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Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify
patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public
datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in
cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun
curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep
learning models. These efforts have demonstrated not only improved performance and generalizability in these
aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician
towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applica-
tions of deep learning on ECGs, as well as their limitations and future areas of improvement.
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Introduction

The field of deep learning (DL), which has seen a dramatic rise in the
past decade, is a form of data-driven modelling that serves to identify
patterns in data and/or make predictions. It has made substantial
impacts in multiple aspects of modern life, from allowing the human
voice to execute commands on smartphones to hyperpersonalizing
advertisements.1 In the healthcare space, DL has been leveraged to
predict diabetic retinopathy from fundoscopic images,2 diagnose mel-
anoma from pictures of skin lesions,3 and segment the ventricle from
a cardiac MRI,4 the latter most of which was recently approved by
the FDA, among countless other examples.5–7

Given the vast array of imaging modalities (e.g., CT, MRI, echocar-
diogram) present in cardiology, DL has also been utilized extensively
on cardiovascular data to address key clinical issues.8–10 Though not
formally an imaging modality, electrocardiograms (ECG) may be con-
sidered different channels (i.e. leads) of one-dimensional images (i.e.
signal intensity in volts over time). While other reviews11–16,84 have
extensively reported the technical details of various examples of
applications of DL or focused on machine learning (ML) applications
for ECG analysis, a focus on developing an intuitive understanding for
the clinician as well as a clinical perspective on the impact of these
advances remains lacking. Additionally, the original research articles
showcased in these publications are generally over-representative of
small open-source datasets, which are marred with concerns of
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external validity. In addition, there have been many publications re-
cently using DL on ECGs in large, privately curated datasets to solve
novel problems, which remain unaddressed by a review.

This review will first aim to establish a foundation of knowledge
for DL, with an emphasis on explaining why it is best suited for many
ECG-related analyses. Subsequently, we will provide an overview of
how ECGs can be represented as a data form for DL, with brief cov-
erage on openly available and private datasets. The Application sec-
tion will build on this knowledge base and explore original DL
research on ECGs that focuses on tasks in five domains: arrhythmias,
cardiomyopathies, myocardial ischaemia, valvulopathy, and non-
cardiac areas of use. This review will conclude with a recapitulation
of the current state, limitations, promising endeavours, and recom-
mendations for future clinical and research practice.

On artificial intelligence, machine
learning, and deep learning
While a thorough discussion on the details of artificial intelligence
(AI) is beyond the scope of this paper, the field and its recent advan-
ces will be refreshed for the reader’s benefit. More interested readers
are recommended to explore other seminal articles of literature that
more exhaustively cover essential knowledge for original research
appraisal and endeavours.

Simplistically, AI refers to the idea of a computer model that makes
decisions using a priori information and improves its performance
with experience (i.e. more data). Such clinically related tasks may in-
volve detecting cancerous nodules from CT scans,17 identifying clus-
ters of disease phenotypes,10 or optimizing treatment regimens in
patients over time.10,18 Given its broad definition, AI is necessarily
classified into multiple subsets, notably ML and, more recently, DL,
which is a subset of ML. Briefly, both ML and DL seek to use data,
rather than a fully empirical set of human-generated rules, to solve a
problem. Take, for example, the simple task of converting a tempera-
ture from Celsius to Fahrenheit. The empirical approach to solving
this problem is to explicitly write a program that takes, as an input, a
temperature in �C and converts it into an output, its equivalent tem-
perature in �F, by multiplying the input temperature by 1.8 and adding
32. If we suppose that this conversion equation was not known, one
can use linear regression, which is common to both statistics and ML
as a simple linear model, to offer the computer an initial guess of a
representative equation Temp (F) = m�Temp (C) þ b. A starting
guess is offered for the unknown parameters (in this case m and b) to
represent this information (also called a ‘model’), supply it a table of
temperatures in �C (called ‘features’) and corresponding �F (referred
to as ‘labels’), provide another set of instructions to fit this data to the
underlying equation (i.e. ‘optimization’) by minimizing its prediction
error (i.e. ‘loss’ or ‘cost function’), and finally execute this instruction
set to continually update the parameters with some logic to ulti-
mately fit this data to the underlying equation (i.e. ‘training’). Though
simplistically represented, each parenthetical reference above recog-
nizes a key aspect to some of the most integral and defining compo-
nents for an AI algorithm that, when tuned appropriately, create
novel techniques and entire subspecialties in data-driven AI.

Additionally, while much of probability and statistics is used to
mathematically derive and establish the basis for many machine and
DL models,19 the priority of statistical models tends to lie in inference

and understanding of the dataset’s features and their impact on the
outcome of interest with generally parametric models. These model-
stend to be simpler and not capture non-linearity as well as that of
ML or DL models. However, in equivalent and supervised tasks, the
simplest AI models prioritize optimizing on outcome prediction in-
stead by engendering more complex model representations.20 The
main drawback, however, is that interpretation of the model’s
learned parameters becomes significantly harder than that of its
counterparts from more statistical frameworks.

Nonetheless, there are nuances between ML and DL that set them
apart and are worth discussing. Predominantly, DL separates itself
from its parent and predecessor, ML, by the difference in its underly-
ing architecture (which certainly also impacts other facets of the pipe-
line). Deep learning models are composed of many simple linear
models (‘nodes’) arranged in series (each series termed ‘layers’, the
number and depth of which contribute eponymously to these mod-
els being referred to as ‘deep’) with intervening non-linearities to en-
courage more complex information representation (Figure 1). This
sort of hierarchical structure encourages learning simple representa-
tions at each layer that build up to learning complex concepts. In the
most intuitive example in image recognition tasks, as work by
Olshausen et al. and others has shown,10,18,21 this amounts to each
layer (e.g. convolutional, discussed below) in the series learning sim-
ple entities (e.g. lines, circles) that build up into more sophisticated
representations (e.g. beaks, feathers, eyes).19

By designing models with increased capacity, DL by virtue reduces
the need for extensive, manual feature engineering on certain data-
sets that are not as natively compatible (e.g. raw ECG waveforms,
variable-length sequences) with typical ML models. For example,
Narula et al.22 demonstrate the use of an ML algorithm to distinguish
physiologic hypertrophy from hypertrophic cardiomyopathy (HCM)
using information such as LV volume and wall strain derived from
speckle-tracking echocardiogram data. Simplistically speaking, how-
ever, DL, by virtue of its greater capacity to perform cohesive tasks
like vision and computer knowledge representation, may obviate the
need for such manual labelling by its ability to process raw echocar-
diogram video data and automatically learn important features (which
may or may not include or be derived from the aforementioned fea-
tures) in order to perform the classification step. It is worth noting
that these engineered features may also be used for training DL mod-
els, but that DL models operating on such and other structured, tabu-
lar data (e.g. patient demographics, lab values) have largely been
unable to demonstrate an improvement over comparable statistical
or ML frameworks, where data complexity is not high enough to pro-
vide deep models with an advantage over well-performing shallow
models.23–25

Of critical importance, the need to relinquish a priori feature estab-
lishment may not be apparent to the reader. For example, with re-
spect to the ECG, frameworks for its interpretation (e.g. rate,
rhythm, axis, intervals, ventricles) already exist to classify and localize
various cardiac diseases. However, despite the relative robustness of
these systems, it would be naı̈ve to discount the possible existence of
other morphologies indiscernible to the human eye, either locally or
as relationships between beats, given the complexity of the cardiac
conduction system. In signal processing and imaging, there are many
underived features in the raw waveforms and pixels, respectively,
which the high-fidelity automatic feature engineering DL offers may
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take advantage of. Certainly, such indescribable patterns must exist,
and though not fully proven, must explain the encouraging results of
Attia et al.26 in predicting paroxysmal atrial fibrillation (AF) in patients
from a benign, normal sinus rhythm ECG.

However, often the cost of this luxury in capturing complex data
representations and improved prediction performance is the afore-
mentioned loss of model interpretability, blanching the technique’s
reputation as ‘black-box’. Though methods have been developed to
gain more insight into the parameters learned by these models, a nota-
ble side effect is overfitting, which is typically caused by having a model
with more capacity than relevant information present in the data and
required to perform well on the task. This facet permits the model to
learn inappropriate aspects about the data, giving the false impression
of performing well and causing poor generalizability to other data-
sets.27 Typically, this issue arises when large density models are used
to perform prediction on small datasets, which is a slippery slope that

can easily occur when trying to improve a model’s performance.
Overfitting may also occur in response to biases present in the dataset,
notably when limiting data acquisition from a single site or manufac-
turer or when restricting to a subset of the general population.19

To avoid such pitfalls, it is essential to consider the quality of the
dataset, which, if poor enough, may never be overcompensated by
any degree of model adjustments.28 Best practices dictate use of a
training set (usually 60–80% of a given dataset but will vary based on
data availability and outcome prevalence) for the model to learn the
parameters for a given network configuration, a validation set (any-
where from 10% to 20% of the dataset) to learn the best configura-
tion for the model (i.e. the size and number of layers, type of non-
linear activations in the models, etc.), and a test set (usually 10–20%
of the dataset) to report the final model’s performance. Commonly
reported metrics to assess model performance include precision or
positive predictive value (PPV), recall (sensitivity), specificity, area

Figure 1 Understanding important layer types. Two common layer types used in deep learning pipelines for image processing are fully connected
layers (top), which function simply as many linear regression models with a non-linear activation function that increases the informational capacity of
the model. Convolutional layers (bottom) are composed of many ‘kernels’ that learn particular patterns to pick up (small gradient boxes) and scan
across an input signal where that pattern may be present. In this example, the kernels from the top to below represent the shape of a R-S wave, a P-
wave, and T-P wave segment, and their relative strengths of detection (high: yellow, low: blue) are shown for the input ECG signal (magenta). The
resulting signals demonstrate localization of these key kernel patterns that helps the deep learning model learn both the presence and relationship of
such features in the input signal. ECGs, electrocardiograms.
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under the receiver operator characteristic curve, i.e. AUC-ROC
(which reflects the model’s ability to distinguish between different
task outcomes), and the F1-statistic (which measures model perfor-
mance especially in the setting of class imbalance, when one outcome
or characteristic is significantly overrepresented in the dataset).
While the AUC-ROC, also known as the c-statistic, tends to be the
most heavily reported and investigated value, it is important to con-
sider all metrics during appraisal since these metrics are sensitive to
the system’s inherent limitations (i.e. class imbalance).29

Finally, we conclude with an overview and intuitive description of
the most common DL architectures encountered during the litera-
ture retrieval process. By far, convolutional neural networks (CNN)
are the most common architecture used for analysing ECGs. At the
heart of these networks is the use of the convolution operation,
which is a classical technique in signal processing for localizing key fea-
tures and reducing noise. Convolution refers to the act of taking a
small pattern (so-called ‘kernel’) and identifying where in the input
that pattern arises (Figure 1), akin to a sliding window. The resulting
‘heat map’ of activity helps to identify where such patterns exist in
the image, which can then be used to localize important features, re-
tain global information through successive layers, and remove arte-
facts deemed unnecessary by the neural network during training. For
example, one of the simplest convolutional kernels functions as an
edge detector by detecting horizontal or vertical changes in a signal.
Serial combinations in parallel and series of these simple edge detec-
tors can allow the CNN to learn how edges combine to form more
complex shapes, like the number 9. This generic operation allows so-
phisticated architectures to be built (i.e. AlexNet,30 GoogLeNet,31

DenseNet,32 ResNet33) that achieve state-of-the-art performance on
standard image competition datasets (e.g. ImageNet34) and serve as
inspiration for the development of other models.

While CNNs are well-suited for fixed-length spatial data, recur-
rent neural networks (RNNs), on the other hand, approach prob-
lems that are represented as fixed- or variable-length sequences (i.e.
word sentences, signals) and characterize the temporal and spatial re-
lationship of data. The core node in this architecture operates in a
loop: for each element in the sequence, it transforms that sequence
into an output and hidden representation, the latter of which serves
as an additional input for the next element in the sequence. In this
way, this architecture maintains a memory of the important parts of
the sequence and updates the output with that information. Further
improvements on this basic design include bi-directional RNNs, gated
recurrent units (GRUs), long–short-term memory (LSTM), and
attention-transformer networks, which help address the shortcom-
ings of a naı̈ve RNNs and achieve state-of-the-art performance in
speech recognition, neural (language) translation, and music
generation.19

As is evident, the classical tasks to which these networks are de-
rived do not readily seem amenable to ECG analysis, given the cyclic
format (i.e. heartbeats) and its spatial and temporal duality.
Therefore, it is worthwhile to discuss the ECG from a data perspec-
tive and how it maintains a high level of compatibility with DL to be
served to different types of architectures.

Electrocardiograms as data
Historically, the heartbeat classification and segment identification of
the P-QRS-T were the first data analysis tasks to be performed, and

they were achieved from a signal processing approach. These ECGs,
originally a time series with a signal intensity, were decomposed into
wavelike components with Fourier transformation, Hermite techni-
ques, and wavelet transformations. This may be considered a form of
feature extraction since these transformations make important fea-
tures, such as irregularity in rhythm or rhythm frequency, more dis-
cernible for downstream models. Such wavelet-based convolutional
techniques have achieved a 93% accuracy on the MIT-BIH arrhythmia
database.35 However, ML and DL models have generally achieved
better performance with a promise of better generalization and have
been favoured since.36,37

In that light, for data-driven model development, it becomes im-
portant to identify the best way to represent this signal for the task
being solved (Figure 2). The ECG signal may actually be represented
in a variety of fashions, each of which may be amenable to a DL pipe-
line. First, the ECG itself may be subsampled into individual heart-
beats of fixed length, which can generate hundreds to thousands of
samples per ECG from which features may be derived and used in a
more traditional DL network, such as a fully connected neural net-
work. Additionally, it can be sent as a 2D boolean (zeros or ones) im-
age instead of a 1D signal, which is amenable for diagnosing
conditions from a fixed-length ECG strip and is highly compatible for
use in more traditional image-based CNN architectures. This signal
may be one-dimensional or multi-dimensional, depending on the
number of leads used, allowing more information to be captured.
Finally, the ECG may be represented as a sequence of beats, each
linked to the other in time, and treated as a time series that may be
analysed by an RNN-type framework.

The type of representation chosen for ECG analysis will ultimately
depend on the dataset available. A list of the most common freely
available datasets encountered in the literature search is shown in
Table 1. The MIT-BIH AF database was the earliest to be released,
containing 25 two-lead ECGs, each of which was �10 h long. As
other databases followed from the same institution (MIT-BIH), the
low number of unique patient ECGs was compensated for by their
length, which was subsampled to generate thousands of smaller
length ECGs centred around each beat and motivated the research
endeavours attempting to perfect beat classification in the early
days.38 The Computing in Cardiology Challenge datasets, by intro-
ducing much larger datasets, set the stage for novel task definitions
(ranging from AF classification, ECG abnormalities, ECG quality, and
sleep arousal classification).39 Additionally, though less clean and
without extensive annotations for extensive ML or DL tasks, the
MIMIC database40 gained popularity as well, offering >67 000 ECGs
for ICU patients. The past half-decade, however, has also seen a
growth in institutional datasets (Table 2), which have surpassed the
number of annotated ECGs in these open databases by orders of
magnitude. While the number of institutions with published evidence
of such databases is few, the retrospective collection of ECG data has
allowed more cohort-based questions to be asked, many of which
are discussed in the sections below.

Applications

This review filtered 31 original research papers to address the appli-
cations of DL on ECG identification, starting from a PubMed query
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for [(‘deep learning’ OR ‘machine learning’ OR ‘artificial intelligence’)
AND (‘electrocardiogram’ OR ‘ECG’ OR ‘ecg’ OR ‘electrocardio-
graph’)] between 1 April 2015 and 15 May 2020 (Figure 3). Since
many of the original research articles performed beat classification
using the open source datasets and were exhaustively addressed in
prior reviews, only papers utilizing >1000 unique ECGs (including
both training and test data) were included.

Arrhythmias
Conduction system abnormalities are the most natural cardiac disor-
ders to tackle with ECGs. Motivated by a relatively high adult popula-
tion prevalence of around 3%,41 significant work has been devoted to
diagnosing AF, the most common arrhythmia, with few ML works on
diagnosing other aberrant waveforms (e.g. ventricular tachyarrhyth-
mias). The problem of its identification by ECG has been subject to
many research endeavours encompassing all strokes of AI, such as
signal processing, ML, and DL, the lattermost of which is detailed in
Table 1.

For what may be the most unique but clinically relevant applica-
tion, Attia et al.26,40 used DL to predict paroxysmal AF from a
patient’s first clinically benign (i.e. normal sinus rhythm) ECG with the
knowledge that they were ultimately diagnosed at least 30 days after
this benign ECG with AF. Using a CNN architecture with residual
blocks, which allow deeper models to be trained more efficiently, the
authors used 454 789 ECGs from 126 526 patients for training and
achieved promising performance. While the study design may suffer
from heavy selection bias in failing to address patients with ultimately
undiagnosed AF and offers no values for a negative predictive value
(NPV) despite suggesting the utility of this model as a screening test,
the true utility of this work remains in the innovative approach to us-
ing ECG data in a novel way and entertaining the possible adjuvant
role of DL in conjunction with CHADS2-VASC for recommending
anticoagulation in patients with etiologically cryptogenic stroke and,
more generally, the risk of stroke secondary to underlying AF.

DL models on ECGs have also been shown to perform at the level
of medical professionals. Using only a single ECG lead, Hannun et

Figure 2 Supervised deep learning pipeline: this figure shows what a simple deep learning pipeline for ECG analysis may look like. First, ECGs
recorded from patients may be stored in an electronic health record system that can be queried for their retrieval (Panel 1). While user-readable for-
mats may be generated when clinicians query the EHR for viewing a patient ECG, these ECGs will be stored as a sequence of numbers with accompa-
nying header information (i.e. patient medical record number, date of ECG acquisition, etc.) in an easily queryable data structure. Next, during time
of analysis, all stored patient ECGs may be queried selectively to construct a dataset that is more easily amenable for a DL model (i.e. matrix format)
for training and evaluation as well as being relevant for the application of interest (Panel 2). Third, ECGs must be pre-processed for noise removal
and baseline variation. These may then be further re-represented as one-dimensional signals, as pixelated images, in the Fourier space, or as wavelets
(Panel 3). Finally, the dataset may be split into training, validation, and testing and used to help a deep neural network learn to predict on a particular
outcome of interest (Panel 4). ECGs, electrocardiograms.
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al.42 curated a dataset composed of 91 232 ECGs from 53 549
patients in an ambulatory setting. At the cost of having a small testing
set, the authors benchmarked the model’s encouraging performance
by having expert cardiologists manually annotate all 328 test set
ECGs. In this case, these experts performed worse compared with
the model in detecting all arrhythmias except junctional rhythm and
ventricular tachycardia. At a larger scale, Ribeiro et al.42,43 demon-
strate end-to-end training on the largest ECG database found in this
review, comprising of 1 558 415 ECGs from a tele-ECG service in
southeast Brazil, to train a CNN with residual connections to diag-
nose various arrhythmias, such as AVB Type I, RBBB, LBBB, sinus
tachycardia and bradycardia, and AF. Somewhat similar to the case
with Hannun et al., the performance of this model, as judged by its
PPV, sensitivity, specificity, and AUC, was marginally better when
compared with a cohort of medical trainees (residents and medical
students).

Extending this multi-classification further, Smith et al.44 additionally
refined the ECG classification problem in the scope of triaging ECGs
in the ED as normal, abnormal, or emergent, subtyped by the etiology
(e.g. ventricular rhythm emergency vs. significant AV conduction) at a
single centre study in MN, USA. They investigated the performance

of a pre-trained DL model from an industrial partner (Cardiologs
Technologies) against conventional, on-board algorithms that detect
these abnormalities on the ECG machines themselves (Mortara/
Veritas). For a cohort of 1500 randomly sampled ECGs from that
year, their DL model showed greater specificity and accuracy in triag-
ing these ECGs, and, despite suffering only from a marginal loss in
sensitivity, demonstrated potential for reducing false alarms on the
ECGs by�50%. Recently, van de Leur et al.45 also developed a model
to triage ECGs, but using a dataset orders of magnitude larger and ad-
ditionally incorporated a gradient-based ‘saliency feature mapping’,
which leverages how the output of a model changes with small
changes to different regions of the input signal,46 to identify important
features investigated by the model for different types of presenta-
tions. Similar to the models developed by Smith et al., these models
retain high specificity (0.88 to 0.98 for different classes) despite low
sensitivity, highlighting their use in rapid escalation of care for those
flagged by the model.

Beyond these private datasets, there were three open datasets
that met the inclusion criteria for database size: Computing in
Cardiology (CINC) 2017, CINC 2015, and CPSC2018 (later merged
into the CINC 2020).39 In the CINC 2017 competition, which

....................................................................................................................................................................................................................

Table 1 Publicly available ECG datasets

Name Year Number

of leads

Number of

ECGs

(patients)

ECG

length

Labels

MIMIC-III 2017 Variables 67 830 Variable None

Computing in Cardiology 2017 2017 1 12 186 30 s Atrial fibrillation classification

Computing in Cardiology 2020 2020 12 6887 30 s ECG abnormalitiesa

Computing in Cardiology 2011 2011 12 2000 10 s ECG quality

Computing in Cardiology 2018 2018 1 1985 Hours Sleep arousal classification

Computing in Cardiology 2015 2015 2 1250 5 min False arrhythmia classification

Chinese Cardiovascular Disease Database 2010 12 1000 10 s Beat classification, ECG abnormalities

Computing in Cardiology 2014 2014 1 700 10 min QRS beat classification

PTB diagnostic ECG 1995 16 549 2 min Diagnosis (MI, CHF, BBB, Arrhythmia,

HCM, VHD, normal)

SHAREE 2015 3 139 24 h Adverse vascular event prediction

Long-term ST DB 2003 2 86 21–24 h ST-segment events

MIT-BIH supraventricular arrhythmia 1990 – 78 30 min Beat classification, ECG abnormalitiesa

St. Petersburg INCART DB 2008 12 75 30 min Beat labelling

MIT-BIH arrhythmia DB 2001 2 48 30 min Beat classification, ECG abnormalitiesa

MIT-BIH ST change DB 1999 – 28 Variable Beat labelling

MIT-BIH atrial fibrillation DB 1983 2 25 10 h Rhythm annotation (AFib, Aflutter, AV

junctional rhythm, N)

Sudden cardiac death DB 1989 23 �24 h VF

MIT-BIH malignant ventricular ectopy DB 1986 – 22 30 min SVT, VF, VFib

MIT-BIH normal sinus rhythm DB 1999 18 Long-term Beat labelling

BIDMC CHF DB 1986 2 15 20 h Beat classification

MIT-BIH arrhythmia database P-wave annotations 2018 2 12 30 min P-wave labels

This table lists all publicly available ECG datasets present that were the focal point and source of ECG-based data-driven modelling prior to these new, large, privately curated
datasets.
ECGs, electrocardiograms.
aAFib, AVB, LBB, NSR, PAC, PVC, RBB, STD, and STE.
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provided contestants with a training set of 8 528 single-lead ECGs for
diagnosis of AF vs. NSR, other arrhythmias, and noise, the winner of
the competition used an LSTM stacked with an XGBoost classifier (a
tree-based ML algorithm). Oster et al. helped externally validate the
second-place winner47 of this competition on 450 four-lead ECGs
from the UK Biobank. As expected, the ML algorithm did not general-
ize well to this novel dataset (F1-score 58.9%); however, a DL model
(CNN þ LSTM) that was reported after the challenge concluded
demonstrated close to a 30% improvement (F1-score 74.1%).48 In
another unique application, a deep CNN trained from AliveCor ECG
data, which was the source of the CINC 2017 challenge dataset, was
deployed on a single-lead recorder system (KardiaBand, Apple
Watch) to continuously monitor for AF in 24 patients.48,49 When
compared with annotated reports from an insertable cardiac monitor
(ICM), the model achieved an encouraging performance (episode

sensitivity 97.5% and duration sensitivity 97.7%) on 24 patients,
highlighting the utility of DL in creating an inexpensive, non-invasive
approach to AF surveillance and management.

For the CPSC2018 challenge, Cai et al.48–50 added data from ad-
ditional sources (hospital, ambulatory ECG monitoring device) and
trained a DenseNet-inspired CNN to reach state-of-the-art perfor-
mance on this multi-centre test set, with an AUC of 0.994 and a
sensitivity of 99.1% for the three-label classification task (AF, nor-
mal, other arrhythmias). Furthermore, the authors explored the pa-
rameter weights of the first convolutional layer of their DNN and
found the model to learn, as expected by the premise of DL mod-
els, low-level features like peaks, troughs, and upward/downward
slopes in the signal, which suggests the model’s efforts to
remove baseline shifts and identify key landmarks (i.e. P-waves) in
diagnosis.

Figure 3 Paper selection process: consort diagram demonstrating the selection criteria used in retrieving the literature pieces evaluated in this re-
view. The number of articles corresponding to different application categories is also shown.
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Ultimately, tackling arrhythmias is the most classical of pattern rec-
ognition problems around the ECG. While their diagnosis has been
addressed heavily, few works have investigated the direct role of
these inpatient management. To our knowledge, only a few have
assessed the characteristics of the ECG that are significant for diagno-
sis. Further work may be undertaken to integrate and assess the role
of these DL solutions in direct clinical care, in application towards
screening and diagnosis of less prevalent disease states (e.g. congeni-
tal long QT syndrome), in more accurately diagnosing arrhythmias,
like complex atrioventricular block and wide-complex QRS tachyar-
rhythmia, which may be difficult to discern clinically, and in providing
insights to predicting outcomes after interventional procedures (e.g.
AF ablation).

Valvulopathy
While ECG lacks sensitivity to diagnose valve disease from traditional
clinical frameworks,51 subtle structural changes in response to long-
standing valvular disease may be discovered by a DL model to diag-
nose these pathologies. Indeed, Kwon et al.52 demonstrate use of an
ensemble model, which combines a CNN classifier operating on raw,
12-lead ECG signals and a fully connected network that incorporates
demographic information and numeric ECG-derived features (HR,
QT interval, QRS duration, QTc, etc.), for classification of severe aor-
tic stenosis (AS) (<1.5 cm2 or mean pressure gradient >_20 mm Hg,
as confirmed by echocardiography). Notably, the authors validated
this model on 10 865 patients from a secondary hospital centre, with
encouraging AUC of 0.884. The authors also perform a saliency
analysis to identify features on the ECG that were most heavily used
for AS prediction, identifying the model’s focus on the T-wave in V1–
V4, which has been linked with a delayed repolarization from AS-
related ventricular hypertrophy. However, the specificity of diagnos-
ing AS relative to other cardiomyopathies was not evaluated in this
article, which is an important drawback given that the model may in-
stead be learning to distinguish possible non-specific structural
changes secondary to AS, rather than AS itself.

With the same motivation, Kwon et al.53 replicated the above
study on patients with significant MR (valve regurgitant orifice area >_
0.2 cm2, regurgitation volume >_ 30 mL, regurgitation fraction >_ 30%,
and MR grade II–IV). In this architecture, they instead opted for a
CNN-type network only with raw ECG data as the input and trained
on 56 670 ECGs from 24 202 patients in one hospital system. The ex-
ternal validation test set was composed of 10 865 ECGs from an-
other hospital, to which the model had a high sensitivity and NPV at
the expense of low specificity and PPV, suggesting its applicability as a
screening tool for ruling out MR in patients. A final saliency analysis
was notable for the model’s focus on P-wave flattening, which can be
explained physiologically as secondary to a more distributive atrial
depolarization as a result of atrial stretching from long-standing MR,
as well as T-wave abnormalities, which could be prioritized in patients
with AF (and thus an absent P-wave) secondary to MR. For patients
without MR, the algorithm weighed heavily on the QRS complex,
suggesting that the absence of QRS widening is sensitive for eliminat-
ing MR.

Cardiomyopathy
With respect to cardiomyopathies, both HCM and LV systolic dys-
function have been the focus of multiple research groups. In a unique

study combining elements from DL and ML, Tison et al.54 trained a
modified CNN architecture (U-Net) on a dataset utilizing publicly
available and institutional data to automate ECG segment classifica-
tion (e.g. P wave, PR segment, QRS complex). Rather than opting for
an end-to-end DL architecture, the authors subsequently generated
a feature vector from a DL model, fed it into a more classical ML algo-
rithm on a set of 35 466 ECGs to predict the presence of pulmonary
hypertension, HCM, amyloid detection, and mitral valve prolapse in
patients and achieved encouraging AUROCs, as low as 0.78 for MVP
prediction and notably at 0.91 for HCM detection.

For HCM, Ko et al. at the Mayo Clinic55 report the use of a CNN
to train 12-lead ECGs from �47K patients to diagnose HCM.
Remarkably, their models achieved extremely high AUCs of 0.96 on
the test set, and though suffering from a relatively low PPV of 31%,
concomitantly strong model NPVs and sensitivity suggest its use as a
screening tool in clinically suspected patients. A secondary analysis
showed that their model responded to a patient who underwent
septal myomectomy by lowering its diagnostic probability of HCM
from 72% before the operation to 2.5% after. Furthermore, this
model retained its high performing AUC in a subgroup of patients
with left ventricular hypertrophy (LVH), demonstrating its ability to
distinguish true HCM (disease) vs. non-HCM LVH (physiologic).

Further demonstrating the adaptability of DL architectures to dif-
ferent problems, Kwon et al.56 extend their architecture for AS classi-
fication and apply it to detecting LVH. Training their ensemble
classifier leveraging both raw ECG waveforms in a CNN and struc-
tured patient data from 35 694 ECGs from 12 648 patients, their
model achieves respectable AUCs of 0.87 on a test set from another
hospital centre. The model was benchmarked against cardiologists
assessing for LVH using the Sokolov–Lyon criteria and outperformed
them on sensitivity, while operating at the same specificity level, by
177%. A saliency analysis revealed that the model focused particularly
heavily on the QRS complex during an ‘easy’ diagnosis for LVH, in
line with clinical criteria, but concentrating on P wave morphology in
V1–V3 and T-wave in I and aVR during more difficult cases, for which
clinical criteria are generally absent.

On a different use case, Attia et al.57 were the first to report the
use of DL to predict low EF (<35%) by training a cohort of 35 970
patients on a simple CNN and achieving an AUC of 0.93 on the test
set of 52 870 patients. Of significance, the model’s performance
remained agnostic to age and sex unlike BNP, which is sensitive to
these patient factors and has been proposed as a marker for low EF
despite its lower AUC (0.60).58 A follow-up study59 included an addi-
tional 6 008 patients who had ECGs for non-cardiac clinical indica-
tions but were found to have echocardiograms within a year of this
ECG indicative of systolic dysfunction. With high AUCs on this exter-
nal validation set (0.918), these results are encouraging and suggest,
in combination with a BNP level > 150, the model and lab test can be
excellent candidates in screening for systolic dysfunction.
Noseworthy et al.60 further assessed this model’s robustness by in-
vestigating the impact of different race and ethnic groups on the mod-
el’s performance. Notwithstanding the challenges of binning patient
ethnicities into a social construct such as race, the authors demon-
strated the model’s invariance in predicting LVEF across various races
and ethnicities, retaining AUCs >0.93 for each ethnicity. Additionally,
the model demonstrated some inherent ability to predict race from
an ECG as well (AUCs 0.76–0.84), though this may be falsely elevated
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given that the model suffers from severe class imbalances (overrepre-
sentation of non-Hispanic whites) in the training set.

Kwon et al.60,61 greatly extended this demonstration for predic-
tion of reduced EF (EF < 40% and EF < 50% as the primary and sec-
ondary study outcomes, respectively) by adding a fully connected
neural network trained on both patient-level demographic and
ECG-derived data from 13 486 patients to their CNN. The
authors report an encouraging model performance (AUC = 0.889
and 0.850 for primary and secondary outcome for external valida-
tion set) on an internal and external validation set of �10 000
ECGs. It is worth noting that logistic regression and random forest
(RF), two fundamental ML techniques, both performed only mar-
ginally worse relative to the DL model (AUC = 0.853 and 0.847
for LR and RF, respectively, P < 0.001), which may highlight the
limited advantage of DL models on tabular data over statistical or
ML techniques. By perturbing input values for different features
and analysing the impact on the model’s AUC, the authors identi-
fied that the most salient features for the DL model were surpris-
ingly in agreement with those found with logistic regression (e.g.
HR, T-wave axis, QRS duration, sex, age), suggestive of the more
complex and non-linear interplay between these variables (as able
to be represented by their architecture) than a simply linearly
weighted one. Future directions include utilizing DL with ECG for
early identification for understanding or differentiating other car-
diomyopathies that are clinically less well understood, such as
heart failure with preserved EF (HFpEF) or cardiac amyloidosis.

Ischaemia
Though myocardial ischaemia is one of the most classical areas of car-
diovascular research focus, the literature search only revealed one
paper that investigated this domain of cardiovascular disease using
ECGs and DL. Tadesse et al.62 used a popular framework known as
transfer learning, where a model that has been trained on one task
(i.e. classifying real-world objects from photos)34 is partially re-
trained on a completely new, but structurally similar, dataset to solve
another task. By transforming the ECGs into the Fourier space
(which simply changes the representation of an ECG signal from a sig-
nal intensity vs. time to signal intensity vs. wave frequency) and spa-
tially stacking all 12-leads together (to form a 2D-image), they trained
a pre-existing, state-of-the-art image classification model,
GoogLeNet,31 on an openly available Chinese ECG Challenge data-
set,63 and a private curated dataset of �17 000 ECGs from patients
in Southern China with MI (STEMI and NSTEMI), attaining a respect-
able accuracy of 86% on the private dataset. However, their model
performs notably worse with an accuracy of 49% on the Challenge
dataset. Furthermore, despite highlighting an interesting technical
method for performing DL on the ECG, the authors fail to disclose
appropriate sensitivity, specificity, and AUC analyses, leaving room
for another research effort to establish precedence for the use of DL
on ECGs for patients with ischaemic cardiac disease. Future direc-
tions may involve detection of subclinical CAD along, or prior to, the
ischaemic heart disease spectrum (e.g. stable angina, unstable angina,
etc.).

Extracardiac
Outside the immediate realm of cardiological disease, though cer-
tainly not without an impact on the heart, DL has been applied to

ECGs in two major areas: identifying electrolyte abnormalities and
prognosticating health status. Physiologically, deviations from baseline
in either electrolytes or mental illness (i.e. anxiety) have been
reported to show short-term and long-term effects on cardiac struc-
ture and function, which encourages the study of ECGs to identify
the underlying disease state even more.

The sensitivity for diagnosing hyperkalaemia from ECGs, though
classically characterized on the ECG by T-wave peaks, PR shortening,
QRS prolongation, remains low (34–43%).64 With this in mind,
Galloway et al.64,65 conducted a multi-centre study on patients from
various Mayo Clinic sites in the US to identify the presence of hyper-
kalaemia in chronic kidney disease patients using 2- and 4-lead ECGs.
Despite low specificity for hyperkalaemia, their model achieved re-
spectable accuracies and sensitivities on these external validation
sets, suggesting the role of ECGs for hyperkalaemia screening. Lin et
al.64–66 extended this study to predict either hypo- or hyperkalaemia
with a single-centre database of 66 321 ECGs to all patients (irrespec-
tive of kidney disease) and attained better sensitivity, specificity, and
accuracy on their test set when benchmarked against emergency
physicians and cardiologists. Unlike the Mayo Clinic, this model
retained high specificity (0.92) at the expense of low sensitivity (0.67),
which is more akin to its application as a diagnostic tool instead of a
screening one. Notably, the authors additionally performed a saliency
analysis of the features, which showed a greater focus on the ST seg-
ment in those cases of hyperkalaemia that were more difficult to clini-
cally identify (i.e. low sensitivity and high inter-rater variability). In
addition to hyper/hypokalaemia, other electrolytes such as magne-
sium and calcium levels can be assessed here, notably to predict, in
real-time, the likelihood of impending arrhythmias like Torsades de
Pointes.

Beyond prediction of clinical disease and lab values reflective of dis-
ease severity, ECGs, as biometric data points over time, have the po-
tential to capture measures of overall health as well. For example, the
epitome of an elderly individual maintaining a prime state of health is
captured by that individual having a ‘young heart’. Thus, the idea of an
‘ECG age’ vs. biological age can be inspired and is addressed in an-
other piece by Attia et al.,67 which sought to predict patient age using
ECG. Subgroup analysis of this study revealed those cases with the
largest error in prediction were found to have significantly more
instances of systolic dysfunction, hypertension, and CAD, whereas
those individuals in which the prediction accuracy was higher (i.e. less
error) were found to have fewer cardiovascular incidents at follow-
up. Though there are certain implications of overinterpreting this in-
formation, since this error could capture both the severity of cardiac
disease (e.g. higher age) and also random error in model training,
these results encourage the belief that an ECG may be used as a com-
posite biomarker to track general health over time.

In further corroboration of this possible role, Raghunath et al.68 re-
port prediction of 1-year mortality from age, sex, and baseline ECGs
using a convolutional framework with a hazard ratio of 9.5 over the
two predicted dead/alive groups, further corroborating the prognos-
tic role of an ECG in a patient’s global health. The authors also em-
ploy the use of a gradient-based class activation mapping to assess
feature importance and note that the model discerned ST-elevations
in certain patients as notable contributors to prediction of mortality
within 1-year. However, given that these ECGs were retrieved from
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a hospital setting, care must be taken not to apply this model, which
is prone to a heavy selection bias, on the general population.

Conclusions

When applied to large datasets that contain hidden but valuable rela-
tionships, DL has delivered groundbreaking performance. ECGs,
laden with information-rich spatial and/or temporal views of the car-
diac conduction system, have been amenable to having these hidden
associations with cardiovascular pathologies (arrhythmias, cardiomy-
opathies, valvulopathies, and ischaemia) unravelled, as demonstrated
by the original research articles contained within this review. Their
role is certainly apparent in future endeavours, as multiple clinical tri-
als69–73 have been created to prospectively collect ECG data for not
only understanding more about their respective heart disease of in-
terest but also validating existing DL models on these newly collected
datasets in the form of a randomized, control trials. Nevertheless, dif-
ficulties in data access and model sharing, as well as limited flexibility
of pre-existing IT infrastructures, are barriers that must be addressed
before these algorithms can be deployed to other hospital systems.

Despite its promise, the shortcomings of these endeavours are
readily apparent in the incongruence between model design, model
validation, and model interpretation. For example, utilizing DL for
feature extraction and performing ML on those features in series is in
concept an interesting idea,62 but certainly carries with it the perils of
not abiding by the fundamental hierarchical tenets of DL. Similarly,
rigorous practices to ensure an appropriate validation of the model
are of crucial importance.74 Because most datasets thus far have
been curated from a single centre, they run the risk of overfitting and
generalizing poorly to other hospital systems and other datasets,
which not only may have different machines that could have slight
variations in the underlying noise that may not be readily filtered for
by the model.75 By extension, adversarial (i.e. simulated noise) train-
ing would take advantage of generative adversarial networks
(GANs), which are DL models trained to discriminate random gener-
ated inputs vs. true dataset inputs and subsequently generate new
samples that are more resilient to noise, that have made great strides
in improving model performance when additionally trained with sub-
tle but key noisy artefacts. Additionally, no central framework exists
for comparing the performance of these various models from one in-
stitution with another. An open framework to permit such an ex-
change of ideas, datasets, and pre-trained model weights is not a
trivial task, but can foster an environment for collaboration between
what are apparent institutional silos of development.

While every original research article covered in this paper offers
encouraging results for the value of DL in interpreting ECGs, only a
handful offer insight into the model’s learning representation of the
ECG for the respective task.52,53,56,61 Without explaining what these
DL models are sensing on the ECG to perform their specific task in
an interpretable way, developers of these tools run a strong risk of
souring the clinician, who needs to understand how these models
work before entrusting them to augment their practice, to adopting
these tools. Methods to open the ‘black box’ of DL have been eluci-
dated in detail elsewhere, offering more than a handful of techniques
to evaluate both input feature importance and layer-wise information

retention.76 Such techniques may not only make reduction of these
algorithms in clinical practice more palatable but may also offer hy-
potheses on the pathophysiology of disease that may improve its un-
derstanding and possibly reduce the barriers to reduction to
practice. Additionally, the trials and tribulations for model selection
are not apparent in the methodologies for many papers, which does
not instill confidence in the rigor of the model development that is
otherwise heavily and rightfully emphasized by the computer science
community. The question to be asked is not whether DL can solve a
task, but which DL method and why can best tackle the task.

Adherence to these suggested principles of research reporting
may create cohesion in the research field by virtue of models and
datasets being more amenable to each other, which could in turn fos-
ter improved collaboration between research groups. For example,
in diagnosing valvulopathies, it is difficult to know, given the current
findings in this space, how much of the model is dependent on the ef-
fect of the continued altered flow mechanics that create subclinical
perturbations in the ECG signal vs. long-standing changes to the
heart, which may or may not be specific for that pathology.
Performance of classifiers predicting relevant physiological cardiomy-
opathies or augmenting the original dataset with data from patients
with non-valvular cardiomyopathy could help improve the robust-
ness of these original seminal works in DL.

In conclusion, though the emerging literature evaluating the role of
DL in ECG analysis has shown great promise and potential, with con-
tinued improvement, generalization, refinement, and standardization
of methods and data to improve the short-term drawbacks in reduc-
tion to clinical practice, DL offers the ability to improve a novel way
of diagnosing and managing heart disease. The concurrent develop-
ment of wearable technologies and accessible platforms for deploying
pre-trained DL models offers a unique and scalable opportunity to
screen for and intervene early in different cardiovascular disease
states.
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29. Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the perfor-
mance of predictive distribution models. Glob Ecol Biogeogr2008;17:145–51.

30. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolu-
tional neural networks. Commun ACM 2017;60:84–90.

31. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al. Going deeper
with convolutions. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015.

32. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, Densely connected convo-
lutional networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. Boston, MA; June 8-10 2015.

33. He K, Zhang X, Ren S, Sun J, Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
Honolulu, HI; July 21-26, 2017.

34. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L, ImageNet: a large-scale hierar-
chical image database. 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009. Las Vegas, NV; June 26-July 1, 2016.

35. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng
Med Biol Mag 2001;20:45–50.

36. O’Mahony N, Campbell S, Carvalho A, Harapanahalli S, Hernandez GV,
Krpalkova L et al. Deep learning vs. traditional computer vision. Advances in
Intelligent Systems and Computing. Cham: Springer International Publishing; 2020.
p128–44.

37. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ et al.
Deep learning: a primer for radiologists. Radiographics 2017;37:2113–31.
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