with a higher risk of cardiovascular
events.33,34 In support, carriers were characterized by a higher
prevalence of PCs. Recent data revealed that information on
plaque composition in the carotid artery has a higher predictive
value for CVD compared with a thickened cIMT per se.35

In contrast, cIMT assessed using ultrasound was not different
between carriers and controls. This discrepancy between carotid
MRI and carotid ultrasound measurements most likely reflects
the lower sensitivity and higher variability of cIMT measurements
when compared with carotid 3.0-T MRI.22 We recently showed
that heterozygous carriers of LCAT gene mutations also have
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more carotid atherosclerosis using MRI, whereas cIMT did not
reveal any difference.36 It should be noted that carotid ultrasound
measures the wall thickness in a two-dimensional way, whereas
atherosclerosis is a three-dimensional disease. Consequently,
carotid MRI has been shown to yield superior power compared
with ultrasound measurements, enabling smaller sample sizes to
detect differences in the wall thickness.22

The absence of an IMT difference contradicts earlier findings by
van Dam et al.19 In their control group, IMTs were lower com-
pared with our controls (0.63 vs. 0.69 mm), whereas the IMTs in
their ABCA1 mutation carriers were higher compared with our
ABCA1 mutation carrier group (0.73 vs. 0.67 mm).19 Yet, there
are clear differences between these papers. Methodologically,
van Dam used a composite IMT endpoint including carotid and
femoral arteries, whereas we used the reproducible thickness
measurement of the far wall of the common carotid artery only.
In addition, the mean age was �13 years lower in their control

group compared with our controls. Taking into account an IMT
progression of 0.0047 mm/year,19 the calculated IMT of their con-
trols at the age of 51 (0.69 mm) approximates the value observed
in our control group (0.67 mm). With respect to the lower mean
IMT in our ABCA1 mutation carriers (0.67 vs. 0.73), one-third
(n ¼ 11) of our carriers used statins when compared with the
absence of statin use in the carriers reported by van Dam
et al.,19 whereas statins are known to reduce IMT progression by
0.02 mm within the first 6–12 months37 followed by a decreased
IMT progression at a longer follow-up.38

Genome-wide association studies revealed that ABCA1 corre-
lates with HDL-C and total cholesterol,39,40 but not with incidence
of CVD.41 A potential pitfall of GWAS studies, however, pertains
to the fact that the effect of single nucleotide polymorphisms
(SNPs) in a single gene on HDL-C levels is often small. This may
result in an underestimation of the association between gene
defects and CHD risk. Moreover, HDL is most strongly associated
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Table 1 Characteristics in carriers of ATP-binding cassette transporter A1 gene mutations and controls

ABCA1 mutation carriers (n 5 36) Controls (n 5 36) P-value

Characteristics

Age (years) 50.94+15.56 50.91+11.30 1.00

Male sex, n (%) 18 (50) 18 (50) 1.00

Body mass index (kg/m2) 26.03+4.29 24.52+3.04 0.90

Smokers, n (%) 13 (36) 12 (33) 0.15

Alcohol use (units per week) 6.31+7.47 10.00+6.33 0.26

Medication use, n (%)

Statin 11 (28) 4 (11) 0.04

Ezetimibe 4 (11) 0 (0) 0.38

Niacin 2 (6) 0 (0) 0.54

Fibrate 0 (0) 0 (0) -

Aspirin 7 (19) 0 (0) 0.22

Blood pressure

Systolic (mmHg) 139 (21) 131 (13) 0.05

Diastolic (mmHg) 81 (10) 80 (8) 0.84

Hypertension, n (%) 9 (25) 7 (19) 0.57

Glucose metabolism

Fasting glucose (mmol/L) 5.65+1.52 5.47+0.77 0.55

Fasting insulin (mU/L) 1.09 (1.09–6.01) 3.48 (1.09–5.65) 0.67

HOMA index 0.34 (0.25–1.33) 0.84 (0.26–1.36) 0.50

Diabetes, n (%) 3 (8) 2 (6) 0.64

Lipid metabolism

Total cholesterol (mmol/L) 4.35+1.31 5.20+1.09 0.004

LDL-cholesterol (mmol/L) 3.11+1.04 3.41+0.83 0.18

HDL-cholesterol (mmol/L) 0.84+0.39 1.44+0.44 ,0.001

Triglycerides (mmol/L) 1.06 (0.78–1.39) 1.01 (0.68–1.40) 0.37

Apolipoprotein B (mg/dL) 120.79+41.10 109.19+26.64 0.19

Apolipoprotein A-I (mg/dL) 106.21+43.15 156.74+25.68 ,0.001

Values are indicated as mean+ SD unless otherwise indicated. Male sex, smokers, medication use, hypertension, diabetes: P for x2 test; for other parameters: P for Student’s t-test.
For the HOMA index, fasting insulin and triglycerides, we report median and inter-quartile range; P-value for Mann–Whitney U test. The HOMA index is the Homeostatic Model
Assessment index, hypertension was defined as systolic blood pressure .140 mmHg, diastolic blood pressure .90 mmHg or use of antihypertensive medication.
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with CHD risk in the case of low HDL-C levels. In GWAS studies,
the extreme tails of HDL-C levels are typically under-represented.
In most cases, SNPs result in small changes in HDL-C levels within
the normal range. Consequently, no effect of the SNP on CHD risk
is observed. Moreover, it is often unknown whether SNPs give rise
to biologically relevant changes in ABCA1 function. As a conse-
quence, findings from GWAS studies regarding the effect of
ABCA1 on CVD risk have, only limited value, and cannot
provide definite conclusions regarding gene function and asso-
ciated CVD risk.

An alternative approach is the assessment of effects of genetic
variation in ABCA1 using a Mendelian randomization approach as
performed by Frikke-Schmidt et al.42 In line with our results,
they report that in a prospective cohort comprising �9000

individuals, heterozygosity for the ABCA1 mutation p.Lys776Asn
led to a two-to-three-fold higher risk of ischaemic heart disease.
They also reported that three genetic variations in ABCA1
predict risk of ischaemic heart disease.31 In a more recent pro-
spective cohort study, they reported that heterozygosity for
loss-of-function mutations was not associated with a higher risk
of ischaemic heart disease.20 Several factors may have contributed
to the contrasting findings when comparing their results to our
data. First, the discrepancy may relate to methodological differ-
ences. Frikke-Schmidt et al.43 assessed functionality of the muta-
tions using cholesterol efflux assays in transfected HeLa cells,
mimicking homozygosity for the ABCA1 mutation. An efflux cap-
acity of 79% was considered indicative of compromised efflux cap-
acity, whereas in the case of homozygosity, the efflux is expected

Figure 1 Normalized cholesterol efflux from cultured skin
fibroblasts to apoA-I. % Efflux is shown as mean+ SD, n ¼ 3 sep-
arate experiments. Fibroblasts from a healthy control were used
as a control.

Figure 2 Normalized wall index in ATP-binding cassette trans-
porter A1 mutation carriers vs. controls, corrected for smoking,
alcohol consumption, systolic blood pressure, diabetes, BMI,
history of cardiovascular disease, low-density lipoprotein choles-
terol, and statin use. Data are shown as mean+ SD.
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Table 2 Carotid 3.0 Tesla magnetic resonance imaging and B-mode ultrasound parameters for ATP-binding cassette
transporter A1 mutation carriers and controls

ABCA1 mutation carriers (n 5 36) Controls (n 5 36) P1 Adjusted (P2)

3.0 Tesla MRI

NWI 0.37 (0.06) 0.33 (0.04) 0.005 0.002

MWA (mm2) 18.6 (6.0) 15.8 (4.3) 0.02 0.03

MWT (mm) 0.82 (0.21) 0.70 (0.14) 0.005 0.002

TWV (mm3) 1116 (363) 946 (255) 0.02 0.03

Plaque composition analysis

PC presence (%) 32/670 (5) 16/716 (2) 0.01

Total PC volume (mm3) 230.8 74.4

B-Mode ultrasound

CcIMT (mm) 0.67 (0.22) 0.67 (0.16) 0.98 0.50

P1 for the unadjusted model, P2 for multivariate model adjusting for smoking, alcohol consumption, systolic blood pressure, diabetes, BMI, history of cardiovascular disease (CVD),
LDL-C, and statin use. CcIMT is the mean common carotid intima-media thickness. PC presence is reported as total number of images showing PC. Total PC volume is the sum of
all PC volumes of all subjects per group. ABCA1, ATP-binding cassette transporter; NWI, normalized wall index; MWA, mean wall area; TWV, total wall volume; MWT, mean wall
thickness; LA, lumen area; PC, plaque component.
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to be 20–30%. This may have led to an inclusion of non-
pathogenic mutations. In contrast, the efflux assays in our study
were performed using patients’ fibroblasts, representing the
actual biology of a heterozygous ABCA1-deficient cell. Since vari-
ability of the assay is considerable, we performed the experiments
in triplicate. The inclusion of relatively mild mutations in the pro-
spective cohort study of Frikke-Schmidt is further reflected by
the fact that the HDL-C levels in carriers compared with controls
is only 29% lower. HDL-C levels in the present study were 42%
lower, which is in line with the earlier reported HDL-C levels in
heterozygous ABCA1 mutation carriers.44

Limitations
Several aspects of our study deserve closer attention. First, we
assessed a surrogate endpoint for CVD, which precludes us
from drawing final conclusions with regard to cardiovascular
event risk. The low incidence of mutation carriers makes it impos-
sible to perform prospective outcome studies in ABCA1 heterozy-
gotes. In spite of the relatively low number of subjects, the present
study does provide evidence of an adverse effect of ABCA1 dys-
function on the arterial wall. Secondly, we cannot exclude the po-
tential impact of indirect referral bias. Although we excluded all
index cases referred for CVD from the analysis, a positive family
history for CVD is a strong predictor for CVD.45 Hence, we
cannot exclude that family members of affected probands are char-
acterized by thicker carotid artery walls due to factors beyond
their ABCA1 mutation carriership.

Clinical implications
The present study shows that carriers of ABCA1 mutations display
more carotid atherosclerosis compared with controls implying a
higher CVD risk. These findings suggest that early and aggressive
CVD preventive measures are warranted in ABCA1 mutation car-
riers. Collectively, our findings lend support to the concept that
up-regulation of ABCA1 is an attractive target for future CVD
risk reduction.
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