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ABSTRACT

The Dry Valleys of Antarctica are a unique ecosystem of simple trophic structure, where the abiotic factors that influence
soil bacterial communities can be resolved in the absence of extensive biotic interactions. This study evaluated the degree
to which aspects of topographic, physicochemical and spatial variation explain patterns of bacterial richness and
community composition in 471 soil samples collected across a 220 square kilometer landscape in Southern Victoria Land.
Richness was most strongly influenced by physicochemical soil properties, particularly soil conductivity, though significant
trends with several topographic and spatial variables were also observed. Structural equation modeling (SEM) supported a
final model in which variation in community composition was best explained by physicochemical variables, particularly
soil water content, and where the effects of topographic variation were largely mediated through their influence on
physicochemical variables. Community dissimilarity increased with distance between samples, and though most of this
variation was explained by topographic and physicochemical variation, a small but significant relationship remained after
controlling for this environmental variation. As the largest survey of terrestrial bacterial communities of Antarctica
completed to date, this work provides fundamental knowledge of the Dry Valleys ecosystem, and has implications globally
for understanding environmental factors that influence bacterial distributions.
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INTRODUCTION

Bacteria are the most abundant and genetically diverse organ-
isms on the planet, and their activity is vital for many aspects

of biogeochemical cycling and ecosystem function (Whitman,
Coleman and Wiebe 1998). As such, understanding the factors
influencing bacterial distributions is paramount to understand-
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ing natural systems and predicting ecosystem responses to envi-
ronmental change. Microbial community composition is influ-
enced by a combination of environmental filtering and neu-
tral processes and the relative influence of particular factors
can vary greatly between habitats (Langenheder and Székely
2011; Lindström and Langenheder 2012; Stegen et al. 2012). While
understanding of microbial biogeography has been advanced in
recent years (Thompson et al. 2017), the principles that govern
microbial distributions remain poorly understood (Nemergut
et al. 2011).

Soil environments are particularly difficult to characterize
microbiologically due to their complexity. In soils, bacteria are
influenced by a multitude of abiotic and biotic interactions
(Horner-Devine et al. 2007; Fierer 2017), and the nature of these
interactions can change rapidly over small spatial and tempo-
ral scales (Ettema and Wardle 2002; Ramette and Tiedje 2007).
Across landscapes, pH has been found to be among the most
important abiotic factors influencing bacterial diversity and
community structure (Fierer and Jackson 2006; Lauber et al. 2009;
Chu et al. 2010; Rousk et al. 2010; Griffiths et al. 2011), though
salinity (Lozupone and Knight 2007), nutrient content (Fierer and
Jackson 2006; Andrew et al. 2012; Cruz-Martı́nez et al. 2012) and
soil moisture (Fierer and Jackson 2006; Cruz-Martı́nez et al. 2012)
have also been found to significantly influence bacterial com-
munities. The structure and function of many soil bacterial com-
munities are also intimately linked to those of plant and animal
communities (Miki et al. 2010; Sylvain and Wall 2011), compli-
cating efforts to characterize the importance of abiotic controls
on bacterial distributions. This complexity is reduced in desert
ecosystems, where abiotic factors appear to be more important
than biotic factors in shaping microbial community composition
(Fierer et al. 2012).

Soils in the McMurdo Dry Valleys of Victoria Land, Antarctica
are a simplified and isolated cold desert ecosystem, in which the
environmental factors affecting life can be more easily identi-
fied than in temperate ecosystems (Adams et al. 2006; Hogg et al.
2006). Organisms in these soils face extreme conditions, includ-
ing exposure to cold temperatures, lack of water and nutrient
availability, high salinity, high exposure to ultraviolet radiation
in the austral summers and periods of prolonged darkness dur-
ing austral winters (Vincent 2004). This harsh environment has
shaped an ecosystem of relatively low biocomplexity in compar-
ison to most terrestrial ecosystems (Adams et al. 2006; Yergeau
et al. 2007; Cary et al. 2010). The lack of vascular plants means
primary production in these soils is limited to mosses, lichens,
algae and cyanobacteria, while heterotrophic prokaryotes, fungi,
protozoa and a small number of invertebrate animals comprise
the system’s heterotrophs (Adams et al. 2006). Few terrestrial
ecosystems on Earth are characterized by such a simple food
web. This environment, therefore, offers access to a biological
system that is primarily microbial (Hogg et al. 2006), making it
an ideal place to resolve the important relationships between
bacteria and their abiotic environment.

The visible uniformity of the Dry Valley landscape masks a
highly heterogeneous system, as current research reveals patchy
distributions of macro- and micro- organisms throughout the
environment (Cary et al. 2010). Microbial community structure is
highly variable, varying significantly with soil type, soil physic-
ochemical properties and geography (Aislabie et al. 2006; Barrett
et al. 2006; Niederberger et al. 2008; Wood et al. 2008; Lee et al.
2012; Van Horn et al. 2013; Geyer et al. 2014). Bacterial distribu-
tions do not appear to be controlled by the same abiotic fac-
tors that influence metazoan distributions (Barrett et al. 2006),
however recent studies suggest that microbial diversity may be

linked to the diversity and composition of multicellular taxa
across the Dry Valleys landscape (Lee et al. 2019; Caruso et al.
2019). While these studies have been valuable in demonstrat-
ing the heterogeneity of soils in the Dry Valleys and describing
biological trends along established environmental gradients, a
comprehensive survey, of sufficient geographic scope and sam-
pling effort to elucidate the relative importance of environmen-
tal factors in shaping bacterial community structure across the
landscape, has not been undertaken.

The current study was completed as part of the New Zealand
Terrestrial Antarctic Biocomplexity Survey (nzTABS) (Caruso
et al. 2019; Lee et al. 2019), a comprehensive landscape-scale
effort to identify the drivers of biological distributions in the
McMurdo Dry Valleys. The goal of the present work is to describe
how bacterial diversity and community structure in Dry Val-
ley soils are related to topographic, physicochemical and spatial
variation in the landscape. To this end, we sought to answer the
following three questions:

1. Does bacterial taxon richness vary significantly with envi-
ronmental gradients, particularly with physicochemical
variation in soil properties found to be important in other
terrestrial ecosystems?

2. Does bacterial community composition vary significantly
with topographic and physicochemical gradients in the
landscape, and are the effects of topographic variation on
bacterial community structure mediated through physico-
chemical variation in soil properties as hypothesized in an
a priori model presented in Fig. 1?

3. Does bacterial community similarity decrease with distance
between samples in a distance decay relationship and are
these patterns explained by the topographic and physico-
chemical heterogeneity in the landscape rather than disper-
sal limitation?

Using automated ribosomal intergenic spacer analysis
(ARISA), we generated bacterial community genetic fingerprints
from 471 samples from across a 220 km2 study area in the Dry
Valleys of Southern Victoria Land to assess bacterial taxon rich-
ness and community composition across the landscape. Struc-
tural equation modeling (SEM) was applied to understand the
potentially complex relationships between community struc-
ture and environmental gradients, as this approach is well
suited to handle models with indirect relationships among vari-
ables (Kline 2005). SEM tests whether the a priori model (Fig. 1)
outlining potential relationships between variables is consistent
with the data (Grace et al. 2010). SEM has been highly useful in
many disciplines in ecology (Laughlin and Abella 2007; Scher-
ber et al. 2010), and including microbial ecology (Petersen et al.
2012; Siciliano et al. 2014; Delgado-Baquerizo et al. 2016). As the
largest survey of terrestrial bacterial diversity and community
structure completed in Antarctica to date, this work identifies
numerous significant effects of environmental variation on bac-
terial diversity, and direct and indirect effects of abiotic variables
on bacterial community structure across space in the Dry Valley
landscape.

MATERIALS AND METHODS

Site selection, site surveys and sample collection

A study area of 220 km2, encompassing the Miers, Marshall
and Garwood Valleys in the southern end of the Antarctic Dry
Valleys (Fig. 2a and b), was divided using 4 primary attributes
obtained by remote sensing into spatially distinct regions,
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Figure 1. Initial a priori model of environmental factors that influence bacterial community composition in Dry Valley soils.

Figure 2. A map of the Ross Sea Region of Antarctica (A), indicating the location of the study area (B), tile boundaries (C) and sample sites (D).
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termed ‘tiles’. Each tile was defined by its elevation (200 m incre-
ments from sea level to 1400 m), slope (less than or greater
than 20 degrees), aspect (North-, South-, East-, or West- fac-
ing, or zero) and overriding geology (aeolian, alluvial, gneiss,
granite, lacustrine, mafic, marble, moraine type 1 (M1), moraine
type 2 (M2), moraine type 3 (M3), schist, scree, or complex).
Tile boundaries were drawn where the combination of these
environmental attributes changed. On the ground environmen-
tal assessments were completed within each tile in Novem-
ber 2008, to visually confirm the reliability of the remote sens-
ing data, including the geology, and to identify microhabi-
tats in each tile that varied from the general tile attributes.
Microhabitats predominantly included stream channels, ponds
and areas within tiles where the dominant tile geology var-
ied. This process ultimately divided the landscape into 545 tiles
(Fig. 2c).

During the 2008–2009 and 2009–2010 austral summers, bio-
logical surveying and soil sampling were completed at 471 sites
that had been selected within tiles to capture the combination
of variables that defined the tile, as well as microhabitats within
the tiles that deviated from these combinations, in order to cap-
ture the environmental heterogeneity of the landscape (Fig. 2d).
Soil samples for microbiological and physicochemical analyses
were collected aseptically from the top 10 cm of soil below the
desert pavement and stored in sterile Whirl-Packs (Nasco Inter-
national, Fort Atkinson, WI, USA). At the earliest opportunity,
samples for total gravimetric water content determination were
transported to McMurdo Station for processing, and samples for
microbiological and physicochemical analyses were frozen at
−20◦C to be transported to New Zealand for processing.

Determination and treatment of environmental
variables

A total of six topographic variables, six physicochemical vari-
ables and two spatial variables were examined in relation to
bacterial diversity and/or community composition. Topographic
variables included elevation (m), aspect (degrees from North),
slope (degrees), distance to the coast (m), an index of yearly snow
cover and an index of soil wetness. Elevation, aspect and slope
of sample sites were determined using LIDAR derived digital ele-
vation models (Wilson and Csathó 2007). Distance to the coast
was defined as the Euclidean distance of the sample site to the
nearest coastline. The index of yearly snow cover and index of
wetness were derived as previously described (Stichbury et al.
2011), and provide relative estimates of snow cover and liquid
water availability for sites based on Geographic Information Sys-
tems (GIS) and remote sensing data. Physicochemical variables
analyzed included soil pH, electrical conductivity (μS/cm), water
content (w/w %), carbon content (w/w %), nitrogen content (w/w
%) and average summer temperature (◦C). Soil pH and electrical
conductivity were determined for 2 ml of soil mixed in 10 ml of
deionized water (Lee et al. 2012) using a Thermo Scientific Orion
4-Star Plus pH/Conductivity Meter (Thermo Scientific, Waltham,
MA, USA). Water content was determined from the mass loss
of soil following incubation at 105◦C for 48 hours (Barrett et al.
2004). Organic carbon and total nitrogen content was deter-
mined from 300 mg of dried acidified soil using a CE Elantech
Flash EA 1112 Elemental Analyzer (Lakewood, NJ, USA) as pre-
viously described (Barrett, Gooseff and Takacs-Vesbach 2009).
Average summer temperature was predicted based on land sur-
face temperature data from Landsat 7 ETM+ using band 6 (at
60 m resolution) and validated by field measurements (Brabyn

et al. 2014). Longitude and latitude were included as spatial vari-
ables.

Data were transformed as necessary in order to address
issues of skew and kurtosis. No topographic variable data was
transformed prior to analysis. Soil conductivity, water content,
carbon content and nitrogen content were log(x+1) transformed
prior to analysis, while pH and average summer temperature
were not transformed. Longitude and latitude were transformed
to X and Y coordinates (m), respectively using the program
ArcGIS. For the purpose of variance partitioning and spatial anal-
yses, environmental variables were normalized using the scale
function in R and environmental distance matrices based on
Euclidean distances between samples were generated. Coast
distance was removed as a variable in these instances to ensure
that no degree of spatial variation was explicitly built into the
topography and environmental distance datasets.

DNA extraction and preparation

DNA was extracted from soils as described by Barrett and col-
leagues (2006), with modifications to facilitate high-throughput
sample processing. Briefly, 0.7 g of soil was added to a microcen-
trifuge tube containing 0.5 g of both 0.1 mm and 2.5 mm silica–
zirconia beads (BioSpec Products, Bartlesville, OK, USA). To each
sample, 270 μl phosphate buffer (100 mM NaH2PO4) and 270 μl
SDS lysis buffer (100 mM NaCl, 500 mM Tris pH 8.0 and 10% SDS)
were added, and samples were bead-beaten for 10 minutes on
a Vortex Genie 2 with a 24-tube vortex adapter (Mo Bio Labo-
ratories Inc., Carlsbad, CA, USA). To each sample, 180 μl CTAB
extraction buffer (100 mM Tris-HCl, 1.4 M NaCl, 20 mM EDTA, 2%
CTAB, 1% PVP, 0.4% BME) was added and samples were shaken
at 300 rpm and 60◦C for 30 minutes. Samples were centrifuged
at 16 000 x g for 3 minutes, prior to the addition of 350 μl chloro-
form: isoamyl alcohol (24:1) and 35 μl 10 M ammonium acetate.
Samples were vortexed to mix and centrifuged at 16 000 x g for 5
minutes. The aqueous phase of each sample was transferred to a
96 well lysis block and processed using an X-tractor Gene liquid
handling robot (Corbett Life Sciences, Concorde, NSW, Australia),
using the DX Universal liquid sample DNA Extraction Protocol
(CorProtocol No. 14 104 Version 02). Samples were eluted in 80
μl TE pH 8.5 (10 mM Tris-HCl, 0.5 mM EDTA). Negative controls,
consisting of bead tubes with no sample added, were processed
as described above and included in each lane of the lysis block
to assess potential contamination of extracts.

DNA extracts were quantified using Quant-iT Picogreen
dsDNA reagent (Invitrogen, Carlsbad, CA, USA) on a FLUOstar
optima fluorescence plate reader (BMG LABTECH, Ortenberg,
Germany). Briefly, 100 μl of picogreen solution (picogreen diluted
1:200 in TE) was added to each well of a black 96 well plate, con-
taining 95 μl TE and 5 μl sample or standard containing 0 to
25 ng/μl lambda dsDNA (Invitrogen). Samples were excited at
485 nm and emission was measured at 520 nm. All extracts with
DNA concentrations exceeding 2 ng/μl, were adjusted to 2 ng/μl
in TE.

ARISA of community DNA

PCR targeting the intergenic spacer between the 16S and 23S
rRNA genes of the bacterial ribosomal operon was completed
for each extraction and extraction negative controls. Each 25
μl reaction contained 1X PCR buffer, 3 mM MgCl2, 1 U Plat-
inum Taq DNA Polymerase (Invitrogen), 0.25 μM primers ITSF
(5′-GTCGTAACAAGGTAGCCGTA-3′) (Integrated DNA Technolo-
gies, Coralville, IA, USA) and ITSReub (5′-HEX-GCCAAGGCATC
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CACC-3′) (Applied Biosystems, Carlsbad, CA, USA) (Cardinale
et al. 2004), 0.2 mM dNTPs (Invitrogen) and 5 μl of template DNA.
Thermal cycling was completed on a Bio-Rad DNA Engine Peltier
Thermal Cycler 200 (Bio-Rad, Hercules, CA, USA), which con-
sisted of 3 min at 94◦C; 30 cycles of 94◦C for 45 s, 55◦C for 1 min
and 72◦C for 2 min; and 72◦C for 7 min (Cardinale et al. 2004). Neg-
ative extraction controls listed above and negative PCR controls
were included (in which 5 μl of PCR-grade water was substitute
for template DNA); these controls showed no amplification.

Amplicons were diluted 1:20 in de-ionized water. A mixture
containing 2 μl of diluted amplicon, 0.13 μl of Liz-1200 inter-
nal size standard (Applied Biosystems) and 7.87 μl of HiDi for-
mamide (Applied Biosystems) was heat denatured at 95◦C for 5
minutes and cooled to 4◦C for 2 minutes, before being resolved
on an ABI 3130xl Genetic Analyzer (Applied Biosystems) at the
University of Waikato DNA Sequencing Facility.

All peaks between 100 and 1200 base pairs in length, that
made up greater than 0.3% of the entire signal over 10 rfu in
each electropherogram were accepted as true peaks. The total
number of true peaks was taken as a measure of bacterial taxon
richness for each sample. Peaks within one base pair of one
another in a pairwise comparison between fingerprints were
binned together, and a Bray Curtis dissimilarity matrix using
proportional peak abundance data was generated based on each
pairwise comparison of the electropherograms.

Data analyses

Bivariate relationships between taxa richness and environmen-
tal variables were assessed using linear models, and significant
relationships were identified using Pearson’s product-moment
rank correlation. Non-linear associations were identified by
examining residual plots, and appropriate non-linear models
were then fit based on these analyses. The amount of varia-
tion in taxa richness explained by topographic variation, physic-
ochemical variation and spatial variation was assessed using
multiple linear regression in R by applying the varpart function
in the ‘vegan’ library (Oksanen et al. 2011).

Bray Curtis community dissimilarities were examined in
a two-dimensional ordination using non-metric multidimen-
sional scaling (NMDS), in order to reduce the multivariate Bray
Curtis dissimilarities to compositional gradients. Ordinations
were completed in R using the ‘vegan’ library (Oksanen et al.
2011). The best solution was accepted after 1000 iterations. Pear-
son’s product-moment rank correlation between the matrix of
Bray Curtis dissimilarities and a matrix of the Euclidean dis-
tances between the points in the final NMDS ordination was
calculated in order to assess the amount of variation captured
in the final two dimensional solution (McCune and Grace 2002).
The relationships between the NMDS results and the continuous
environmental variables were assessed using bivariate analyses
and structural equation modeling (SEM).

Structural equation modeling (SEM) is an extension of regres-
sion and path analysis that can be used to model multivariate
relations and to evaluate multivariate hypotheses (Kline 2005).
Maximum likelihood solution procedures were applied using the
Mplus software (v3.12) and we relied on chi-square goodness of
fit measures to evaluate model adequacy. Modification indices
were examined to determine if there were obvious model-data
discrepancies, which in turn could be used to identify miss-
ing pathways. The model presented in Fig. 1 represents what
we believed to be the most plausible structural relations based
on a priori knowledge. We acknowledge that not all causal pro-
cesses that act in this system are represented in Fig. 1; rather, our

objective was to determine whether the data were consistent
with the expectations of the proposed model. Good-fitting struc-
tural equation models do not prove causal relationships (Grace
2006). The final structural equation model predicts a covariance
structure that is consistent with the covariance structure of the
dataset; therefore, theory can guide our interpretation of the
mechanistic nature of the directional paths. We calculated the
‘total effects’, which are the total sum of direct and indirect
pathways from the predictors to composition. Indirect effects
equal the total sum of the products of all path segments from
a predictor to composition. Total effects provide a calculation of
the net effect (i.e. strength and sign) of a relationship. Estimates
of these effects and their standard errors were calculated with
Mplus software (Muthén and Muthén 2005).

Spatial variation in community structure was assessed using
Mantel tests and related to environmental distance using par-
tial Mantel tests. Both tests were completed with 9999 permuta-
tions. Additionally, variance partitioning based on redundancy
analysis (RDA) was used to assess the amount of variation in the
community structure that was explained by topographic vari-
ation, physicochemical variation and spatial variation. In this
case, the varpart function in ‘vegan’ (Oksanen et al. 2011) was
used to assess the amount of variation in the Bray-Curtis dis-
similarity matrix explained by matrices of topographic, physic-
ochemical and spatial variables.

RESULTS

Patterns of bacterial richness

Bacterial richness varied significantly with several physico-
chemical, topographic and spatial variables (Fig. 3). Richness
was most strongly positively correlated with soil water content
and most strongly negatively correlated with soil conductivity. A
non-linear association between bacterial taxon richness and pH
revealed richness was highest around pH 8, and decreased with
increasing acidity and alkalinity. Together, the physicochemical,
topographic and spatial variables explained 38% of the variation
in richness, with space only accounting for 1% of this variation
independent of physicochemical and topographic heterogeneity
(Fig. S1).

Patterns of community structure

A two-dimensional NMDS ordination, representing similari-
ties of bacterial community composition between sites, was
reached with a stress of 0.25, and environmental gradients
were assessed within the ordination (Fig. S2). Comparison of
the Euclidean distances in the two–dimensional NMDS config-
uration and the Bray Curtis distances revealed that the final
two-dimensional solution captured 66% of the variation in the
community composition data. All the continuous environmen-
tal variables assessed showed significant bivariate relationships
with one or both of the NMDS axes (P < 0.01) (Table 1). NMDS axis
1 was found to vary significantly with snow cover, wetness, ele-
vation, coast distance, aspect, temperature, soil water content,
pH and conductivity, but not slope. NMDS axis 2 varied signifi-
cantly with snow cover, elevation, coast distance, aspect, tem-
perature and conductivity, but not wetness, soil water content,
or pH.

The initial a priori model was not consistent with the data (X2

= 242.9, d.f. = 28, P < 0.0001), and so the model was revised to
find a stable final solution reflective of the relationships between
the variables. Paths to soil water content from elevation, aspect
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Figure 3. Bivariate relationships between environmental variables and bacterial taxon richness. Trend lines and r-squared values are included for significant relation-
ships (P < 0.05).

and snow cover were removed, as were paths to temperature
from slope, paths to pH from coast distance and paths to con-
ductivity from pH and soil water content. Modification indices
supported the addition of paths from snow cover and coast dis-
tance to temperature, paths from aspect and soil water content
to pH, and paths from aspect to conductivity. Direct paths from
wetness index and snow cover to community structure were also
added. Finally, the variation in community structure captured in
NMDS axis 2 was not explained by a unique set of variables to

those explaining NMDS axis 1, so axis 2 was removed to simplify
the final model.

The final model did not differ significantly from the data
(X2 = 27.6, d.f. = 21, P = 0.15) and explained 43% of the
variation observed in NMDS axis 1 (Fig. 4). In addition, the
model explained 45% of the variation in temperature, 12% of
the variation in soil water content, 11% of the variation in
conductivity and 5% of the variation in pH. Soil water con-
tent had the strongest direct effect and total effect on axis
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Table 1. Bivariate correlation coefficients (r) of environmental vari-
ables with axes one and two of the non-metric multidimensional
scaling (NMDS) ordination of bacterial community composition. Sig-
nificant (P < 0.05) correlations are in bold.

Variable group Variable
NMDS Axis

1
NMDS Axis

2

Topography Snow index − 0.31 0.16
Wetness index − 0.38 − 0.04
Elevation − 0.18 0.35
Coast distance − 0.22 0.21
Slope 0.05 0.24
Aspect 0.17 − 0.14
Temperature 0.17 − 0.20

Soil properties Water content − 0.50 − 0.06
pH 0.29 − 0.08
Conductivity 0.19 − 0.19

1 (Table 2). The effects of the topographic variables on com-
munity composition were largely mediated through soil prop-
erty variables, with the exception of wetness index and snow
cover, which had both indirect and direct effects on community
composition.

Spatial patterns of community structure

The average Bray Curtis community dissimilarity was found to
increase with distance between samples (Mantel r = 0.103, P
< 0.0001), as did environmental distance (Mantel r = 0.170, P
< 0.0001) (Fig. 5). Partial correlations revealed a significant, but
weak, correlation between community dissimilarity and geo-
graphic distance after accounting for environmental relation-
ships (Mantel r = 0.058, P < 0.01). This correlation became non-
significant if distance from the coast was included as a variable
in generating the environmental distances (Mantel r = 0.013, P
= 0.244). Variance partitioning of the community dissimilarity
data also indicated that a small amount of the spatial variation

in the data could not be explained by topographic and physico-
chemical distance (Fig. S3). The combination of physicochemi-
cal, topographic and spatial variables explained 22% of the vari-
ation in community composition.

DISCUSSION

Previous studies of Dry Valley soils have revealed unexpect-
edly diverse bacterial communities, which appear to be shaped
largely by abiotic variation (Hogg et al. 2006; Cary et al. 2010;
Lee et al. 2012), and which may form important linkages with
higher taxa (Lee et al. 2019; Caruso et al. 2019). Here, we demon-
strate that significant differences in bacterial diversity and com-
munity composition are partially explained by topographic and
physicochemical properties across the Dry Valley landscape. The
edaphic factors found to be most important as determinants of
bacterial community diversity and composition are largely con-
sistent with those reported from other terrestrial environments,
and include soil moisture, pH and conductivity (Chu et al. 2010);
however, differences in the relative influence of these variables
suggest that community assembly is uniquely influenced under
the environmental extremes of this cold desert landscape.

Patterns of bacterial richness

Bacterial richness was measured as the number of peaks in
ARISA profiles from each sample. Despite the resolution limi-
tations inherent to DNA fingerprinting techniques, ARISA has
been accepted as a useful method for comparing taxon rich-
ness between samples (Brown and Fuhrman 2005; Fuhrman
et al. 2008; Kovacs, Yacoby and Gophna 2010) and remains an
important rapid, cost-effective, technique for large scale analy-
ses of microbial communities. Diversity assessments by ARISA
have been shown to agree with 16S rRNA gene diversity assess-
ments in the McMurdo Dry Valleys (Lee et al. 2012). Applying this
methodology to the current study, we detected significant vari-
ation in bacterial taxon richness with environmental gradients,
and found physicochemical variables to be stronger predictors
of bacterial richness than topographic variables.

Figure 4. Final structural equation model (SEM) results (X2 = 27.6, d.f. = 21, P = 0.15) with standardized coefficients. All pathways were significant.

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article/96/5/fiaa042/5815075 by guest on 09 April 2024



8 FEMS Microbiology Ecology, 2020, Vol. 96, No. 5

Table 2. Standardized direct effects, indirect effects and total effects
of environmental factors on NMDS axis one.

Factor
Direct
effects

Indirect
effects

Total
effects

Aspect 0.039 0.039
Slope 0.035 0.035
Elevation − 0.121 − 0.121
Distance to coast − 0.061 − 0.061
Snow − 0.154 0.034 − 0.120
Wetness − 0.258 − 0.104 − 0.361
Temperature 0.080 0.088 0.168
Water content − 0.370 − 0.032 − 0.402
pH 0.213 − 0.016 0.196
Conductivity 0.163 0.163

Richness was most strongly negatively associated with con-
ductivity. The importance of salinity in shaping bacterial diver-
sity and community structure has been reported previously
(Lozupone and Knight 2007), and similar negative trends in bac-
terial diversity with salinity have been reported in Antarctic
environments (Chong et al. 2010; Zeglin et al. 2011; Magalhães
et al. 2012). High salt concentrations are typical of Antarctic soils
(Claridge and Campbell 1977; Vincent 2004), and in the current
study conductivity values averaged approximately 0.32 mS/cm
and ranged greatly from 0 to 8.3 mS/cm in soils across the land-
scape. Salinity presents a strong selective pressure, as few bac-
teria are capable of growth over large ranges of salt concentra-
tions (Oren 2006). As such, one would expect the presence of
non-halotolerant taxa to be greatly reduced in saline soils. Addi-
tionally, high soil conductivity may be indicative of sites that
have been devoid of liquid water for long periods, as salts may
accumulate in areas of low soil water content due to negligible
leaching (Campbell and Claridge 1987). The negative association
between conductivity and richness may, therefore, reflect sites
of prolonged hyper-arid conditions that prohibit the establish-
ment of many bacterial taxa.

Soil water content was the second strongest predictor of bac-
terial richness and wetness index was found to be the most
important topographic factor explaining bacterial richness. Soil
moisture and wetness index also had the strongest positive
associations with bacterial richness. While soil moisture is
expected to have an important influence on bacterial diversity in
desert ecosystems, some recent studies have found the impor-
tance of water to be ancillary to other factors in shaping bac-
terial diversity in arid landscapes (Andrew et al. 2012), includ-
ing the Darwin Mountains of Antarctica where soil salinity was
also found to be the best predictor of bacterial diversity (Mag-
alhães et al. 2012). As the strongest positive associations with
bacterial richness, measures of soil water and areas predicted to
see liquid water seasonally are likely the most important deter-
minants of hotspots of microbial diversity in the Dry Valleys
ecosystem.

Soil pH was found to be a less important predictor of bacterial
richness in Dry Valley soils compared to temperate (Fierer and
Jackson 2006; Griffiths et al. 2011) and Arctic ecosystems (Chu
et al. 2010). These studies have described patterns of bacterial
diversity in soils ranging from pH 3 to pH 9, and found richness
to be highest in soils near neutral pH. Soils in the current study
nearly all ranged from neutral to alkaline with greater than 95%
of the values ranging from pH 7 to 10. The reduced importance
of pH in shaping bacterial richness in Dry Valley soils could,
therefore, be because (1) the general response in richness as pH
increases from neutral is unequal to the response observed as
pH decreases from neutral, (2) the smaller range of pH values
observed over the landscape in the present study compared to
previous reports provided an insufficient range to strongly effect
richness, or (3) the harsh environmental constraints of the Dry
Valley ecosystem compared to other ecosystems makes pH a
secondary factor influencing richness in these soils.

Spatial trends in bacterial richness were not expected; how-
ever, significant relationships were observed with both latitude
and longitude. Richness was found to increase moving North in
latitude and West in longitude (with increasing distance from
the coast). As expected, these spatial trends were almost entirely
explained by topographic and physicochemical variation in the
landscape.

Figure 5. The relationship of community dissimilarity (filled circles) and environmental distance (open circles) with space. Mean variance in community dissimilarity
and environmental distance were calculated between samples at 500 m intervals. Error bars show standard error. Coast distance was not included as a variable in

calculating environmental distance to ensure that no degree of spatial variation was explicitly built into the environmental dataset.
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Patterns of community structure

As predicted in the a priori model, the effects of most of the
topographic variables on community structure were mediated
through physicochemical variation. Elevation had the largest
indirect effect on community composition, due to its strong
effect on temperature. Variation in bacterial communities with
elevation has been described previously in other systems (Bryant
et al. 2008), and trends in cyanobacterial distributions have been
related to elevation in the Dry Valleys (Smith et al. 2006; Wood
et al. 2008). Aspect, slope and coast distance had more mod-
est effects on physicochemical variables, with aspect found to
affect temperature, pH and conductivity, while slope was found
to affect water content and conductivity, and coast distance was
found to affect temperature and conductivity.

Direct effects on community composition were supported for
two topographic variables: snow cover and wetness index. In the
a priori model, snow cover was hypothesized to impact commu-
nity structure indirectly through influencing soil moisture; how-
ever, this path was not supported in the final model. It is possi-
ble that the moisture in snow rarely becomes bioavailable, as it
is often removed by sublimation and strong winds rather than
melting (Gooseff et al. 2003). As such, the direct impact of snow
cover on community structure could be the result of the change
imparted to the physical environment by shielding the soils
from sunlight and ultraviolet radiation. The influence of wet-
ness index on community composition could not be explained
entirely through measures of soil moisture. As it is difficult to
assess the influence of water in a soil solely by an instantaneous
measure at the time of sampling, a direct path from wetness
index to community composition provides a meaningful indica-
tion of potential availability of water in soils over time.

Water content and wetness index had the strongest direct
and total effects on bacterial community composition. Soil
moisture has been identified as the strongest predictor of bacte-
rial community composition in recent analyses of other terres-
trial systems, including soils of the Tibetan Plateau (Zhang et al.
2013), lithic communities across hot and cold hyper-arid land-
scapes in deserts of China (Pointing et al. 2007), and in stream
sediments of the Onyx River in the Dry Valleys and Rio Salado
in New Mexico (Zeglin et al. 2011). Water is understood to be a
limiting variable in the Dry Valleys (Kennedy 1993; Barrett et al.
2007) and the presence of particular bacterial taxa have been
related to water availability in Antarctic soils (Aislabie et al. 2006;
Niederberger et al. 2008; Niederberger et al. 2015); however, the
current work is the first evidence that water is the most impor-
tant variable in explaining bacterial community composition in
soils across the landscape as a whole.

The total effects of pH, conductivity and temperature on
community composition were found to be roughly similar. Soil
pH had a strong positive direct effect on community composi-
tion, but the total effects of pH were tempered slightly by a nega-
tive indirect effect mediated through conductivity. The strength
of the direct and total effect of pH is not surprising, considering
that pH has been found to be the most important factor shap-
ing microbial community composition in other soils (Fierer and
Jackson 2006; Lauber et al. 2009; Chu et al. 2010; Rousk et al. 2010;
Griffiths et al. 2011). Conductivity, despite being the strongest
predictor of bacterial diversity across the landscape, had the
second smallest direct effect and smallest total effect on com-
munity composition of all the physicochemical variables ana-
lyzed. Temperature had the weakest direct effect on commu-
nity composition, but a relatively strong indirect effect mediated
through water content contributed to a substantial total effect.

While cold-adapted bacteria may be selected for by the Dry Val-
ley landscape as a whole, community composition within the
landscape appear to show little differentiation based directly on
variation in mean summer temperature. Mean summer temper-
atures across the landscape were predicted to range from −15
to 9◦C, entirely within the psychrotrophic range (Scherer and
Neuhaus 2006), providing little capacity to select different pop-
ulations between sites based on different temperature optima;
it is, perhaps, not surprising then that temperature has at least
an equally important role in shaping community composition
by influencing water availability.

Spatial patterns of community structure

A significant distance decay relationship was observed, in which
community dissimilarity increased with increasing distance
between samples; however, once accounting for environmen-
tal variation, the correlation, while still significant, was quite
weak. Spatial variation that cannot be explained by environmen-
tal variability has been used as an indicator of dispersal limi-
tation for bacterial populations (Martiny et al. 2011), consistent
with neutral models of larger organisms (Bell 2001; Condit et al.
2002). Dry Valley landscapes are understood to be linked through
aeolian and hydrological processes (Barrett et al. 2007), increas-
ing the likelihood of dispersion of biomass over the landscape.
However, recent analyses of aeolian dispersal indicate that soil
bacterial communities are distinct from aerosol communities
(Bottos et al. 2013; Archer et al. 2019), suggesting microbial dis-
persal between sites may be more limited than previously appre-
ciated. Additionally, different prokaryotic groups may not scale
uniformly across Antarctic soils, as cyanobacterial distributions
exhibit spatial patterns distinct from those of the total soil bac-
terial community (Sokol et al. 2013). A weak trend indicating that
community composition is decoupled from environmental vari-
ability may, therefore, arise from the presence of populations
with varying degrees of dispersal limitation within the commu-
nity. These spatial trends may be indicative of the importance
of community assembly processes other than variable selection
across the landscape (Stegen et al. 2012), which would be con-
sistent with the relatively small amount of overall variation in
community composition explained by environmental variables.
Indeed, only 22% of the community variation was explained by
the combination of physicochemical, topographic and spatial
variables analyzed. Alternatively, the unexplained spatial vari-
ation reported here may be the result of environmental varia-
tion in the system that was not accounted for in this study. One
must be careful not to overstate the importance of weak trends
in environment-space relationships (Griffiths et al. 2011), partic-
ularly as they are known to vary with the resolution of the tax-
onomic data (Horner-Devine et al. 2004). A limitation of ARISA
is that it does not allow identification of microbial taxa. Appli-
cation of sequencing approaches that provide phylogenetic and
taxonomic community information would help to resolve envi-
ronmental drivers and spatial patterns of particular taxa in this
system. Based on the data presented here, however, we cannot
rule out the possibility that some bacterial populations show
dispersal limitation across the landscape, which may have an
additional effect on shaping bacterial communities to that of
taxa sorting due to environmental variation.

CONCLUSIONS

At the outset of this work, three questions were asked that
would help explain variation in bacterial diversity and commu-
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nity composition across an Antarctic Dry Valleys terrestrial land-
scape. Bacterial taxon richness does indeed vary with environ-
mental gradients with soil conductivity and water content being
the most important explanatory variables. Our a priori model
presented paths through which environmental gradients were
expected to influence bacterial community composition. Based
on empirical data, this a priori model was rejected in favor of
a model that supported numerous significant direct and indi-
rect effects of abiotic variables on bacterial community compo-
sition that were not present in the initial model. Finally, a signif-
icant distance decay relationship appears to exist in soils across
our study area, however, the cause of the relationship remains
inconclusive, as the observed variation could not be explained
entirely by environmental heterogeneity. This work provides
foundational knowledge of the environmental factors influenc-
ing bacterial communities in Dry Valley soils. Such knowledge
will be important locally and regionally, for shaping manage-
ment strategies for Antarctica’s ice free areas and predicting
ecosystem responses to climate change scenarios of increased
temperature, water availability and environmental variability
(Wall 2007), as well as globally, in support of efforts to describe
patterns in microbial ecology across the planet.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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