## 1337

## Myocardial extracellular volume in patients with aortic stenosis undergoing valve intervention -A multicentre T1 mapping study

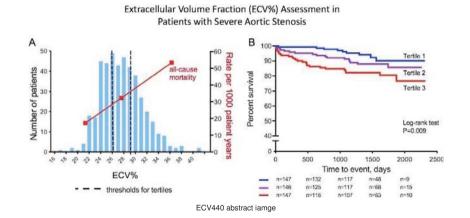
R. Everett<sup>1</sup>, T. Treibel<sup>2</sup>, M. Fukui<sup>3</sup>, H. Lee<sup>4</sup>, M. Rigolli<sup>5</sup>, A. Singh<sup>6</sup>, L. Tastet<sup>7</sup>, T.A. Musa<sup>8</sup>, C. Chin<sup>9</sup>, S.Y. Om<sup>10</sup>, G. Captur<sup>2</sup>, S. Funk<sup>11</sup>, M.A. Clavel<sup>7</sup>, M.A. Clavel<sup>7</sup>, J. Cavalcante<sup>3</sup>, J. Cavalcante<sup>3</sup>, M.R. Dweck<sup>1</sup>, M.R. Dweck<sup>1</sup>

<sup>1</sup> University of Edinburgh, Centre for Cardiovascular Sciences, Edinburgh, United Kingdom; <sup>2</sup>Barts Health NHS Trust, London, United Kingdom; <sup>3</sup> University of Pittsburgh, Pittsburgh, United States of America; <sup>4</sup> Seoul National University Hospital, Seoul, Korea (Republic of); <sup>5</sup> University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom; <sup>6</sup>NIHR Biomedical Research Unit in Cardiovascular Disease, Leicester, United Kingdom; <sup>7</sup>Quebec Heart and Lung Institute, Quebec, Canada; <sup>8</sup> University of Leeds, Leeds Institute for Cardiovascular and Metabolic Medicine, Leeds, United Kingdom; <sup>9</sup>National Heart Centre Singapore, Singapore, Singapore; <sup>10</sup>Asan Medical Center, Seoul, Korea (Republic of); <sup>11</sup>Helios Clinic Berlin-Buch, Berlin, Germany

On behalf of ECV440 Investigators

**Background:** The development of myocardial fibrosis is a key mechanism in the transition from compensated hypertrophy to heart failure in aortic stenosis (AS). Focal and diffuse fibrosis can be quantified using cardiac magnetic resonance (CMR) imaging late gadolinium-enhanced (LGE) and T1 mapping techniques.

**Purpose:** To assess T1 mapping measures of fibrosis in patients with severe AS referred for aortic valve intervention, and determine their associations with clinical characteristics, disease severity and long-term clinical outcome.


**Methods:** In this international prospective cohort study, patients with severe AS underwent contrast enhanced CMR with T1 mapping and LGE prior to aortic valve intervention. Image analysis was performed by a single core laboratory and the extracellular volume fraction [ECV%] calculated from T1 mapping images. The presence of LGE was determined visually and quantified using the full-width-at-half-maximum technique.

**Results:** Four-hundred and forty patients (70±10 years, 59% male) from ten international centres were enrolled. Aortic valve intervention was performed 15 [4 to 58] days following CMR. Within a follow-up of 3.8 [2.8 to 4.6] years, 52 patients died.

ECV% (mean 27.7±3.6%) correlated with increasing age, Society of Thoracic Surgeons Predicted Risk of Mortality score, known coronary artery disease, lower peak aortic-jet velocity, larger left ventricular (LV) mass, lower LV ejection fraction, and presence of LGE (P < 0.05 for all). Following adjustment for all demographic and clinical variables, ECV% remained associated with age (P=0.028), LV ejection fraction (P < 0.001) and presence of LGE (P=0.035).

Univariable predictors of all-cause mortality included age, male sex, impaired LV ejection fraction and presence of LGE (all P<0.05). A progressive increase in all-cause mortality was seen across tertiles of ECV% (17.3, 31.6 and 52.7 deaths per 1000 patient-years; log-rank test, P=0.009). ECV% was independently associated with all-cause mortality following adjustment for age, sex, impaired LV ejection fraction and presence of LGE (HR per unit increase in ECV: 1.10, 95%, (1.02–1.19), P=0.013).

**Conclusion:** In patients with severe aortic stenosis scheduled for aortic valve intervention, extracellular volume-based T1 mapping correlates with LV decompensation. ECV% is a strong independent predictor of late all-cause mortality and is a potential therapeutic target.

