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medications: a review of clinical trials

Haitham M. Ahmed1*, Haitham Khraishah2, and Leslie Cho1

1Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave, Desk JB1 Cleveland, OH 44195, USA; and 2Beth Israel Deaconess
Medical Center, 330 Brookline Ave Boston, MA 02215, USA

Received 6 July 2017; revised 29 August 2017; editorial decision 27 October 2017; accepted 20 November 2017; online publish-ahead-of-print 9 December 2017

Despite extensive clinical efforts to achieve stricter glycaemic control over the past few decades, cardiovascular (CV) disease remains the leading
cause of death among diabetic patients. Recently, sodium-glucose cotransporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 receptor
(GLP-1-R) agonists have gained attention due to their apparent effects in reducing CV mortality. Four CV randomized controlled trials: EMPA-
REG, CANVAS, LEADER, and SUSTAIN-6, found a decrease in CV events among patients with type 2 diabetes on empagliflozin, canagliflozin, lir-
aglutide, and semaglutide, respectively. In light of this data, the US Food and Drug Administration has recently approved empagliflozin for CV
mortality reduction in type 2 diabetic patients, making it the first diabetes medication approved for such an indication. The purpose of this review
is to summarize the results of novel anti-hyperglycaemic medication trials, and shed light on their mode of action and cardioprotective pathways.
...................................................................................................................................................................................................

Keywords Diabetes mellitus • Diabetes complications • Hypoglycaemic agents • Cardiac death • Sodium-glucose
transport proteins • Glucagon-like peptide-1 receptor

Introduction

By the year 2035, more than 600 million adults are expected to have
diabetes.1 Among these patients, cardiovascular (CV) events are esti-
mated to be the leading cause of death.2 Although several trials have
established an association between tight glycaemic control and
reduced microvascular complications,3,4 the association with CV
events was less clear in the Action to Control Cardiovascular Risk in
Diabetes (ACCORD), Action in Diabetes and Vascular Disease:
Preterax and Diamicron MR Controlled Evaluation (ADVANCE),
and Veterans Affairs Diabetes (VADT) trials.5–8

Since the discovery of insulin almost a century ago, multiple gener-
ations of antihyperglycaemic medications have been introduced to
the market over the years including metformin, sulfonylureas, and
thiazolidinediones. While all of these agents have moderate effects
on blood glucose, none have been shown to substantially and consis-
tently lower CV events in clinical trials. Small trials comparing metfor-
min to glipizide have shown a relative reduction in CV events,9 but
recent larger meta-analyses have shown overall data to be insufficient
or of low strength.10

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors and
glucagon-like peptide-1 receptor (GLP-1-R) agonists are two

different classes of anti-hyperglycaemic agents that have recently
drawn interest due to the results of four randomized controlled trials
(RCTs): EMPA-REG,11 CANVAS,12 LEADER,13 and SUSTAIN-614

that have demonstrated an apparent CV benefit of empagliflozin, can-
agliflozin, liraglutide, and semaglutide, respectively, in patients with
type 2 diabetes. While both EMPA-REG and LEADER trials showed a
decrease in CV mortality among patients with type 2 diabetes, SGLT-
2 inhibitors were additionally shown to significantly reduce heart fail-
ure hospitalizations in EMPA-REG and CANVAS which may provide
insights into the mechanistic pathways of this drug.11,12 In this article,
we review the data regarding benefits with SGLT-2 inhibitors and
GLP-1-R agonists and discuss the possible mechanistic pathways by
which CV event reduction may occur.

The importance of cardiovascular
safety trials in diabetes

In 2008, the US Food and Drug Administration (FDA) issued a
Guidance for Industry requiring all new anti-hyperglycaemic therapies
that treat type 2 diabetes to undergo pre-approval trials to rule out
unacceptable CV risk using a composite endpoint of major adverse
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..cardiovascular events (MACE). Furthermore, post-approval trials for
the same composite MACE endpoints were required for continued
marketing of anti-hyperglycaemic drugs.15 These recommendations
came as a consequence of multiple reports highlighting the increased
risk of CV events among patients using rosiglitazone, a thiazolidine-
dione.15,16 This observation came in line with already existing evi-
dence of increased mortality with intense glycaemic control in the
ACCORD trial,8 and initial reports during the development of the
peroxisome proliferator-activated receptor agonist, muraglitazar.17

Accordingly, following the development of SGLT-2 inhibitors and
GLP-1-R agonists, CV outcomes trials were also launched to evaluate
the CV safety of these novel agents.

Sodium-glucose co-transporter-2
inhibitors

Sodium-glucose cotransporter-2 inhibitors are a novel class of oral
anti-hyperglycaemic medications that work by increasing urinary
excretion of glucose in the renal tubules (Figure 1).18 The SGLT-2
receptors are predominantly found in the first segment (S1) of the
kidney’s proximal tubules, in contrast to SGLT-1, which is found in
the small intestine brush boarder cells and to a lesser extent in the
heart, and S2 and S3 of the kidney’s proximal tubules.19,20 Glucose
reabsorption from the proximal tubules into the blood stream is
dependent upon two sequential processes. First, SGLT actively trans-
ports glucose across the apical membrane of the epithelial cells
against its concentration gradient (secondary active transport) using

the energy produced by the electrochemical potential gradient of
sodium ions generated by the sodium–potassium pump (primary
active transport). The second step involves transporting glucose into
the blood across the basolateral membrane of the proximal tubule
epithelial cells by a downhill concentration gradient through facili-
tated diffusion using mainly GLUT-2 channels.21

Sodium-glucose cotransporter-2 has also been recently shown to
be expressed on pancreatic alpha cells.22 In a study by Bonner et al.,
mRNA and protein was detected by western blots and confocal
microscopy in human alpha cells. Furthermore, blocking SGLT-2 was
shown to promote glucagon secretion and hepatic gluconeogenesis
which suggests possible additional effects in the pancreas and liver.

There are currently three SGLT-2 inhibitors that are approved by
the FDA for the treatment of type 2 diabetes: canagliflozin, dapagliflo-
zin, and empagliflozin, with post-approval trials available only for
empagliflozin and canagliflozin (Table 1).24 There is an ongoing post-
marketing clinical trial that is evaluating the CV outcomes of
Dapagliflozin (Table 2).

The safety profile for these agents has been verified by several trials
where it was demonstrated that these drugs, as mono- or in-combina-
tion therapy, have improved glycaemic control without an increase in
risk of hypoglycaemia29,30; this is due to the fact that these drugs do
not increase insulin secretion. Additionally, they were found to reduce
blood pressure (BP), body weight, triglyceride levels (-2.77 ± 9.2 mg/
dL), and increase HDL (1.08 ± 1.9 mg/dL). Adverse effects of SGLT-2
inhibitors include an increase in low-density lipoprotein (LDL)
(1.09 ± 2.3 mg/dL) and total cholesterol (2.14 ± 3.7 mg/dL), an increase
in the incidence of superficial mycotic genital infections without an

Figure 1 Sodium-glucose cotrasporter-2 (SGLT-2) inhibitor action on the kidneys and heart.
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..increase in upper urinary tract infections, and a possible increase in
amputations at the level of the toe or metatarsal.12,29–31

Recently, the EMPA-REG OUTCOME trial evaluated the CV
safety of empagliflozin.11 In this trial, a total of 7020 patients with type
2 diabetes, body-mass index (BMI) < 45, and glomerular filtration rate
(GFR) > 30 mL/min/1.73 m2 body surface area were randomly
assigned to receive either 10 or 25 mg of empagliflozin vs. placebo
daily. The primary outcome was a composite of CV death, non-fatal
myocardial infarction (MI), or non-fatal stroke. Results showed a sig-
nificant decrease in all-cause mortality (32%), CV mortality (38%) and
hospitalization from heart failure (35%) in the empagliflozin-treated
groups when compared to control subjects. The absolute reduction
in heart failure hospitalizations, CV mortality, and all-cause mortality,
was 1.4%, 2.2%, and 2.6%, respectively over a mean duration of
3 years. There was no significant difference in the incidence of MI or
stroke between the arms of the trial. Based on these results, the FDA
released a statement in December 2016 approving the use of empa-
gliflozin in type 2 diabetic patients with pre-existing cardiovascular
disease (CVD) to reduce the risk of CV death.32

Further investigations from the EMPA-REG OUTCOME TRIAL
showed persistent CVD risk reduction for patients with ‘prevalent’
chronic kidney disease (GFR between 30 and 60 mL/min/1.73 m2),33

as well as patients with heart failure and at very high risk, high risk,
and low-average risk for heart failure.34,35 Subsequently, two studies
were initiated to evaluate the effects of empagliflozin on heart failure
patients, regardless of diabetes status: empagliflozin outcome trial in
patients with chronic heart failure with reduced ejection fraction and
preserved ejection fraction, EMPEROR-Reduced,36 and EMPEROR-
Preserved,37 respectively. The results of the two trials are expected
by 2020.

A second post-approval CV outcome trial (see Table 1) was also
recently published for canagliflozin (CANVAS).12 In that trial, a total
of 10 142 patients with type 2 diabetes and high CV risk were
randomized to canagliflozin vs. placebo and followed for a mean of
188 weeks. The primary outcome was the same composite outcome
of CV death, non-fatal MI, or non-fatal stroke as in EMPA-REG.

The mean age of participants was 63 years and the mean duration of
diabetes was 14 years. Results showed that canagliflozin decreased
the rate of the primary outcome from 31.5 to 26.9 participants per
1000 patient-years [hazard ratio (HR) 0.86, 95% confidence interval
(CI) 0.75–0.97]. There was not a statistically significant reduction in
the individual components of the primary outcome or all-cause
death, although the point estimates of effect suggested benefit.
Similar to EMPA-REG, there was a lower risk of hospitalization for
heart failure, as well as a slower progression of albuminuria and a
composite of renal outcomes (HR 0.60, 95% CI 0.47–0.77) although
on the basis of the pre-specified hypothesis testing sequence these
cannot be viewed as significant.

Since the publication of the initial RCTs, studies of real-world prac-
tice have shown reductions in CVD events, heart failure hospitaliza-
tions, and mortality across over 150 000 diabetic patients taking
SGLT-2 inhibitors in the USA and Europe.38,39 As real-world pre-
scriptions continue to rise, data will further inform clinical practice in
diabetes and CVD preventive care.

Glucagon-like peptide-1 receptor
agonists

Glucagon-like peptide-1 receptor agonists and dipeptidylpeptidase-4
(DPP-4) inhibitors are two classes of anti-hyperglycaemic medica-
tions that were developed based on the incretin pathway (Figure 2).
Glucagon-like peptide-1 is secreted by a form of enteroendocrine
cells that are mainly found in the ileum and colon, called L-cells, in
response to food ingestion indicating that this action is independent
of food interaction with L-cells and is controlled by neuronal and
other poorly understood mechanisms.40–42

The GLP-1-R is expressed in a wide range of organs including the
pancreas, stomach, intestines, heart, lung, kidney, skin, and central
nervous system.40 Upon the release of GLP-1 from the enteroendo-
crine cells, it is rapidly inactivated by DDP-4, a ubiquitous protease,
giving it a half-life of only 1–2 min. Glucagon-like peptide-1 increases

....................................................................................................................................................................................................................

Table 2 Ongoing randomized controlled trials of cardiovascular disease outcomes in diabetic patients treated with
glucagon-like peptide-1 receptor agonists or sodium-glucose cotransporter-2 inhibitors

Exenatide25 Dulaglutide26 Albiglutide27 Dapagliflozin28

Clinical trial EXSCEL REWIND HARMONY DECLARE-TIMI 58

Number of subjects 14 000 9622 3297 17 150

Key inclusion criteria Type 2 diabetes Established vascular

complications if

age > 50 years OR 2 CV

risk factors if age > 60 years

Established vascular

complications if

age > 40 years

High risk for cardiovascular

eventsHbA1c 6.5–10%

Age > 18 years

HbA1c > 7.0% Age > 40

HbA1c <_ 9.5% Age > 40 years

Age > 50 years

Primary endpoint CV death, non-fatal MI,

non-fatal stroke

CV death, non-fatal MI,

non-fatal stroke

CV death, non-fatal MI,

non-fatal stroke

CV death, non-fatal MI,

non-fatal stroke

Reporting year 2018 2018 2019 2019

CV, cardiovascular; DECLARE-TIMI 58, Dapagliflozin Effect on CardiovascuLAR Events; EXSCEL, EXenatide Study of Cardiovascular Event Lowering trial; HARMONY, study
to evaluate the effect of ranolazine and dronedarone when given alone and in combination in patients with paroxysmal atrial fibrillation; MI, myocardial infarction; REWIND,
Researching Cardiovascular Events With a Weekly Incretin in Diabetes.
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insulin secretion by pancreatic b cells and inhibits glucagon secretion
by a cells. It has to be noted that GLP-1-insulin-secretory effect is glu-
cose dependent i.e. GLP-1 has no effect on insulin secretion when
glucose levels are approximately <_81 mg/dL.40

Currently, there are six FDA-approved GLP-1-R agonists for the
treatment of type 2 diabetes. Three of these agents are short-acting
(half-life < 24 h): exenitide, liraglutide, and lixisenatide; and three are
long-acting (half-life > 24 h/weekly injections): long-acting exenitide,
dulaglutide, and albiglutide. Additionally, there is semaglutide, a long-
acting GLP-1-R agonist that has not been approved yet by the FDA
for the treatment of type 2 diabetes. In addition to their benefits in
reducing HbA1c, GLP-1-R agonists have additional favourable meta-
bolic effects in reducing body weight, LDL, hypoglycaemia events,
and BP.43

Major side effects of GLP-1 agonists include gastrointestinal distur-
bances and injection site pruritus.44 Glucagon-like peptide-1 receptor
agonists should be avoided in patients with a history of medullary thy-
roid carcinoma or family history of multiple endocrine neoplasia 2A
and 2B as animal studies have shown that liraglutide can cause thyroid
C-cell hyperplasia45; however, this finding was not noted in human
clinical trials or follow-up studies.46 Moreover, GLP-1-R agonists are
not recommended in patients with a history of pancreatitis based on
post-marketing surveillance after the approval of exenitide, and
hence, the FDA issued a cautionary letter in 2008.47 However, sev-
eral retrospective studies and a meta-analysis of 41-trials with a total
of 14 972 subjects did not find an association between GLP-1-R ago-
nist use and pancreatitis.48,49

There are currently three available CV outcome trials for GLP-1-R
agonists (see Table 1): Evaluation of Lixisenatide in Acute Coronary
Syndrome (ELIXA)23 and Liraglutide Effect and Action in Diabetes:

Evaluation of Cardiovascular Outcome Results (LEADER)13; and one
pre-marketing safety trial: Trial to Evaluate Cardiovascular and Other
Long-term Outcomes with Semaglutide in Subjects with Type 2
Diabetes.14 There are three additional ongoing trials that are investigat-
ing the CV outcomes of exenitide, dulaglutide, and albiglutide (Table 2).

The ELIXA trial evaluated the CV outcomes of lixisenatide in
type 2 diabetic patients.23 ELIXA included patients >30 with type 2
diabetes and who had had an acute coronary syndrome within
180 days of screening. A total of 6068 patients with a mean age of
60 years and an estimated GFR > 30 mL/min/1.73 m2 body surface
area were randomly assigned to either 10lg of subcutaneous lixise-
natide per day or volume-matched placebo. The patients were fol-
lowed for a median of 25 months. The primary outcome of the study
was a composite of CV death, non-fatal MI, or non-fatal stroke. The
trial did not reveal any CV benefit of lixisenatide over the standard
treatment including heart failure hospitalizations.

The LEADER trial assessed the CV outcomes of liraglutide among
type 2 diabetics with high CV risk by randomizing them to receive
either 1.8 mg (or maximum tolerated dose) of liraglutide or pla-
cebo.13 The trial followed 9340 subjects with a mean age of 64 years
for a median of 3.8 years. The primary outcome was a composite of
CV death, non-fatal MI, or non-fatal stroke. Results demonstrated a
reduction in the primary composite outcome in patients on liraglu-
tide when compared to standard therapy (HR 0.87; 95% CI 0.78–
0.97; P < 0.01 for superiority). Also, death from CV causes (HR 0.78;
95% CI 0.66–0.93; P = 0.007) and any cause (HR 0.85; 95% CI 0.74–
0.97; P = 0.02) was less likely to occur in the liraglutide group.
Although not statistically significant, the rates of non-fatal MI, non-
fatal stroke, and heart failure hospitalizations were lower in the lira-
glutide group.

Figure 2 Glucagon-like peptide-1 receptor (GLP-1-R) agonist actions across various organ systems.
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Although not yet approved for clinical use in patients with type 2

diabetes, semaglutide appears to be safe in terms of its CV profile.14

SUSTAIN-6 evaluated the CV outcomes of semaglutide by randomiz-
ing diabetic patients with pre-existing CV risks to receive either
0.5 mg or 1.0 mg of subcutaneous semaglutide weekly or standard
therapy. SUSTAIN-6 included 2735 patients and followed them for a
median of 2.1 years.14 The primary outcome was a composite of CV
death, non-fatal MI, or non-fatal stroke. The trial revealed a reduction
in the primary outcome in the semaglutide treated-patients when
compared to placebo (HR 0.74; 95% CI 0.58–0.95; P < 0.02 for supe-
riority). This observation was driven mainly by a significant reduction
in non-fatal stroke (HR 0.61; 95% CI 0.38–0.99; P = 0.04). However,
there was no significant decrease in cardiovascular deaths between
both arms of the trial.

Trial comparisons

The groundbreaking results of the EMPA-REG, CANVAS, LEADER,
and SUSTAIN-6 trials will likely change the way that clinicians treat
type 2 diabetes moving forward. However, several points are impor-
tant to note. First, the EMPA-REG and CANVAS trials showed signifi-
cant reduction in composite cardiovascular events as well as heart
failure hospitalizations, while the LEADER trial showed only a reduc-
tion in cardiovascular mortality without a significant change in heart
failure hospitalizations. The difference in impact of both drugs on
heart failure hospitalizations, MI, and stroke risk may reflect the differ-
ences in mechanistic pathways of these therapies.

Second, before constructing an assumption about the SUSTAIN-6
trial, the following points should be taken into consideration: sema-
glutide has not yet been approved for clinical use, and the SUSTAIN-
6 trial is mainly a safety trial that was powered to prove non-
inferiority with a relatively small sample size and short follow-up,
compared to post-marketing trials with larger sample sizes and
follow-up, so we have to wait for post-marketing trials to make defin-
itive conclusions.

Third, class-specific generalizations cannot be made on anti-hyper-
glycaemic drugs of the same category. The ELIXA trial showed a neu-
tral effect of lixisenatide in terms of cardiovascular benefit, while
liraglutide showed a decrease in CVD mortality. Nevertheless, it has
to be noted that ELIXA trial included patients with recent acute cor-
onary syndrome, who are somewhat younger, had broader range
HbA1c levels on entry and shorter duration of diabetes than the
LEADER trial, which excluded patients with acute coronary syn-
drome in the preceding 90 days. Additionally, the LEADER trial fol-
lowed patients for a longer duration when compared to ELIXA
(3.8 years vs. 2 years). However, ELIXA showed no trend in decreas-
ing cardiovascular events during the 2 years of follow-up.

Similarly, the EMPA-REG trial showed CVD mortality reduction
with empagliflozin, but a meta-analysis on pooled clinical trials30 failed
to show similar cardiovascular mortality with other SGLT-2 inhibi-
tors. In CANVAS, there was a trend toward reduced risk of cardio-
vascular death but the difference was not statistically significant (HR
0.87, 95% CI 0.72–1.06). Hence, we have to wait for the results of
the larger DECLARE-TIMI 58 trial in order to make a meaningful
conclusion on the cardiovascular profile of this class of anti-
hyperglycaemic drugs. Also, unlike the EMPA-REG and CANVAS

trials, DECLARE-TIMI will contain a larger cohort of primary preven-
tion patients which is an important group to better understand.

Sodium-glucose cotransporter-2
inhibitors: mechanistic pathways
in cardiovascular disease event
reduction

Sodium-glucose cotransporter-2
inhibitors and blood pressure
Although SGLT-2 inhibitors were found to cause a significant reduc-
tion in both systolic and diastolic BP50–52 primarily through their diu-
retic effect,53 the actual absolute BP lowering effect of empagliflozin
in EMPA-REG and CANVAS was minimal (approximately 4 mmHg
difference in systolic BP).11,12 Another recent RCT (HOPE-3)
showed no difference in MACE with more significant systolic BP
reduction of 6 mmHg.54 Therefore, it is questionable whether this
degree of BP reduction or the diuretic effect of empagliflozin alone is
enough to explain the CVD reduction that was seen in EMPA-REG.

Sodium-glucose cotransporter-2
inhibitors and metabolic profile
The key for the metabolic effects observed with SGLT-2 inhibitors
can be attributed to their glucosuric mechanism of action.55 Inhibiting
SGLT-2 receptors in the kidneys leads to urinary excretion of glu-
cose, resulting in better glycaemic control, negative energy balance
leading to weight loss, and hence better insulin sensitivity. This nega-
tive energy balance would direct the cardiac myocytes toward using
ketone bodies, a more efficient energy source.56

Recent meta-analyses show that SGLT-2 inhibitors significantly
reduced haemoglobin A1C (HbA1c) levels by 0.5–0.7% over a
follow-up period between 52 and 89 weeks.30,57 In addition to lower-
ing HbA1C, SGLT-2 inhibitors regulate post-prandial hyperglycaemia
and improve insulin sensitivity.55,58 Despite this glycaemic effect, it is
unlikely that this is the mechanism alone by which the EMPA-REG
trial reduced CVD mortality since several earlier trials have demon-
strated that tight glycaemic control was not associated with a reduc-
tion in macrovascular complications.59

Sodium-glucose cotransporter-2 inhibitors have also been found
to decrease body weight by 2–3 kg independent of its diuretic
action.11,12,29,30,60 This is because of the aforementioned negative glu-
cose balance, shifting body energy metabolism to fat oxidation and
lipolysis while decreasing glucose oxidation and utilization.61

High uric acid levels have also been linked to CVD events along
with hypertension, diabetes and other metabolic diseases.62 A reduc-
tion in uric acid levels among diabetic patients on SGLT-2 inhibitors
has been observed in several trials;63,64 however, the exact mecha-
nism of action by which this occurred is not yet fully understood.

Sodium-glucose cotransporter-2
inhibitors and chronic kidney disease
Diabetes mellitus is the leading cause of end-stage renal disease world-
wide with approximately 20% of diabetic patients eventually develop-
ing chronic diabetic nephropathy.65 Glomerular hyperfiltration, which
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may be attributed to failure to constrict the afferent arteriole, is the
earliest change in a diabetic kidney; and has been linked to the
increased risk of developing diabetic nephropathy.66 As the GFR
increases, the proximal tubule reabsorption of the hyperfiltrate
increases via tubular glomerulotubular balance.65 This increase in
proximal tubular reabsorption leads to a decrease in the delivery of
solutes to the macula densa by approximately 30%, which leads to a
further increase in GFR via tubuloglomerular feedback.65 This eventu-
ally leads to hypertrophy and hyperplasia of the proximal tubules
through the activation of various growth factors. In the light of the
aforementioned tubular hypothesis of diabetic nephropathy, SGLT-2
inhibitors tend to break this vicious cycle through increasing the solute
delivery to the macula densa, and hence, decreasing GFR. Moreover,
SGLT-2 inhibitors tend to decrease transport work across the proxi-
mal tubules, thus decreasing kidney oxygen requirements.55

Additionally, SGLT-2 inhibitors may protect the kidneys through their
effects on lowering BP and controlling hyperglycaemia.29–31,50

The renal-protective effect of SGLT-2 inhibitors has been con-
firmed by several studies. Empagliflozin has been shown to reduce
GFR in type 167 and type 268 diabetic patients. Moreover, the EMPA-
REG trial showed in post hoc analysis that empagliflozin reduced the
worsening of chronic kidney disease (CKD), defined as progression
to macroalbuminaemia, doubling of plasma creatinine, initiation of
renal replacement therapy or death from renal causes, when com-
pared to standard care.11 Heerspink et al.69 have demonstrated that
canagliflozin reduced GFR decline and albumin: creatinine ratio in dia-
betic patients, independent of SGLT-2 glycaemic effects. In CANVAS,
canagliflozin reduced the progression of albuminuria by 27%, and the
composite outcome of a sustained reduction in GFR, need for renal
replacement therapy, or death from renal causes by 40%.12

Novel pathways
A recent preliminary small study on human subjects found that adding
a daily dose of 10 mg of empagliflozin to standard therapy in type 2
diabetic patients with established CV disease decreased left ventricu-
lar mass and improved diastolic function.70 Another emerging path-
way is the interaction between SGLT-2 receptors and the Naþ–Hþ

exchanger (NHE). It has been shown that SGLT-2 and NHE3 co-
localize and interact with each other in the kidney’s proximal tubules,
and that the inhibition of SGLT-2 leads to a subsequent inhibition of
NH3.71 Renal NH3 activity has been shown to be increased in heart
failure rat models, and it may be responsible, at least in part, for diu-
retic resistance seen in heart failure patients.72 Inhibition of NH3
increases proton absorption and might be responsible for euglycae-
mic diabetic ketoacidosis seen in patients on SGLT-2 inhibitors.73

Upregulation of cardiac NHE has been implicated in the pathophysi-
ology of heart failure in rat models.74 Although SGLT-2 receptors are
not present in cardiac tissues, empagliflozin was shown to directly
inhibit NHE in rabbit myocytes, hence increasing mitochondrial cal-
cium concentration and decreasing intracytoplasmic calcium concen-
tration and protecting myocytes against calcium toxicity that is
implicated in heart failure.75

In light of the profound reduction in heart failure hospitalizations
with empagliflozin in EMPA-REG, Ferrannini and DeFronzo76 have
hypothesized another novel pathway. They posit that under persis-
tent conditions of mild ketosis, as may be the case with SGLT-2 inhib-
ition, b-hydroxybutyrate may be taken up by the heart and oxidized

in preference to fatty acids. This improves oxygen consumption at
the mitochondrial level, which along with haemoconcentration may
synergistically enhance oxygen release to the tissues. Further investi-
gation is needed to determine whether metabolic substrate shift
plays a role in the cardioprotective pathways of these drugs.

Inflammation is another possible pathway since it is considered to
be an independent risk factor for coronary heart disease,77 and since
many inflammatory diseases (e.g. rheumatoid arthritis, psoriasis, and
lupus) are associated with increased cardiovascular event rates.78

Anti-inflammatory effects may not be shared by classical antidiabetic
drugs such as metformin, and thereby may explain the beneficial pro-
file of SGLT-2 inhibitors in CVD event reduction.

Indeed, substantial anti-inflammatory, antioxidant, and vasculopro-
tective actions of empagliflozin were shown in a type 1 diabetic rat
model.79 Potential pleiotropic effects in cultured endothelial cells and
epigenetic effects of empagliflozin treatment of ZDF rats were also
recently reported.80 Similarly, use of the SGLT-2 inhibitor, ipragliflo-
zin, was shown to reduce inflammatory markers, namely interleukin
6, tumour necrosis factor-a, C-reactive protein, and monocyte che-
motactic protein-1, in streptozotocin-nicotinamide-induced type 2
diabetic mice.81

Decreased oxidative stress and inflammatory mediators following
a cardiovascular event can improve cardiac functional recovery and
decrease mortality; however, no human studies to-date have looked
at the anti-oxidative properties of SGLT-2 inhibitors.81 Kusaka et al.82

found that empagliflozin improved cardiac remodelling, independent
of its effect on BP, and ameliorated cardiac oxidative stress; however,
the exact mechanism by which this effect occurred is not yet fully
understood. We have to await the ongoing EmDia trial83 which also
contains a sub-study on oxidative stress parameters, and a second
study84 which will focus on modulation of oxidative DNA damage by
empagliflozin in type 2 diabetic patients for further insight. Further
research is needed to better elucidate the mechanistic pathways by
which SGLT-2 inhibitors may protect the heart.

Glucagon-like peptide-1 receptor
agonists: mechanistic pathways in
cardiovascular disease event
reduction

Glucagon-like peptide-1 receptor
agonists and blood pressure
Earlier RCTs conducted on DPP-4 inhibitors did not find a significant
reduction in CVD events when compared to standard therapy as per
the SAVOR-TIMI 53,85 EXAMINE,86 and TECOS87 trials. This sug-
gests that liraglutide may possess some novel characteristics that
work independently of endogenous incretin pathways. Although the
SUSTAIN-6 trial showed a significant reduction in the incidence of
stroke, and a non-significant decrease in the incidence of MI; the liter-
ature is lacking explorative studies for this effect, as semaglutide has
not been approved yet for clinical use.

As with SGLT-2 inhibitors, GLP-1-R agonists cause reduction
in systolic BP88 independent of weight loss. However, this reduction
in BP is not enough to explain the CVD event reduction observed in
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the LEADER trial as liraglutide led to minimal reduction in systolic BP
(1.2 mmHg).13 The mechanism underlying BP reduction is not well
understood and may involve natriuresis, vasodilation through vascu-
lar smooth muscle GLP-1-R, and/or other neurohormonal path-
ways.88 Moreover, chronic GLP-1-R activation leads to an increase in
heart rate through poorly defined mechanisms.13,23,88

The different outcomes of gliptin trials as compared to the
LEADER trial are indeed puzzling. Dipeptidylpeptidase-4 inhibitors
have been observed to affect more adverse pathways than GLP-1-R
analogues, possibly because DPP-4 has many other substrates besides
GLP-1. DPP4 has been shown to interact with a number of ligands
including adenine deaminase, kidney NHE3, caveolin-1, thromboxane
A2 receptor, fibronectin, and CXCR4, to name a few.89,90 Binding to
these ligands may play a role in immune regulation and T-cell
activation.90

Several animal studies have shown that DPP-4 inhibitors (e.g. lina-
gliptin) have some preserved beneficial effects in GLP-1-R knockout
mice, whereas liraglutide is devoid of protective effect.91,92 DPP-4
inhibitors also have different vasodilator potency in isolated vessel
segments. Therefore, the question is whether all gliptins should have
been investigated by outcome trials with the assumption, as was seen
for empagliflozin vs. canagliflozin and liraglutide vs. lixisenatide, that
not all gliptins are the same.

Glucagon-like peptide-1 receptor ago-
nists and metabolic profile
High-dose liraglutide (up to 3.0 mg) is the only GLP-1-R agonist that
has been approved by the FDA for weight reduction purposes in
overweight subjects with or without diabetes. This endorsement
came as a result of the SCALE trial that demonstrated a significant
reduction in body weight among the liraglutide group (4.0 kg inde-
pendent of lifestyle modifications).93 Moreover, liraglutide was found
to cause significant reductions in total blood cholesterol, LDL, and
HDL.94 It was also shown that liraglutide improves glycaemic parame-
ters such as HbA1C, and fasting blood glucose, and reduces hypogly-
caemic events.13,95

Novel pathways
Glucagon-like peptide-1 receptor agonists were found to exhibit
anti-inflammatory and anti-oxidant properties in multiple studies
including in the settings of hypoglycaemia,96 psoriasis, obesity, diabe-
tes,97 non-alcoholic steatohepatitis,98 end-stage renal disease,99 and
sepsis.90,100 Several small RCTs looked at the cardioprotective prop-
erties of GLP-1-R analogues and showed that the administration of
exenitide in patients with MI treated with percutaneous intervention
decreased infarct size on cardiac imaging.101,102 Similarly, liraglutide
therapy in patients with MI was associated with a significant decrease
in troponin T levels and an improvement in left ventricular ejection
fraction after infarction.103 However, liraglutide did not improve
mortality, time to re-hospitalization, or ejection fraction in patients
with advanced heart failure when compared to standard therapy in
the small (N = 300 patients) Functional Impact of GLP-1 for Heart
Failure Treatment (FIGHT) Trial.104

Other possible mechanistic pathways that may be involved in
CVD event reduction include the effect of GLP-1-R agonists on vas-
cular endothelium and platelet aggregation.105 In endotoxemic mice,

GLP-1-R activation with linagliptin and liraglutide was shown to
attenuate microvascular thrombosis, nitro-oxidative stress, and plate-
let activation.90,106 Data from these pre-clinical studies show that
these mechanisms may be cAMP/PKA dependent. Further research is
needed to better understand the pathways by which these agents
may reduce CVD events.

Conclusion

Four groundbreaking RCTs have found significant CVD risk reduc-
tion in diabetic patients treated with empagliflozin, canagliflozin, lira-
glutide, and semaglutide. The results of these trials are unique since
prior studies investigating the use of diuretics or tight glycaemic con-
trol in diabetic patients have failed to show a decrease in cardiovascu-
lar mortality. When prescribing these agents, the CVD benefit must
be weighed against the risks seen in clinical trials including risks of
genital infections, toe/metatarsal amputations, and gastrointestinal
disturbances. The ideal patient is one that has (i) type II diabetes, (ii) a
history of prior MI, coronary revascularization, stroke, cerebrovascu-
lar disease, or peripheral artery disease, and (iii) a GFR > 30 mL/min/
1.73 m2. Patients without prior CVD, but with estimated 10-year risk
>10% should also be considered.

To determine whether the cardiovascular benefit observed in
these trials is class- or drug-specific, we have to wait for the results of
cardiovascular outcome trials being currently conducted. Thus far,
pre-clinical and clinical studies have shown several novel mechanisms
whereby GLP-1-analogues may reduce microvascular thrombosis,
inflammation, oxidative stress, and platelet activation. Sodium-glu-
cose cotransporter-2 inhibitors additionally reduce BP, improve car-
diac remodelling, and ameliorate cardiac oxidative stress. There is
also emerging data that its impact on the Naþ–Hþ exchanger may be
an important pathway in heart failure. More extensive animal and
human studies are needed to help further understand the mechanis-
tic pathways by which SGLT-2 inhibitors and GLP-1-R agonists incur
cardiovascular benefit.

Conflict of interest: none declared.
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