Which single echo parameter is the best marker of left ventricular filling pressure?

F. Khan¹, K. Inoue², E.W. Remme¹, O.S. Andersen¹, E. Gude¹, H. Skulstad¹, M. Chetrit³, E. Garcia-Izquierdo Jaen⁴, J.W. Ha⁵, A.L. Klein³, S. Kikuchi⁶, N. Ohte⁶, S.F. Nagueh⁷, O.A. Smiseth¹

¹Oslo University Hospital Rikshospitalet, Oslo, Norway; ²Ehime University Graduate School of Medicine, Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime, Japan; 3 Cleveland Clinic, Cleveland, United States of America; 4 University Hospital Puerta de Hierro Majadahonda, Madrid, Spain; ⁵Yonsei University College of Medicine, Seoul, Korea (Republic of); ⁶Nagoya University Graduate School of Medicine, Nagoya, Japan; ⁷The Methodist Hospital, Houston, United States of America

On behalf of Integrated CardioVascular Function

Funding Acknowledgement: Type of funding source: Public Institution(s). Main funding source(s): South-Eastern Norway Regional Health Authority

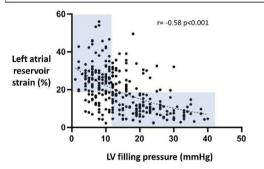
Background: Estimation of left ventricular filling pressure (LVFP) is highly relevant in clinical practice. Invasive pressure remains the gold standard. but a number of echocardiographic parameters that correlate with LVFP are used as non-invasive markers of pressure.

Purpose: We investigated how different echocardiographic parameters correlated with invasively measured LVFP, and how accurately those parameters could differentiate between normal or elevated LVFP.

Method: We performed a prospective, multicenter, multinational and multivendor study in an all comer population of 322 patients with suspected heart failure or other cardiovascular disease. 194 patients had EF ≥50% and 129 had EF <50%. LVFP was measured by right- or left heart catheterization, as pulmonary capillary wedge pressure or pre-A LV diastolic pressure, respectively.

When excluding all special patient populations defined in the 2016 recommendations for echocardiographic evaluation of LV diastolic function, 213 patients remained. Of these 135 had EF ≥50% and 74 had EF <50%. Echocardiography was performed within 1 day of catheterization. Previously recommended cut-off values for established parameters were used to determine the accuracy of classifying LVFP as normal or elevated. For left atrial (LA) reservoir strain, based on ROC analysis, a cut-off value of <18% was used as marker of elevated LVFP.

Results: LA reservoir strain and the ratio of peak mitral early flow velocity (E) and LA reservoir strain (E/LA strain) showed the best correlations to LVFP (Table 1, Figure 1). They also had the highest accuracy, 75% for both, in classifying LVFP as normal or elevated in the whole patient population. E/LA reservoir strain provided no additional diagnostic value to using LA reservoir strain alone.


In HFpEF patients accuracy was essentially similar for LA strain, E/LA strain and E/e', whereas in HFrEF patients the two former tended to be hetter than E/e'

Conclusion: Parameters containing LA reservoir strain showed the best correlation to LVFP. This indicates that LA reservoir strain may have a role in evaluation of LVFP.

Table 1				
Echo parameter	Correlation to LVFP (r-value)	Cut-off value for elevated LVFP	Accuracy in whole population	Accuracy without special populations
E/LA reservoir strain	0.61*	>4.1	75%	74%
LA reservoir strain	-0.58*	<18%	75%	73%
E/e'	0.45*	>14	68%	70%
LA volume	0.36*	>34ml/m ²	68%	67%
GLS	-0.50*	<16%	63%	64%

TR velocity *n<0.001

Figure 1 Correlation between LA reservoir strain and LVFP in whole population. The coloured area shows patients that were correctly classified using a cut-off value of <18% for LA reservoir strain as a marker for elevated LVFP.

