P3468

Tentative criteria of a combined RV3+SV3 voltage for early diagnosis of pediatric patients with hypertrophic cardiomyopathy

M. Yoshinaga ${ }^{1}$, M. Iwamoto ${ }^{2}$, H. Horigome ${ }^{3}$, N. Sumitomo ${ }^{4}$, H. Ushinohama ${ }^{5}$, N. Izumida ${ }^{6}$, N. Tauchi ${ }^{7}$, T. Yoneyama ${ }^{8}$, M. Abe ${ }^{9}$, T. Kato ${ }^{10}$, T. Hokosaki ${ }^{11}$, Y. Kato ${ }^{12}$, M. Nagashima ${ }^{7}$
${ }^{1}$ National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan; ${ }^{2}$ Saiseikai Yokohama City Eastern Hospital, Child Center, Yokohama, Japan; ${ }^{3}$ Tsukuba University, Department of Child Health, Graduate School of Comprehensive Human Sciences, Tsukuba, Japan;
${ }^{4}$ Saitama Medical University International Medical Center, Department of Pediatric Cardiology, Hidaka, Japan; ${ }^{5}$ Ohori Children's clinic, Fukuoka, Japan; ${ }^{6}$ Akebonocho Clinic, Pediatric Cardiology, tokyo, Japan; ${ }^{7}$ Aichi Saiseikai Rehabilitation Hospital, Nagoya, Japan; ${ }^{8}$ Fukuda Denshi Co., Ltd, Tokyo, Japan; ${ }^{9}$ Tokyo Health Service Association, Tokyo, Japan; ${ }^{10}$ Nagoya University Graduate School of Medicine, Department of
Pediatrics/Developmental Pediatric, Nagoya, Japan; ${ }^{11}$ Yokohama City University Hospital, Pediatrics, Yokohama, Japan; ${ }^{12}$ National Cerebral and Cardiovascular Center, Division of Pediatric Cardiology, Osaka, Japan
Funding Acknowledgement: A Health and Labour Sciences Grant from the Ministry of Health, Labour and Welfare of Japan (H27-019)

Background: A high voltage in midprecordial leads, termed the KatzWachtel sign, is a surrogate marker of left- or bi-ventricular hypertrophy. Asymmetrical interventricular hypertrophy is a characteristic feature of hypertrophic cardiomyopathy (HCM). In Japan, a school-based electrocardiographic (ECG) screening program was developed for all 1st, 7th, and 10th graders. Our hypothesis is that a combined voltage of RV3+SV3 \{V3(R+S)\} is a marker to screen pediatric HCM.
Purpose: [1] To develop $\mathrm{V} 3(\mathrm{R}+\mathrm{S})$ voltage criteria in 1 st , 7 th, and 10th graders at the screening program and [2] to determine whether the criteria are useful for the early diagnosis of HCM.
Methods: [1] Overall, 48,401 digitally stored ECGs from 16,773 1st graders (6 -year-olds), 18,126 7th graders (12-year-olds), and 13,502 10th graders (15-year-olds) were obtained after excluding ECGs of subjects with underlying diseases, arrhythmias, and ST/T changes. The prevalence of HCM in children is estimated at 2.9 per $100,000(1 / 34,000)$. The screening points were assumed to be between $1 / 2,000$ and $1 / 5,000$ to exclude the possibility of false negatives. [2] In 12 HCM patients (males/females=10/2) who were diagnosed after 12 years of age (one case was diagnosed at 9 years of age), the ECGs at the screening program of their first grade (at 6 years of age) were retrospectively examined.

Results: [1] The $\mathrm{V} 3(\mathrm{R}+\mathrm{S})$ criteria were $6.0 \mathrm{mV}, 6.0 \mathrm{mV}$, and 5.5 mV for 1st, 7th, and 10th grader males, and $5.0 \mathrm{mV}, 4.5 \mathrm{mV}$, and 4.0 mV for 1 st , 7th, and 10th grade females, respectively. The number of subjects (and prevalence in parentheses) selected by the criteria were $2(1 / 4175), 3$ ($1 / 2981$), and $1(1 / 6477)$ for 1 st, 7 th, and 10th grade males, and $2(1 / 4212)$, $3(1 / 3061)$, and $1(1 / 3513)$ for 1 st, 7 th, and 10th grade females, respectively. [2] Four of 12 cases fulfilled the criteria. Of these, one suddenly died at 18 years of age, one experienced out-of-hospital cardiac arrest at 16 years of age, and one already had an interventricular thickness of 19 mm at 12 years of age.
Conclusions: These tentative $\mathrm{V} 3(\mathrm{R}+\mathrm{S})$ voltage criteria may be useful for the early diagnosis of pediatric HCM patients, particularly severe patients. The children and adolescents who were screened can be followed at 2-3year intervals with ECGs and echocardiography. Early diagnosis and intervention including lifestyle modification and medication may prevent them expiring from out-of-hospital cardiac arrest or sudden death. Finally, the criteria should be validated in clinical settings.

