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ABSTRACT

Hypolithic microbial communities (hypolithons) are complex assemblages of phototrophic and heterotrophic organisms
associated with the ventral surfaces of translucent minerals embedded in soil surfaces. Past studies on the assembly,
structure and function of hypolithic communities have tended to use composite samples (i.e. bulked hypolithic biomass)
with the underlying assumption that samples collected from within a ‘homogeneous’ locality are phylogenetically
homogeneous. In this study, we question this assumption by analysing the prokaryote phylogenetic diversity of multiple
individual hypolithons: i.e. asking the seemingly simple question of ‘Are all hypolithons the same’? Using 16S rRNA
gene-based phylogenetic analysis of hypolithons recovered for a localized moraine region in the Taylor Valley, McMurdo Dry
Valleys, Antarctica, we demonstrate that these communities are heterogeneous at very small spatial scales (<5 m). Using
null models of phylogenetic turnover, we showed that this heterogeneity between hypolithons is probably due to stochastic
effects such as dispersal limitations, which is entirely consistent with the physically isolated nature of the hypolithic
communities (‘islands in the sand’) and the almost complete absence of a liquid continuum as a mode of microbial
transport between communities.

Keywords: hypolithon; small-scale heterogeneity; phylogenetic turnover; dispersal limitation; functional variability; core
community

INTRODUCTION

Hypolithons are edaphic microbial-dominated communities
found adhering to the undersides of translucent minerals,
most typically quartz and marble, embedded in the soil sur-
face. Such communities are a prominent feature of hot and

cold deserts where quartz pebbles and rocks are common con-
stituents of desert pavements (Cockell and Stokes 2004; Chan
et al. 2012). These cryptic niches provide micro-environmental
conditions that favor microbial community development in
‘extreme’ edaphic habitats (Chan et al. 2012, Lebre, De Maayer
and Cowan 2017). Such favorable parameters include protection
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from incident short-wavelength solar radiation and against des-
iccation, and the provision of thermal buffering and physical
stability (Lebre, De Maayer and Cowan 2017).

The composition of hypolithic communities has been exten-
sively studied, most intensively in the Antarctic McMurdo Dry
Valleys (Cowan et al. 2010; Khan et al. 2011; Chan et al. 2013; Wei
et al. 2016) and the Namib (Namibia) and Atacama (Chile) deserts
(Warren-Rhodes et al. 2006; Van Goethem et al. 2017). Recent deep
sequencing of prokaryote (16S rRNA gene) and lower eukaryote
(18S rRNA and ITS genes) phylogenetic markers has shown that
hypoliths form distinct communities depending on the dom-
inant taxa (Cowan et al. 2011). ‘Type I’ hypolithons, the most
common, are morphologically dominated by free-living pho-
toautotrophic cyanobacteria (most commonly Chroococcidiopsis
and Phormidium), but harbor complex heterotrophic microbial
assemblages dominated by members of the phyla Actinobacte-
ria, Proteobacteria, Bacteroidetes and Acidobacteria (Wei et al.
2016; Pointing 2016).

In desert soil ecosystems, where higher plants are largely or
totally absent, hypolithons represent biological ‘hotspots’ which
may make a substantial contribution to key ecosystem services,
particularly carbon and nitrogen cycling. 14C-radiolabelling
experiments have suggested that hypolithic biomass may make
a very significant contribution to C sequestration in Canadian
High Arctic deserts (Cockell and Stokes 2004), while studies have
suggested that hypolithons in Antarctic and Namibian deserts
may be the dominant source of nitrogen input in these ecosys-
tems (Cowan et al. 2011b, Ramond et al. 2018).

Little is known of either the rates or pathways of develop-
ment of hypolithic communities. Studies have suggested that
hypolithons recruit taxa from the surrounding soil (Makha-
lanyane et al. 2013), and that different types of hypolithons rep-
resent different steps in hypolith development, with cyanobac-
terial dominated hypolithons being the basal developmen-
tal stage (Makhalanyane et al. 2014). However, the kinetics
of hypolithic community development is largely unquantified,
with suggestions that the ages of hypolithons in cold slow-
growth environments such as the Antarctic Dry Valleys to be
decades or even centuries (Cowan 2014). In turn, a study of
the processes driving hypolith community development at a
global scale using null probabilistic models (Caruso et al. 2011)
postulated that hypolith structure at the global scale is depen-
dent on a balance between deterministic and stochastic forces,
which affect different functional taxa in distinct ways. Pointing
and colleagues have suggested a hypolithic community devel-
opment model (Pointing et al. 2007), where water availability is
a critical driver of community establishment and growth. The
implication for the development of hypolithic communities in
desert soil ecosystems is that they will follow a ‘static-step-
static’ growth profile, driven by the intermittent nature of rain
events in such water-limited ecosystems.

Here, we have asked a basic, but largely unanswered ques-
tion: are all hypolith prokaryote communities the same? Pre-
vious studies (Becker et al. 2006; Štursová et al. ; Franklin and
Mills 2003) showed that microbial communities can vary at very
small scales in temperate soils, but no such study has been con-
ducted with hypolithons. To this end, we sampled multiple indi-
vidual hypolithic communities from localized moraine deposits
in the Taylor Valley, Antarctic McMurdo Dry Valleys. The ori-
gins of the moraines in the Lower Taylor Valley are thought to
be linked to the last glacial maximum (approx. 10ky; Vucetich
and Robinson 1976). With subsequent slow soil turnover pro-
cesses, driven by frost-heave (Bockheim 2014), that may bring

quartz pebbles to the surface for subsequent hypolithic colo-
nization, it is reasonable to assume that the surface quartz min-
erals which are substrates for extant hypolithic communities
have been exposed for very long periods (i.e. multiple decades
or even centuries). Using 16S rRNA gene sequencing data from
a collection of 30 independent and isolated hypolithons, we
demonstrate that hypolithic communities form taxonomically
distinct units at the local scale., In addition, we apply network
analysis of taxonomical and predicted functional interactions,
as well as ecological null models, to investigate the ecological
processes driving the observed variation of individual hypolith
communities at the small spatial scale.

METHODS

Site description and sample acquisition

A total of 15 quartz hypolithon samples were recovered from
each of two sites, approximately 300 m apart, during the January
2018 K080 field expedition to the lower Taylor Valley (New Har-
bour area), South Victoria Land, Antarctica (Table S1, Support-
ing Information). The two sampling locations comprised areas
of low-lying (3–10m asl) moraine deposits, where the morainal
surface pavements, in which the hypolithons were embedded,
consisted of pebbles and coarse sands of very mixed mineralogy
typical of Taylor Valley moraines (principally granite, sandstone,
gneiss and dolerite: Bockheim 2002; Bockheim and McLeod 2008;
Bockheim, Prentice and McLeod 2008; Figure S1, Supporting
Information).

Within each site, all hypolithons were recovered within a
radius of approximately 500 m. The quartz pebbles with the
attached hypolithic biomass were transferred into individual
sterile Whirl-Pak bags, stored below 0◦C in the field and during
transport to South Africa and at −80◦C at the Centre for Micro-
bial Ecology and Genomics (CMEG), Pretoria South Africa.

DNA extraction and sequencing

DNA from the hypolithon samples was extracted using
the DNeasy PowerSoil Kit (QIAGEN, Germany) with 0.5 g
of initial sample material. Extracted DNA was quantified
using the NanoDrop 2000 spectrophotometer (Thermo Sci-
entific, Waltham, Massachusetts, USA), and its quality was
checked by PCR-amplification with 16S rRNA gene specific
primers 341F (5’- CCTACGGGAGGCAGCAG-3’) and 908R (5’-
CGTCAATTCMTTTGAGTT-3’). Thermocycling was conducted
with a 25 μL reaction volume following the protocol rec-
ommended by the polymerase provider (New England Bio-
labs,Ipswich, Massachusetts, USA); initial denaturation 95◦C,
30 s; 30 X denaturation 95◦C, 15 s; annealing 55◦C, 30 s; elon-
gation 68◦C, 60 s; final extension 68◦C, 5 min; hold 4◦C). To check
for contamination during DNA extraction, a blank negative con-
trol PCR reaction was performed using the kit elution buffer.
Additionally, three samples that did not generate positive PCR
signals were discarded. Extracted DNA from the remaining 27
samples was sent to the MRDNA Lab (Shallowater, Texas, USA)
for 16S rRNA v3–v4 hypervariable region sequencing using 2 ×
300 bps PE Illumina MiSeq technology with a read coverage of
20 000 reads per sample.

Phylogenetic analysis

Sequenced reads were filtered and assembled using the QIIME2
pipeline (Bolyen et al. 2019), using DADA2 (Callahan et al. 2016)
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for read filtering and unique sequence inference, with a trunc-
length (3’-terminus truncation length) of 280 bps for forward
reads and 250 bps for reverse reads. Taxonomy of the result-
ing assembled reads was carried out using the SILVA ver132
classifier (Quast et al. 2013) for prokaryotic species (with 99%
similarity cut-off). The Amplicon Single Variants (ASVs)count
table generated by the QIIME2 pipeline was manually curated
to remove ASVs with less than 20 reads across all the samples.
This step was performed to minimize the signal from poten-
tial false-positives originating from the sequencing platform. To
assess if the sequencing depth for each sample was adequate,
rarefaction curves of the sequence pool were generated using
the Vegan (Oksanen et al. 2019) package in RStudio. After this
analysis, sample H17 was discarded due to lack of sequencing
depth.

Community composition analysis

Alpha-diversity metrics, beta-diversity metrics and ordination
for the remaining 26 samples were calculated using the Phy-
loseq (McMurdie and Holmes 2013) and Vegan packages in R. The
distribution of relative abundances and alpha-diversity indexes
was tested using the Shapiro test (Royston 1982), and the sig-
nificance of difference in phylum relative abundances was cal-
culated using ANOVA (for normally distributed data; Chambers,
Freeny and Heiberger 1992), and the Kruskal–Wallis test (for
non-normally distributed data; cKight and Najab 2010). To per-
form beta-diversity analyses, the ASVs count table was first
rarefied using the sample with the lowest ASV count (53 045
counts) as the reference sample, and counts were log(x+1) trans-
formed. Samples were clustered into separate groups using
the ward.D2 hierarchical method (Murtagh and Legendre 2014).
Beta-diversity between groups was then calculated using the
weighted Unifrac distance metric (Lozupone et al. 2011), and
visualized in a Principal Coordinates Analysis (PCoA) plot (Jol-
liffe and Cadima 2016). PERMANOVA (Anderson and Walsh 2013)
was used to test for statistical differences between sample beta-
diversity, while the variation within sample groups was tested
using the analysis of multivariate homogeneity of group dis-
persions (β-disper; Anderson 2006). A significant β-disper value
represents significantly different within-group variation in beta-
diversity between groups, which might generate bias when
analysing differences between groups. Therefore, for the PER-
MANOVA to be a reliable measure of significance of variation
between groups, β-disper must be non-significant. The num-
ber of shared ASVs as a function of physical distance between
samples was assessed by measuring zeta-diversity (the degree
of shared ASVs between samples) to evaluate decay over dis-
tance (Hui and McGeoch 2014). For analysis of ‘generalists’ and
‘specialists’, ASVs were clustered into their representative gen-
era. ‘Generalists’ were manually curated as all genera present in
at least 90% of the samples and in all groups defined by the hier-
archical clustering analysis. The community composed of ‘gen-
eralist’ taxa was defined as the ‘core’ community, while the ‘Spe-
cialists’, considered as the the biomarkers for any specific group
of hypoliths, were determined by calculating the log2 change
of abundance between groups with the DESeq2 pipeline (Love,
Huber and Anders 2014), using the P-value threshold of 0.01.

Network clustering and function prediction

Interaction networks of taxa at the genus level were constructed
using the CoNet (Faust and Raes 2016) plugin in Cytoscape
(Shannon et al. 2003). Both Pearson and Spearman correlation

measures, as well as the Bray–Curtis and Kullback–Leibler dis-
similarity measures were used to infer synergistic and antag-
onistic relationships between taxa, with a P-value threshold of
0.05. The final network was generated from 1000 bootstraps, and
the network was visualized in Gephi with a Fruchterman Rein-
gold layout. Gephi was also used to calculate the network topol-
ogy, including number of degrees, betweeness centrality and
closeness centrality. Functional predictions of the genera used to
generate the network were done by using the FAPROTAX (Louca,
Parfrey and Doebeli 2016) pipeline, the script of which is avail-
able at the developer’s website (http://www.loucalab.com/archi
ve/FAPROTAX/lib/php/index.php?section = Instructions).

Null modelling of phylogenetic turnover

A null modelling approach based on calculations of between-
community mean-nearest taxon distance (β-NTI) and a Raup-
Crick dissimilarity metric incorporating species relative abun-
dance (RCbray) was used to evaluate the relative influence of
deterministic and stochastic processes on community assem-
bly, as previously described (Stegen et al. 2013). Observed β-NTI
values that significantly deviate from β-NTI null distributions
represent signals for variable selection (β-NTI > 2) and homoge-
nous selection (β-NTI < −2), while those that fall within the null
distribution represent compositional differences that arise from
stochastic processes. The observed RCbray values that signifi-
cantly deviate from null distributions represent signals for dis-
persal limitation (2 > β-NTI > −2 and RCbray > 0.95) and homog-
enizing dispersal (2 > β-NTI > −2 and RCbray < −0.95). Compar-
isons that fall within the null expectations of both metrics (2
> β-NTI > −2 and 0.95 > RCbray > −0.95) represent processes
that are not dominated by selection or dispersal. A total of 999
randomizations were used for both β-NTI and RCbray calcula-
tions. Null model assessments were performed on the complete
dataset, and independently on the core and non-core datasets,
with randomization based on full phylogeny for the complete
dataset, and based on the separate phylogeny for each of the
separate sets. The R script for null modelling analysis is avail-
able at (https://github.com/stegen/Stegen etal ISME 2013).

The R script for all other analyses is available at (https://gith
ub.com/PedroHLebre/Hypolith script).

RESULTS AND DISCUSSION

Hypolith communities are different across small spatial
scales

A total of 26 Type I hypolithon communities (Type I;
Cyanobacteria-dominated; following the classification set
by Cowan et al. (2010)) were analyzed in order to explore the
homogeneity of hypolithic microbial communities across small
(<5 m) spatial scales. Of the 20 prokaryotic phyla identified in
the dataset, 9 phyla represented 99% of all assigned ASVs and
12 phyla were ubiquitous across all hypoliths (Fig. 1A). Of these,
Cyanobacteria were the most dominant (32.9% mean relative
abundance, +/− 13% s.d.), followed by Proteobacteria (23.6%,
+/− 7% s.d.), Bacteroidetes (13.5%, +/− 7% s.d.) and Actinobac-
teria (10.2%, +/− 9.3% s.d.). Analysis of the datasets at the genus
level indicated that the cyanobacterial genus Nostoc, belonging
to the Nostocaceae family, dominated microbial communities
across all samples (20.6%, +/− 14% s.d.; Figure S2, Supporting
Information). The dominance of cyanobacterial reads in the
dataset was to be expected, as members of the order Nostocales
have been previously reported as the dominant taxa in both
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Figure 1. Prevalence of phyla in hypolithic communities (A) and distribution of dominant phyla across samples (B). Total abundance of each phylum for the dataset
was expressed as mean relative abundance (the mean of relative abundances across samples), while the relative abundances of dominant phyla per sample were

calculated as a fraction of total ASV counts for each sample. The dashed red line in (A) represents the threshold for phyla accounting for more than 1% of the mean
relative abundance of the dataset, which were classified as dominant phyla.
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Figure 2. Sample clustering according to weighted Unifrac distances (A) and ordination of distances between samples in a PCoA plot (B). The four groups resulting from
the clustering are labelled as A, B, C and D, and colored as red, green, blue and purple, respectively. The same color code was used in the PCoA ordination. Significance

between weighted Unifrac distances was calculated using PERMANOVA, and expressed by the coefficient of determination (R2) and adjusted P-value (p-adj). Intra-group
variation in beta-dispersion (betadisper) was non-significant, which is a requirement for the validity of the PERMANOVA analysis. Ellipses on the PCoA plot highlight
the clustering of the hypolithon samples into different groups.
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Antarctic hypolithons and the surrounding soils (Pointing et al.
2010; Khan et al. 2011; Wood et al. 2008). It is important to
note that members of other typically prevalent orders in these
environments, such as Oscillatoriales and Chroococcales, were
not detected in this particular dataset. This suggests that either
these taxa are either not as widespread as previously observed,
or are not represented in the sequenced pool of DNA due to
differences in methodology compared to previous studies (e.g.
DNA extraction using PowerSoil Kit vs Phenol–Chloroform used
in other studies). Despite the presence of half of the phyla
in all hypolithons, the relative abundance of the dominant
phyla (defined as phyla accounting for more than 1% of total
ASV abundance) varied between samples (Fig. 1B). This result
indicates that hypolith communities can vary over even short
(meter) distances.

The degree of community heterogeneity was further
reflected in the grouping of the phylogenetic datasets into
four distinct clusters (A, B, C and D) according to microbial
composition differences between samples, as expressed by
weighted unifrac beta-dissimilarity scores (Fig. 2). PERMANOVA
analysis showed the clustering to be highly significant (R2

= 0.493, P-value < 0.009), and not an artefact of intra-group
variation, as indicated by the non-significant beta-dispersivity
value (β-disper = 0.281).

Hypolithon community structure is driven by synergy
between different taxa

To explore in more detail the relationships between the
hypolithic community sample clusters, community similarities
and differences were assessed by determining ‘generalists’ (i.e.
taxa that present in ≥90% of samples) and ‘specialists’ (i.e. taxa
that were over-represented in a specific group). This analysis
identified 132 genera (of a total of 431) that were present in
22 or more samples (Figure S3, Supporting Information). Func-
tional prediction of this core community based on analysis
using the FAPROTAX database tool (Louca, Parfrey and Doebeli
2016) revealed that, aside from the ubiquitous photoautotrophic
cyanobacteria, several genera predicted to be involved in nitrate
reduction, nitrogen respiration and ureolyis, were also found to
be present (Table S2, Supporting Information). The relationships
between these taxa were further inferred by calculating poten-
tial interactions between them, visualized as a network of sig-
nificant relationships between genera (Fig. 3A). Of the 132 core
genera, 105 were found to be significantly correlated (adjusted
P-value <0.05), with most correlations (98%) being classified as
synergistic. The network topology was organized around two
principal self-contained clusters dominated by Actinobacteria–
Chloroflexi and Verrucomicrobia–Bacteroidetes–Proteobacteria
interactions, respectively. The two principal clusters were only
sparsely connected by both synergistic (n = 6) and antagonistic
interactions (n = 1) between these main heterotrophic groups.

Surprisingly, cyanobacterial members of the core community
were positioned at the periphery of the network with only a
limited number of connections to other taxa, and Nostoc, which
accounted for a fifth of all ASV counts, did not exhibit signif-
icant correlations with any other taxa in the core community.
This result suggests that while photoautotrophic cyanobacte-
ria may play an important role as primary producers and key-
stone taxa in hypolithic communities, as suggested by several
studies (Lacap-Bugler et al. 2017; Lebre, De Maayer and Cowan
2017; Van Goethem et al. 2017),they may not be important deter-
minants of compositional differences in community structure.

This is further emphasized by mapping of the predicted func-
tions of each genus into the network (Fig. 3B), showing that most
taxa capable of photoautotrophy were located on the edge of the
network, with low connectivity (average number of interactions
= 3.3). One possible explanation for this result would be the lack
of competition between the dominant photosynthetic taxa and
the less abundant portion of the community. By comparison,
the functional network suggests that taxa with the predicted
potential for nitrogen acquisition and ureolysis play a prominent
role in the trophic relationships within the core community, as
indicated by the high number of connections linking taxa with
these functions within the network. The implication is therefore
that N acquisition, rather than C supply, is the dominant trophic
driver of community structuring. Nitrogen metabolism has been
shown to be a key function in hypolithons (Ramond et al. 2018;
Cowan et al. 2011b), and it is therefore consistent that genera
with this metabolic capability would show high connectivity in
the co-occurrence network. However, it is important to note that
while they could not be functionally mapped, four genera in the
group of hub taxa (taxa with highest number of connections)
belong to the class Chloroflexia, which is exclusively composed
of anoxygenic phototrophic bacteria (Hanada 2014). This obser-
vation suggests that photoautotrophs other than Cyanobacte-
ria may play an important role in the structuring of the core
hypolithic community. Together, the network analysis of taxo-
nomic and functional interactions within the core community
suggests that less abundant taxa have a disproportionately dom-
inant role in shaping the core hypolithic community structure.

A total of four phyla were found to be differentially abundant,
at a statistically significant level, between the four different clus-
ters (A, B, C and D) previously determined from weighted unifrac
beta-dissimilarity scores (Figure S4, Supporting Information):
Abditibacteriota, Verrucomicrobia, Deinococcus-Thermus and
Planctomycetes. As the average relative abundance for these
phyla was below 10%, this result suggests that the greatest
degree of variation between communities occurs in the lower
abundance taxa. A search for ‘specialist’ taxa, defined as taxa
that are over-represented in any specific group of hypoliths, led
to the identification of a small number of genera specific to
groups A and C. In particular, group A was found to be the most
distinct group, containing 4 of the 7 identified ‘specialist’ genera
(Fig. 4). The over-representation in group A of the Proteobacte-
rial genus Rhodomicrobium, which is known to contain species
capable of phototrophic metabolism (Wright and Madigan 1991;
Miot et al. 2009; Ramana et al. 2013) may be particularly signif-
icant. A total of two other Cyanobacterial genera, Leptolyngbya
and Tychonema, were found to be over-represented in groups A
and C, respectively. The fact that all these ‘specialist’ genera are
potentially involved in phototrophic metabolism, but represent
less than 1% of the total genera across all samples (therefore are
considered to be ‘rare’ taxa), re-enforces the concept that rare
taxa might play important roles in the structure and evolution
of microbial communities (Shade et al. 2014).

Stochastic processes explain differences between
hypolith communities

The role that physical distance might play in the variation
between hypolithic community compositions was evaluated by
assessing the zeta-diversity, which measures the average num-
ber of species shared between sites across the entire sample set.
If distance were to play a significant role in the clustering of
hypolith communities, zeta-diversity should decay linearly as a
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Figure 3. Co-occurrence network of the core hypolithic community, according to the taxonomy (A) and functional predictions (B) of the genera in the core community.
Co-occurrence analysis was performed using Pearson. Spearman and Bray–Curtis correlations, with a p-value threshold of 0.05. The final network was drawn from a
100 bootstraps using the CoNet plugin in Cytoscape. Genera are represented as nodes, which are sized proportionally to the number of connections Synergistic and

antagonistic connections are colored as blue or red, respectively.

function of distance. No decay was observed in zeta-diversity
across the sampled distance (Figure S5, Supporting Informa-
tion), indicating that differences between hypolithon communi-
ties are not linearly correlated to the distance between the spa-
tially separated communities.

To infer the relative roles of stochastic and deterministic pro-
cesses in shaping community composition, deviations in phy-
logenetic turnover across the sample set were calculated using
the null model methodology developed by Stegen et al. (2013; Fig-
ure S6, Supporting Information). The calculated β-Nearest Taxon
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Figure 4. ‘Specialist’ genera in the different hypolithic groups. Log change values were calculated as pair-wise comparisons between groups, with all values represented
in the plot being significant (adjusted P-value < 0.001).

Index (β-NTI) quantifies the degree to which observed the β-
Mean Nearest Taxon Distance between pairs of communities
deviates from values expected when selection does not influence
turnover in community composition. Values of β-NTI above or
below the expected null model (−2 < β-NTInull <2) can be inter-
preted as evidence for deterministic processes shaping com-
munity composition. In the sample set used in this study, 56%
of community turnover was primarily attributed to homogeniz-
ing selection, with β-NTI values being below those expected if
turnover was dominated by stochastic processes (−2 < β-NTI);
i.e. communities were found to be more similar to each other
than would be expected by chance. This result is attributed
to the existence of shared selective pressures, such as simi-
lar micro-environmental conditions provided by the quartz sub-
strate, and by similar abiotic stresses (such as low aw). By com-
parison, 39.1% of community turnover fell within the expected
values under the null model, and therefore was considered to
be governed by stochastic processes such as dispersal limita-
tion, homogenizing dispersal, drift or a combination of these
processes. This result is consistent with a study by Makha-
lanyane et al. (2014), whereby deterministic processes were pos-
tulated to drive community composition of Type I hypolithons.
In turn, comparison of phylogenetic turnover between the core
community and the non-core community (Fig. 5) revealed that
most turnover in the core community, which is dominated by
cyanobacteria (80% of the turnover), is driven by homogenizing
selection, with a β-NTIcore average of −2.5. Conversely, 70% of
the turnover in the non-core community is driven by stochastic
processes, with a β-NTINoncore average of −1.2. These data sug-
gest that the deterministic processes driving hypolith commu-
nity turnover mostly affect the core community that is ubiquo-
tously distributed accross hypoliths, while differences between
hypolith communities (represented by the non-core portion of
the communities) is driven by stochastic processes. Together
with the non-significant zeta-diversity, these results suggest
that the limitations of dispersal that lead to the stochastic vari-
ability of microbial communities in hypolithons apply even at
very small spatial (meter) scales.

To further clarify the stochastic processes that are likely to
play a dominant role in the phylogenetic turnover of communi-
ties, the Raup–Crick dissimilarity (RCbray) of sample pairs with
absolute β-NTI values below 2 was calculated. According to Ste-
gen et al. (2013), values of RCbray > 0.95 and RCbray < −0.95 rep-
resent turnovers driven by dispersal limitation together with
drift, and homogenizing dispersal, respectively. This analysis
(Table S3, Supporting Information) indicated that the majority
of stochastic turnover between hypoliths was driven by dispersal
limitation together with drift (92.2%), while only 8.8% of stochas-
tic turnover was driven by drift alone.

The results from this study have led us to propose a model
for the evolutionary development of Antarctic hypolithic com-
munities at the local scale (Fig. 6), whereby common abiotic and
biotic stresses such as desiccation, nutrient limitation and inter-
taxon competition are strong primary drivers for the homoge-
nous selection of dominant taxa, such as Cyanobacteria, which
might constitute the core community. By comparison, dispersal
limitation is the main stochastic process driving the differenti-
ation of less abundant, heterotrophic taxa. In turn, differentia-
tion within the rare taxon fraction of the community might lead
to functional differentiation of hypolithons, as suggested by the
enrichment of different taxa capable of phototrophy. We postu-
late that local physicochemical heterogeneity (Zhou et al. 2002;
Becker et al. 2006; Štursová et al. 2016), together with the limi-
tations in transport due to the absence of a liquid continuum,
leads to the differential small-scale recruitment of taxa by the
hypolith community (Makhalanyane et al. 2013).

CONCLUSIONS

In this study, we addressed the question of whether hypolithons,
at local scales, share the same microbial community composi-
tions. This question is relevant to most of the ecological stud-
ies of hypolithic microbiomics, where the assumption of com-
munity homogeneity across multiple samples is inherent. The
results in this study show that rather than being homogenous
communities, hypolithons harbor rich and distinct microbial
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Figure 5. β-NTI distribution of the core (striped-grey bars) and non-core (white, black-traced bars) communities. The β-NTI range for stochastic processes (−2 < β-NTI

< 2) is highlighted by the trace red lines, while the ranges in which most of the β-NTI values for core and non-core communities are distributed are highlighted by the
blue and red arrows, respectively.

Figure 6. Model for the evolutionary development of Antarctic hypolith communities. Variation of communities at the local scale is driven by stochastic processes,
while a core ‘climax’ community is maintained through the effects of selective abiotic and biotic pressures.
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communities, dominated by a core assemblage of bacteria. Anal-
ysis of the possible interactions between taxa suggests that
synergy between less abundant taxa, particularly those with
the capacity to photosynthesize and metabolize nitrogen, is an
important driver in shaping the community. The application of
null models of phylogenetic turnover also led us to infer that the
majority of community variation between hypolithons is driven
by stochastic effects, more specifically, dispersal limitation.

We acknowledge that the reliance on sequencing data based
on short 16S rRNA gene hyper-variable regions, which has been
shown to have several short-comings including the difficulty of
assigning ASVs to species or genera with high confidence (Poret-
sky et al. 2014) and the use of incomplete databases for tax-
onomic assignment (Edgar 2018), represent limitations in this
study, but do not affect the central conclusions.

In the absence of data on the micro-environment of each
hypolithon, we cannot draw definitive conclusions on the
drivers of hypolithon heterogeneity. In addition to the spatial
segregation of the microbial communities, other drivers could
also be involved in the evolution of community heterogene-
ity. For example, variations in the physical or chemical proper-
ties of the over-lying hypolithic rock substrate, which has been
documented in polar and non-polar deserts (Cowan et al. 2011;
Warren-Rhodes et al. 2013), could lead to differences in light pen-
etration and moisture retention (Schlesinger et al. 2003), which
in turn would result different selective pressures being exerted
on the underlying hypolithic community. Alternatively, diver-
gent successional development (Makhalanyane et al. 2013) of
individual communities, possibly due to variations in the micro-
environment, could lead to the spatial heterogeneity described
in this study. Future studies should complement these find-
ings with more quantitative methodologies such as sequenc-
ing of the total hypolithon DNA and mRNA, combined with the
detailed characterization of the hypolithic micro-environment.
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nap J (eds). Biological Soil Crusts: An Organizing Principle in Dry-
lands. Ecological Studies (Analysis and Synthesis). Vol 226, Cham:
Springer, 2016.

Poretsky R, Rodriguez-R LM, Luo C et al. Strengths and limitations
of 16S rRNA gene amplicon sequencing in revealing temporal
microbial community dynamics. PLoS One 2014;9:e93827.

Quast C, Pruesse E, Yilmaz P et al. The SILVA ribosomal RNA gene
database project: improved data processing and web-based
tools. Nucleic Acids Res 2013;41:D590–6.

Ramana VV, Raj PS, Tushar L et al. Rhodomicrobium udaipurense
sp. nov., a psychrotolerant, phototrophic alphaproteobac-
terium isolated from a freshwater stream. Int J Syst Evol Micro-
biol 2013;63:2684–9.

Ramond J, Woodborne S, Hall G et al. Namib Desert primary
productivity is driven by cryptic microbial community N-
fixation. Sci Rep 2018;8:6921.

Royston JP. Algorithm AS 181: the W test for normality. Appl Stat
1982;31:176–80.

Schlesinger WH, Pippen JS, Wallenstein MD et al. Community
composition and photosynthesis by photoautotrophs under
quartz pebbles, Southern Mojave Desert. Ecology 2003:84:
3222–31.

Shade A, Jones SE, Caporaso G et al. Conditionally Rare Taxa Dis-
proportionately Contribute to Temporal Changes in Micro-
bial Diversity. mBio 2014;5:e01371–14.

Shannon P, Markiel A, Ozier O et al. Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction
networks. Genome Res 2003;13:2498–504.

Stegen JC, Lin X, Fredrickson JK et al. Quantifying community
assembly processes and identifying features that impose
them. ISME J 2013;7:2069–79.
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