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ABSTRACT

Functional, physiological traits are the underlying drivers of niche differentiation. A common framework related to niches
occupied by terrestrial prokaryotes is based on copiotrophy or oligotrophy, where resource investment is primarily in either
rapid growth or stress tolerance, respectively. A quantitative trait-based approach sought relationships between taxa, traits
and niche in terrestrial prokaryotes. With 175 taxa from 11 Phyla and 35 Families (n = 5 per Family), traits were considered
as discrete counts of shared genome-encoded proteins. Trait composition strongly supported non-random functional
distributions as preferential clustering of related taxa via unweighted pair-group method with arithmetic mean. Trait
similarity between taxa increased as taxonomic rank decreased. A suite of Random Forest models identified traits
significantly enriched or depleted in taxonomic groups. These traits conveyed functions related to rapid growth, nutrient
acquisition and stress tolerance consistent with their presence in copiotroph-oligotroph niches. Hierarchical clustering of
traits identified a clade of competitive, copiotrophic Families resilient to oxidative stress versus
glycosyltransferase-enriched oligotrophic Families resistant to antimicrobials and environmental stress. However, the
formation of five clades suggested a more nuanced view to describe niche differentiation in terrestrial systems is necessary.
We suggest considering traits involved in both resource investment and acquisition when predicting niche.
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INTRODUCTION contributing factor to the high biodiversity inherent in micro-
bial communities (Prosser 2012). Such differentiation is likely
an inevitable consequence of the principles of competitive
exclusion and natural selection working in tandem-no two

Niche differentiation, the process of physiologically dis-
tinct organisms adapting better to certain conditions, is a
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organisms can theoretically occupy the same niche, as the
poorer competitor must either adapt to a unique niche or be
driven to extinction in that system (Gause 1932; Hutchinson
1957; Leibold 1995). The physiological traits driving niche
differentiation must have the capacity to convey an advantage
to the organism’s ability to survive and reproduce (i.e. fitness)
and be inherited by successive generations (McGill et al. 2006).
Importantly, this implies that microbial communities are not
only diverse in terms of individual 16S rRNA gene sequences,
commonly used to assess community diversity, but also diverse
in regard to their physiological traits.

Explaining niche differentiation through the functional,
physiological traits present in ecological community members
has a long history in macroecology. For example, differences
between beak size and shape in Galdpagos finches was instru-
mental in Darwin’s hypothesis that a common ancestor had
differentiated into multiple, island-specific species. Within the
past century, trait-based analyses have been particularly pre-
dominant in plant ecology, with seed germination in submerged
soil, salt tolerance, carbon to nitrogen biomass stoichiometry,
and leaf mass per unit area acting as examples of traits linked
to niche differentiation (Gleason 1926; Grime 1979; Keddy 1992).
In contrast, trait-based approaches to explain microbial ecology
have only been performed in few instances, such as conceptual-
izing niches of methanotrophs based on abundance in high ver-
sus low methane environments or disturbed versus undisturbed
soils (Ho et al. 2013), correlating increasing growth rate with
increasing ribosomal gene and ribosome-associated gene copy
number (Vieira-Silva and Rocha 2010), deterministic modelling
of nitrification rate based on ammonia and oxygen uptake rate,
temperature sensitivity and growth rate (Bouskill et al. 2012),
defining distinct niches of 32 marine microorganisms based on
clustering of genome-encoded functional proteins (Lauro et al.
2009), identifying habitat generalists and specialists based on
taxon co-occurrence patterns (Barbéran et al. 2012) and recently
comparisons of 23 ‘core’ traits (e.g. motility, carbon metabolism,
optimal pH for growth) across 15 000 diverse host-associated and
environmental genomes (Madin et al. 2020).

A consistent trend noted in macroecology is that traits linked
to how carbon and energy is processed and allocated to biomass
can describe separate niches (Brown et al. 2004). The canonical
example are r and K strategists, where carbon and energy are pri-
marily invested in reproduction, or alternatively invested in tol-
erating biotic and/or abiotic stressors, respectively (Grime 1977).
These dichotomous strategies have been observed in microbial
ecology: copiotrophs are considered as microorganisms with rel-
atively high growth rates that have relatively poor growth effi-
ciency (as carbon incorporated to biomass per unit resource),
relatively high cell maintenance energy costs, dependence on
relatively high concentrations of organic carbon in their envi-
ronment, demonstrate rapid population blooms upon the addi-
tion of organic matter and are not overly tolerant of abiotic stress
(Semenov 1991; Koch 2001; Roller and Schmidt 2015; Ho, Paolo Di
Lonardo and Bodelier 2017). Oligotrophs are considered as the
inverse-low growth rate, high growth efficiency, low cell main-
tenance energy requirements, high substrate uptake affinity,
slow growth yet at a consistent rate and are resilient to abiotic
stress. Although the niche concept in macroecology has a for-
malized definition founded on where a taxon can maintain a sta-
ble population within multi-dimensional environmental space
(Leibold 1995), in this study, niche is used simply to distinguish
between prokaryotes being relatively more copiotrophic versus
oligotrophic.

These distinct niches became associated with specific ter-
restrial taxa at high taxonomic rank based on recent molecular
analyses. In complex microbial communities, the relative abun-
dance of Gammaproteobacteria, Bacteroidetes and Actinobacte-
ria were correlated with rapid growth in response to the addi-
tion of labile organic matter or nitrogen (copiotrophs) (Fierer,
Bradford and Jackson 2007; Goldfarb et al. 2011, Fierer et al. 2012;
Leff et al. 2015). Conversely, the Deltaproteobacteria, Acidobac-
teria, Verrucomicrobia and Planctomycetes were negatively cor-
related with the addition of organic matter or nitrogen (olig-
otrophs) (Fierer, Bradford and Jackson 2007; Fierer et al. 2012;
Leff et al. 2015; Bastida et al. 2016). Conflicting reports exist of
Beta- and Alphaproteobacteria, with some studies describing
them as copiotrophic and others as oligotrophic highlighting
that a consistent niche may not necessarily exist across species
within a large taxonomic group (Ho, Paolo Di Lonardo and
Bodelier 2017). A genomic basis for traits associated with soils
dominated by putative copiotrophs and oligotrophs has been
expertly reviewed elsewhere, and interested readers are referred
to Trivedi, Anderson and Singh (2013) and references therein.
Importantly, these observations suggest that specific traits that
allow terrestrial prokaryotes to occupy these two niches should
(generally) be associated with taxonomy. This is an example of
ecological coherence at high taxonomic rank, whereby mem-
bers within a taxon tend to have similar life strategies, niches
and possess common traits compared to members of other taxa
(Philippot et al. 2010). While ecological coherence of taxa has
been considered previously, the shared, specific traits that drive
niche differentiation in terrestrial prokaryotes remains an open
question.

To identify the traits that differ between terrestrial prokary-
ote taxonomic groups, and whether these traits could describe
the niches they occupy, a functional trait-based approach was
adopted here. We posited that a trait must: (i) be associated
with a physiological process that conveys a fitness advantage
under certain environmental conditions; (ii) be measurable in
well-defined units and (iii) vary more between taxonomic groups
than within a taxonomic group (McGill et al. 2006; Kearney et al.
2010). Traits were measured as discrete counts of chromosome-
encoded proteins shared between at least two of 175 terres-
trial prokaryotes. Markov Chain clustering (MCL) was used to
group proteins as traits based on amino acid sequence similar-
ity (%) akin to a previous approach that confirmed close taxo-
nomic relatives tend to share functional traits in 1374 genomes
(Zhu et al. 2015). This was necessary to compare highly similar
(but non-identical) proteins from separate genomes that carry
out the same biological function. To better identify important,
distinguishing traits of terrestrial prokaryotes, this study dif-
fered from Zhu et al. by: (i) comparing 175 publicly available
terrestrial prokaryote genomes from 35 Families (n = 5 each),
from 11 Phyla and two Kingdoms; (ii) selecting prokaryotes
involved in terrestrial ecosystem processes of interest, includ-
ing organic matter decomposition, nitrogen fixation, nitrifica-
tion, denitrification, methane oxidation, plant-growth promo-
tion, bioremediation of pollutants, pathogenesis and methano-
genesis; (iii) selecting taxa isolated from a wide range of ter-
restrial environments, such as nutrient rich decomposing plant
material and rhizosphere, submerged wetland and rice paddy
soils, polluted soils and nutrient poor hot and cold arid envi-
ronments and (iv) avoiding the inclusion of multiple subspecies
and/or strains of a single species to prevent biases in analy-
ses where highly over-represented species are compared with
species that have fewer cultured representatives. The taxonomic
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system used here is from the NCBI, which is built upon a his-
torical array of culture-dependent, physiological observations
and genetic similarity to cultured isolates as average nucleotide
identity, DNA-DNA hybridisation or 16S rRNA gene homology
(ncbi.nlm.nih.gov/Taxonomy/Browser). The use of this classifi-
cation system and comparison to others is discussed further
below.

We hypothesised that: (i) traits are non-randomly dis-
tributed, with relatively closely related taxa demonstrating
greater similarity than unrelated taxa (ecological coherence); (ii)
traits that are differentially enriched between taxonomic groups
would primarily be involved in metabolism, nutrient acquisition
and/or tolerating environmental stress and (iii) copiotrophic and
oligotrophic taxonomic groups would emerge based on collec-
tive trait enrichment.

METHODOLOGY
Collection of terrestrial prokaryote genomes

A collection of 175 sequenced and annotated genomes was
collated (Table S1, Supporting Information). Listed are the
genome ID, phylogenetic lineage, role in an ecosystem pro-
cess if known, and isolation or genome sequencing reference.
These genomes were sourced from the National Centre for
Biotechnology Information (NCBI) and Joint Genome Institute
(JGI) databases. Genomes were chosen based on several criteria:
(i) five isolates per Family were chosen to have an equal mini-
mum sample size per group, with this sample size being con-
strained by sequenced genomes of under-represented groups in
public databases; (ii) only a single subspecies/strain per species
was included to avoid bias due to over-representation of some
species in public databases; (iii) an emphasis was placed to
include isolates from diverse taxonomic lineages involved in
terrestrial ecosystem processes of interest, such as ammonia
oxidation and methanogenesis and (iv) there was an empha-
sis to include taxonomic groups frequently stated to be either
copiotrophic (e.g. Actinobacteria, Gammaproteobacteria) or olig-
otrophic (e.g. Acidobacteria, Planctomycetes) based on observa-
tions from soil nutrient addition studies (Ho, Paolo Di Lonardo
and Bodelier 2017). Taxonomic annotations for Phyla, Class,
Order etc. were based on NCBI taxonomy as most genomes were
sourced there. The authors recognise that taxonomy is con-
stantly shifting, particularly so with the recent development
of the Genome Taxonomy Database (GTDB) (Parks et al. 2018).
Of note is that the vast majority of taxa here have the same
taxonomy in NCBI as in GTDB, with the exceptions that GTDB
considers the Sporomusaceae as split into three separate Fam-
ilies, the Leuconostocaceae to be Lactobacillaceae, the Promi-
cromonosporaceae to be Cellulomonadaceae, and the Bradyrhi-
zobiaceae and Methylococcaceae have been renamed as Xan-
thobacteraceae and Methylomonadaceae, respectively. Taxon
selection was constrained by availability of genomes for under-
represented groups, such as the Chloroflexi, Verrucomicrobia,
Planctomycetes, Thaumarchaeota and Euryarchaeota. To meet
the n = 5 requirement for balanced statistical analyses, it was
necessary to consider these under-represented groups as ‘Fam-
ilies’. Furthermore, due to the great diversity inherent within
Proteobacterial Classes, Gamma-, Alpha-, Beta- and Deltapro-
teobacteria were considered as independent ‘Phyla’ for statis-
tical analyses here. Indeed, GTDB now defines Deltaproteobac-
teria as its own Phylum, while Betaproteobacteria are consid-
ered as the Burkholderiales Order within the Gammaproteobac-
teria. The total of 175 genomes analysed here falls within the

Finnetal. | 3

upper range of previous hypothesis-driven trait-based studies
which varies from 11isolates (Bouskill et al. 2012) to 214 genomes
(Vieira-Silva and Rocha 2010).

Functional trait clustering

A step-by-step walkthrough of reproducible code to perform
the following analyses on a subset of 12 genomes is available
at: https://github.com/DamienFinn/Trait-based-analyses. First,
a pairwise similarity comparison of all amino acid sequences
(964 951 sequences) across the 175 genomes was performed with
the all versus all basic local alignment tool function for proteins,
BLAST-P (Altschul et al. 1990). Amino acid sequences were subse-
quently clustered as traits via MCL weighted by pairwise amino
acid similarity (Enright, Van Dongen and Ouzounis 2002). Func-
tional traits were grouped at a cluster value of 90.2, whereby
> 65 is considered ‘fair’ and confidence in accurately separat-
ing clusters cannot be higher than 100. The value of 90.2 is not
chosen by the user but rather is a reflection of the quality of clus-
tering in a given dataset. The MCL identified a total of 220664
traits shared between at least two genomes. A random subset
of 1700 amino acid sequences were selected and the similarity
of each sequence within its trait group (as determined by MCL)
versus between other trait groups was visualised as a box and
whisker plot (Fig. S1, Supporting Information) in R version 4.0.0
(R Core Team 2013). About 1700 sequences were chosen to max-
imise comparisons between trait groups under technical lim-
itations, as increasing sequences led to exponential increases
in trait combinations. A Student’s T test was applied to deter-
mine whether sequences were more similar within their trait
group relative to between trait groups in R. Finally, a matrix
of genome x functional trait was generated in a two-step pro-
cess by first associating genome IDs to the MCL output with a
novel script ‘MCLtoReshape2.py’ (available at the above Github
address) and secondly by casting the long data format to a wide
data matrix with the ‘reshape2’ package in R (Wickham 2007).
Box and whisker plots comparing counts of proteins per genome
(input) and counts of functional traits shared by at least two
genomes (output of computational workflow), for the 35 Fami-
lies, is presented as Fig. 1.

UPGMA dendrogram of trait similarity between
genomes

The unweighted pair group method with arithmetic mean
(UPGMA) was chosen to compare distance-based similarity
between taxa based on discrete counts of individual traits per
genome. This method is more robust for comparing similarity
between sample units (i.e. taxa) based on discrete counts of vari-
ables (i.e. individual traits per taxon) rather than neighbour join-
ing or maximum likelihood methods better suited for DNA or
amino acid sequence comparisons (Weins 1998). The UPGMA
was performed in R with the ‘phangorn’ package as described
(Schliep et al. 2017) on a Bray-Curtis transformed dissimilarity
functional trait matrix, generated with the ‘vegdist’ function in
the ‘vegan’ package (Oksanen et al. 2013). To measure ecologi-
cal coherence (C) of taxa within shared Super Groups, Phyla and
Families, a similarity index was adapted from Levins’ Overlap
(Finn et al. 2020a), which measures pairwise similarity in distri-
butions of taxa, as the following:

o ()
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Figure 1. Box and whisker plots of the raw counts of proteins per genome beside the counts of shared functional traits per genome derived from MCL. Taxa n = 5 per

Family.

Where bj; is the pairwise branch length between taxon i and j
in the UPGMA tree, measured here as Bray-Curtis dissimilar-
ity, which is summed for each taxon and its relatives within a
shared Super Group, Phylum or Family, and where n is the num-
ber of taxa being compared within a shared Super Group, Phy-
lum or Family.

Furthermore, the full length 16S rRNA gene of each taxon
was collated from NCBI. Genes were aligned with MUSCLE (Edgar
2004) and a neighbour joining phylogenetic tree was constructed
with the ‘phangorn’ package in R. Phylogenetic distance present
in taxonomic groups (P) was measured as per Equation 1, except-
ing that branch length was in units of DNA sequence similar-
ity as opposed to Bray-Curtis dissimilarity. Finally, simple linear
regression was used to test a relationship between P and C.

Functional trait annotation

To inform the biological process a functional trait facilitated,
traits were annotated with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. This was performed in five
steps: (i) a representative amino acid sequence from each trait
was extracted with the novel script ‘IdentifyTraits.py’; (ii) these
sequences were annotated with KEGG Orthology (KO) terms
using the BlastKOALA database algorithm with a bit score cut-
off value of 75 (Kanehisa et al. 2016); (iii) BRITE functional heirar-
chies associated with each KO term (e.g. KO1179 gene: endoglu-
canase, BRITE 1: Metabolism, BRITE 2: Carbohydrate Metabolism,
BRITE 3: Starch and Sucrose Metabolism) were collected with
the novel script ‘GetBRITEinfo.py’; (iv) Genome ID, trait ID, KO
term and BRITE metadata were all collated with the novel script
‘MatchFCs.py’; and 5) the ‘reshape2’ package in R was used
to create matrices of genome x BRITE hierarchy. Where KEGG

was unable to annotate a trait, it was considered as ‘Unchar-
acterised’. As above, all novel scripts and a step-by-step walk-
through of reproducible code is available at: https://github.com
/DamienFinn/Trait-based_analyses.

Identifying traits differentially enriched in taxonomic
groups

Random Forest classification was chosen as a non-linear, mul-
tivariate cluster-based method capable of identifying numerous
predictor variables (i.e. traits) that define different classes of a
response variable (i.e. taxonomic group). This was performed
with the ‘randomForest’ package as described (Liaw and Weiner
2002). Discrete counts of traits at BRITE level 3 were used (e.g.
Starch and Sucrose Metabolism) as this level had the most accu-
rate resolution of biological processes facilitated by traits. A total
of six Random Forest models were optimised to classify tax-
onomic groups at the level of: (i) Phylum, with Proteobacteria
Classes separated due to their extensive diversity (n = 14); (ii)
Family (n = 35); (iii) specifically for Families in the Proteobacte-
ria (n = 13); (iv) Families in the Actinobacteria (n = 7); (v) Fam-
ilies in the Firmicutes (n = 5) and (iv) Families from ‘Under-
represented’ groups, which were all other Families (n = 10). Opti-
mal numbers of trees grown for each model were: 300, 400,
320, 300, 300 and 400, respectively. Six traits were randomly
selected at each branch. As the Random Forest only identifies
traits that best explain separation of taxonomic groups, and
does not show whether traits have positive or negative asso-
ciations with groups, box and whisker plots and Fisher’s Least
Significant Difference (LSD) post hoc tests were performed with
the ‘agricolae’ package (de Mendiburu 2014) to definitively state
which taxonomic groups were significantly enriched or depleted
in traits identified via Random Forest.
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Hierarchical clustering of Families by defining traits

Finally, the relationship between Families based on similarity
in counts of 60 traits was assessed via hierarchical clustering.
Traits were chosen based on being selected via the above Ran-
dom Forest models in this study, and from previous studies that
identified traits associated with copiotroph-oligotroph growth
strategies in single species or mixed communities (Lauro et al.
2009; Vieira-Silva and Rocha 2010; Roller and Schmidt 2015;
Pascual-Garcia and Bell 2020). The mean of trait discrete counts
in the five Family members was used as representative of each
Family. Comparing trait means between Families was consid-
ered acceptable as prior LSD post hoc tests had demonstrated sig-
nificant differences between Families. As traits had highly vari-
able copy numbers per Family (e.g. ABC transporter trait copies
ranged from 10-350, while bacterial chemotaxis traits ranged
from 0 to 15 copies) the trait copies were normalised for more
appropriate comparisons. Normalised variance was calculated
across the 35 Families for all traits with the ‘decostand’ function
in the ‘vegan’ package (Oksanen et al. 2013). Hierarchical cluster-
ing of Families based on normalised trait counts was visualised
with the ‘heatmap.2’ function in the ‘gplots’ package (Warnes
et al. 2019).

RESULTS
Trait clustering and UPGMA

The 964951 amino acid sequences encoded by the 175 genomes
were clustered as 220 664 traits by MCL. A random subset of 1
700 traits showed that amino acid sequence similarity within
traits ranged from 62.4%, 82.5% to 100% for the 1st quartile, mean
and 3rd quartile, respectively (Fig. S1, Supporting Information).
Amino acid sequence similarity between traits ranged from
27.6%, 34% to 37.8% for the 1st quartile, mean and 3rd quartile,
respectively. A Student’s T test found that sequences grouped
together as a trait were significantly more similar to each other
than to sequences grouped as different traits (t value = 61.3,
p = 2 x 107%). Manual comparisons of amino acid sequences
within several traits supported clustering of proteins with iden-
tical biological function based on KEGG annotation. Thus, the
MCL was considered to perform well. However, the minimum
amino acid sequence similarity within traits was 23.27% and
maximum similarity between traits was 85.24%, indicating that
across the 220664 traits, a small proportion of dissimilar amino
acid sequences were grouped as a trait incorrectly, while some
amino acid sequences that were highly similar were consid-
ered different traits. This small number of incorrectly clustered
sequences can be explained by the MCL clustering efficiency
being 90.2, out of a possible 100.

A comparison of the number of proteins per genome at the
Family level (mean = 5533), found that there were fewer func-
tional traits per genome (mean = 4240) (Fig. 1). These represent
the input number of proteins per genome before trait clustering
and the output number of traits after clustering, respectively. As
only functional traits shared between at least two genomes were
considered here, the loss of highly genome-specific traits that
could not be compared between genomes was expected. Despite
this drop in average traits per genome, this initial approach
serves as a proof of concept to demonstrate that numbers of
traits per genome at the Family level reflect trends in proteins
per Family, and thus the MCL was not distorting trait clustering

(Fig. 1).
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The UPGMA dendrogram comparing the 220 664 traits per
genome showed that trait compositions were non-randomly dis-
tributed (Fig. 2A). Specifically, Thaumarchaeota, Euryarchaeota,
Acidobacteria, Betaproteobacteria, = Gammaproteobacteria,
Alphaproteobacteria, Cyanobacteria, Verrucomicrobia, Planc-
tomycetes, Bacteroidetes, Actinobacteria, Firmicutes and
Deltaproteobacteria clustered together preferentially. The
Chloroflexi were split into two clusters: one Dehalococcoides
and one Ktedonobacter/Herpetosiphon/Anaerolinea cluster. Several
prokaryotes did not cluster with their high taxonomic rank,
including a Planctomycetes bacterium, Polyangium brachysporum
(Deltaproteobacteria), Agreia pratensis (Actinobacteria) and
Sporomusa ovata (Firmicutes). Also of interest was that, in regard
to distance between terminal nodes (as noted by the scale bar),
the Betaproteobacteria and Gammaproteobacteria were more
similar to each other than the Alphaproteobacteria, which
formed its own large, diverse clade. A neighbour joining tree
of full length 16S rRNA genes showed that all taxa clustered
preferentially based on their taxonomic nomenclature at high
taxonomic rank, including the Chloroflexi, indicating that the
discrepancies in the UPGMA were not due to misclassification
of the individual taxa (Supplementary Fig. 2A).

A simple index to measure trait similarity, as ecological
coherence (C), within groups was devised (eq. 1). C increased
as taxonomic rank decreased: Super Group < Phylum < Fam-
ily (Fig. 2B). C was lowest for the larger, more diverse Proteobac-
teria and Terrabacteria (Super Group), and Firmicutes and Acti-
nobacteria (Phylum). As the number of taxa being compared at
the Super Group (e.g. Terrabacteria = 70 versus Acidobacteria =
10) and Phylum (e.g. Actinobacteria = 35 versus Thaumarchaeota
= 5) were variable, the most meaningful comparisons between
groups are at the Family level (n = 5 each). With the exception
of the highly divergent ‘Acidobacteria Lineage’, all Families had
a C greater than 0.3, with certain groups in the Alphaproteobac-
teria (Beijerinckiaceae), Firmicutes (Bacillaceae and Leuconos-
tocaceae) and Actinobacteria (Promicromonosporaceae) being
highly coherent (C > 0.55). Indeed, all individual Proteobacte-
rial Families had C > 0.4, indicating that all five taxa within
each of these Families had similar trait compositions. Despite
not truly belonging to the same Family as per NCBI taxonomy,
the C > 0.33 of the five Cyanobacteria, Thaumarchaeota and the
Methanogen Lineage taxa was similar to other Families from the
Bacteroidetes and Firmicutes. Thus, the UPGMA demonstrated
that taxonomic relatives at the Phylum level tended to cluster
with each other preferentially based on trait composition, and
secondly that while similarity was broadly highest at low taxo-
nomic rank, some Families were more coherent than others.

Phylogenetic distance (P) of each taxonomic group increased
with decreasing taxonomic rank, and was highest in Proteobac-
teria, Actinobacteria and Firmicutes Families (Fig. S2B, Support-
ing Information). There was a strong positive linear relationship
between P and C (y = 0.86 x — 0.25, R> = 0.39, P < 0.001) sup-
porting the result that taxonomic groups of closer related taxa
tended to share more similar compositions of traits.

Random Forest trait identification

The KEGG annotated traits belonged to 260 different BRITE 3 cat-
egories. The percentage of traits that could not be annotated
(and were termed ‘Uncharacterised’) ranged from 28% to 65% per
genome, being particularly high in the Archaea. On average, 47%
of traits per genome were Uncharacterised with a standard devi-
ation of 9.5%.
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Figure 2. (A) Unweighted pair group method with arithmetic mean (UPGMA) dendrogram comparing similarity in composition of 220 664 traits across the 175 ter-
restrial microbial taxa. The Phylum of each taxon is highlighted. The scale bar units represent Bray-Curtis dissimilarity. (B) Comparisons of ecological coherence
(C) between taxa belonging to the same Super Group, Phylum and Family. C, which varies between 0 and 1, was measured from branch lengths in a). Values of C
approaching 1 indicate an ecologically coherent group with a similar composition of traits. Super groups were as follows: Proteobacteria, all Gamma-, Alpha-, Beta-
and Deltaproteobacteria; Terrabacteria, all Actinobacteria, Firmicutes, Chloroflexi and Cyanobacteria; FCB were Bacteroidetes; Acidobacteria, all Acidobacteria; PVC,
Verrucomicrobia and Planctomycetes; TACK were Thaumarchaeota; Euryarchaeota were Euryarchaeota.

Of the 260 BRITE 3 categories, the 60 most important traits
in separating all Phyla and Families are ranked by importance
measured as Mean Decrease in Accuracy (MDA) of the Random
Forest models (Fig. 3). This is a measure of the average increase
in classification error during permutation of trees (n = 300-400)
when that particular trait is missing from the tree. For exam-
ple, the accuracy of classifying Families was most improved by
inclusion of the ABC transporters trait. Based on the identified
traits, the Phylum model was capable of successfully classifying
81.14% of individual taxa. The Family model was capable of suc-
cessfully classifying 71.43% of individual taxa. Confusion matri-
ces for both models are presented as Tables S2-S4 (Support-
ing Information), and show that classification was particularly
difficult for Chloroflexi and Planctomycetes (classification error
>80%) in the Phylum model and for Cellulomonadaceae and the
divergent Acidobacteria Lineage (classification error >80%) in
the Family model. Random Forest models were robust against
variation in P within Families, for example the nine families with
all taxa perfectly classified ranged in P from the lowest (0.68) to
highest (0.9).

The important traits in classifying the taxonomic groups

were involved in: (i) metabolism and nutrient acquisition (oxida-
tive phosphorylation, tricarboxylic acid (TCA) cycle, glyoxy-
late/decarboxylate, thermogenesis, propanoate, starch/sucrose,
nitrogen, methane metabolism, synthesis of antioxidants such
as glutathione, ATP-binding cassette (ABC) transporters, sugar
uptake via phosphotransferase systems (PTS)); (i) respond-
ing to environmental cues and stressors (protein kinases,
two-component systems, transcription factors, proteasome,
protein chaperones, RNA transport, chromosome repair via
non-homologous DNA end joining); (iii) core cell physiol-
ogy (flagella assembly, chemotaxis, sporulation, lipopolysac-
charide (LPS), peptidoglycan, glycerolipid, sphingolipid and
lipoarabinomannan (LAM) biosynthesis) and (iv) cell-cell inter-
actions (beta-Lactam resistance, general secretion systems
and Type IV secretion systems). Box and whisker plots
of discrete counts of identified traits, and LSD results,
are provided as Figs S4-S7 (Supporting Information). The
Families significantly enriched and depleted in these traits
are listed in Table 1. The Phyla significantly enriched and
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Figure 3. Random Forest identified traits that best explain separation of taxa groups at Phylum and Family taxonomic rank. Mean Decrease in Accuracy (MDA) is a
measure of the average increase in classification error during permutation of trees if the trait is not included in the model. For example, the Family Random Forest

was most accurate when ABC transporters were included in the model.

depleted in identified traits are listed in Table S9 (Supporting
Information).

To better identify the more subtle differences between Fam-
ilies in the Proteobacteria, Actinobacteria, Firmicutes and the
‘Under-represented’ Phyla, individual Random Forest models
were constructed for each of the four groups. The successful
classification rates were 72.31%, 74.29%, 76% and 72%, respec-
tively. Confusion matrices for each model are presented as
Tables S5-S8 (Supporting Information). The models were unable
to reliably classify Bradyrhizobiaceae and the divergent Aci-
dobacteria Lineage (classification error >80%).

Figure S8 (Supporting Information) shows the most impor-
tant traits in classifying the four groups. Unique traits not
identified in the prior Phylum and Family models were: (i)
for Proteobacteria, glycosyltransferases, butanoate metabolism,
aminotransferases, ribosome biogenesis, mRNA biogenesis and
degradation; (ii) for Actinobacteria, porphyrin and chlorophyll
synthesis, pyruvate metabolism, aminotransferases, fatty acid
and aliphatic hydrocarbon metabolism, polyketide and Type
II polyketide biosynthesis, antimicrobial resistance genes; (iii)
for Firmicutes, lysine, folate and varied amino acid synthe-
sis, porphyrin and chlorophyll synthesis, DNA replication, bac-
terial toxins, penicillin and cephalosporin synthesis and (iv)
for the ‘Under-represented’ taxa, glycosyltransferases, pepti-
dases and inhibitors, photosynthesis and AMP-activated pro-
tein kinases. Box and whisker plots of discrete counts of
identified traits, and LSD results, are provided as Figs S9-
S12 (Supporting Information). Tables summarising Families
enriched and depleted in these traits are included as Tables S10
and S11.

Hierarchical clustering of defining traits

Hierarchical clustering based on 60 traits, identified from Ran-
dom Forest in this study and by previous copiotroph-oligotroph
studies, indicated five general clades. The dendrogram on

the y axis of Fig. 4 shows clustering of taxa as these five
clades. The dendrogram on the x axis shows clustering of co-
occurring traits. Clade I consisted of Proteobacteria, specif-
ically the Pseudomonadaceae, Burkholderiaceae, Rhodospiril-
laceae, Bradyrhizobiaceae and Rhizobiaceae. These Families
were uniquely enriched in flagellar assembly, chemotaxis, pyru-
vate metabolism, glutathione metabolism, ABC transporters,
benzoate metabolism, transcription factors, glyoxylate and fatty
acid metabolism. Clade II, also Proteobacteria, included Nitro-
somonadaceae, Neisseriales Lineage, Methylocystaceae, Beijer-
inckiaceae, Methylococcaceae and Moraxellaceae. These Fami-
lies clustered based on being enriched in Clade I traits, but to
a lesser degree than the Pseudomonadaceae, Burkholderiaceae,
Rhodospirillaceae, Bradyrhizobiaceae and Rhizobiaceae. Excep-
tions included the absence of benzoate metabolism and enrich-
ment of methane metabolism in several Clade II Families.

Clade III, a diverse collection of Bacteroidetes (Chitinopha-
gaceae, Cytophagaceae), Verrucomicrobia, Planctomycetes,
divergent Acidobacteria Lineage and the Deltaproteobacteria
(Polyangiaceae, Myxococcaceae), shared enrichment of sph-
ingolipid metabolism, beta-Lactam resistance, penicillin and
cephalosporin biosynthesis, LPS biosynthesis, glycosyltrans-
ferases and starch/sucrose metabolism. Many of these Families
shared Clade I and II traits, including Type IV secretion system,
oxidative phosphorylation, TCA cycle, PTS, nitrogen and glyc-
erophospholipid metabolism. The absence of glutathione in
non-Deltaproteobacterial Clade IIl Families was notable.

The three Actinobacteria Families in Clade IV, Mycobacteri-
aceae, Frankiaceae and Streptomycetaceae, were highly similar
to each other because they were enriched in Type II polyketide
biosynthesis. They also shared some Clade I traits (ABC trans-
porters, transcription factors, pyruvate, benzoate and fatty acid
metabolism) and Clade III traits (membrane trafficking, tran-
scription machinery, polyketide biosynthesis and starch/sucrose
metabolism). Similar to Clade III, these Actinobacteria were also
depleted in glutathione traits.
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Figure 4. Hierarchical clustering of Families based on 60 traits selected from Random Forest and previously identified copiotroph-oligotroph traits. Families are clustered
along the y axis, and specific co-occurring traits are clustered on the x axis. Five general Clades were identified based on Family clustering. Units are normalised variance

in mean counts of traits per Family.

Finally, taxa within Clade V were similar to each other
due to being depleted in traits shared among the other
clades. Cyanobacteria were the only taxa that possessed pho-
tosynthesis traits. Lactic acid bacteria (Lactobacillaceae and
Leuconostocaceae) were enriched in Unclassified nucleotide
metabolism. The Archaea (Thaumarchaeota and Methanogen
Lineage) shared eukaryote-like traits, proteasome, basal tran-
scription factors and RNA transport. The Archaea were enriched
in carbon fixation traits. Methanogens were also enriched
in methane metabolism. Ammonia oxidising Thaumarchaeota
were not enriched in nitrogen metabolism, however they were
enriched in traits annotated by KEGG as Global maps only
(unclassified metabolism). Further analysis found this to be the
fpr gene, encoding a ferredoxin-flavodoxin NADP* reductase
(K00528). Non-lactic acid bacteria of the Firmicutes (Bacillaceae,
Sporomusaceae and Clostridiaceae) were enriched in sporula-
tion and motility traits.

DISCUSSION

Non-random trait clustering demonstrates ecological
coherence of taxa

A trait-based approach to investigate taxonomic relationships
and potential biological function was carried out with a collec-
tion of 175 terrestrial prokaryotes. We hypothesised that traits
would be non-randomly distributed amongst taxonomic groups,
supported by previous observations that noted closely related
taxa are isolated from similar habitats (Philippot et al. 2010).

Similarity in the composition of 220664 traits, within 175 taxa,
demonstrated strong agreement with established taxonomy at
high (Phyla) and low (Family) rank (Fig. 2A). The exceptions to
this ecological coherence at high rank were the division of the
Chloroflexi and an individual from each of the Planctomycetes,
Deltaproteobacteria, Actinobacteria and Firmicutes clustering
with unrelated Phyla. These taxa were not mischaracterised, as
based on phylogenetics of the full length 16S rRNA gene (Fig.
2A, Supporting Information). Trait similarity between related
taxa, measured as C, tended to be highest at low rank (Fig. 2B).
Uneven sample sizes between groups within Super Group and
Phyla make comparisons at this level difficult-the inclusion of
many diverse Firmicutes and Actinobacteria likely drove C to be
lower here than in Thaumarchaeota and Euryarchaeota. How-
ever, equal comparisons at the Family level demonstrated inter-
esting variability in coherence. All Proteobacterial Families had
relatively high coherence (C = 0.4-0.6). The high C in Beijerinck-
iaceae is of particular interest as this group contained both spe-
cialist methanotroph (Methylocapsa, Methylocella), methylotroph
(Methyloferula) and generalist heterotroph (Beijerinckia spp.) taxa.
With such varied metabolic traits, one could reasonably expect
C to be relatively low within this Family. The Beijerinckiaceae
appear to have evolved from a common methylotrophic ances-
tor and still share traits for nitrogen fixation and tolerance for
low pH soils (Tamas et al. 2014), and the high C measured here
indicates that many additional shared traits remain. Both the
relatively recent divergence of Families from a common ancestor
and the higher number of shared traits are likely causes of the
higher C observed at low taxonomic rank. The differing values
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of C for Methanogen and photosynthetic Cyanobacteria func-
tional groups (0.33 and 0.44, respectively) is also worthy of note.
Despite all five taxa in each group performing the same core role
in a community, the individual isolates came from varying envi-
ronments. The methanogens were isolated from a range of geo-
graphically separate wetlands, rice paddy soil and farm slurry
and, while the Cyanobacteria were also isolated from geograph-
ically separate environments, they were all from sandy deserts
or other nutrient poor, arid soils (Table S1, Supporting Informa-
tion and references therein). Ultimately a taxon’s trait compo-
sition will be affected by its functional role in a community, its
evolutionary life-history (e.g. Beijerinckiaceae described above)
and its local environment.

However, these results are dependent on accurate taxonomic
classification, and the C of Sporomusaceae, relatively low com-
pared to other Families here, supports splitting this group into
Sporomusaceae, Anaeromusaceae and Pelosinaceae by GTDB
(Parks et al. 2018). Finally worth noting, some groups at high rank
were considered as ‘Families’ here due to the number of avail-
able terrestrial genomes, e.g. Cyanobacteria and Chloroflexi.
Even so, Cyanobacteria demonstrated a higher C than many
taxonomically defined Families, perhaps due to their common
role as primary colonisers of nutrient-poor soils (Garcia-Pichel,
Lopez-Cortes and Niibel 2001). The number of Families are too
numerous to discuss each at length here, but C was an effective
means of measuring and comparing coherence between groups
in the UPGMA tree.

While the method of comparing taxa here differs from other
studies, the results were not surprising as many 16S rRNA gene
surveys of terrestrial systems consistently demonstrate ecolog-
ical coherence at high rank. For example, independent stud-
ies of increasing agricultural intensity in soils show reductions
in Actinobacteria abundance (Philippot et al. 2009; Jangid et al.
2011). Nitrogen addition to soils frequently enriches numer-
ous taxa within the Actinobacteria and Proteobacterial Classes
while negatively affecting taxa within the Verrucomicrobia and
Planctomycetes (Wessen, Hallin and Philippot 2010; Fierer et al.
2012; Leff et al. 2015; Bastida et al. 2016). Arid, nutrient poor
environments select for Actinobacteria-dominated communi-
ties (Cary et al. 2010; Crits-Christoph et al. 2013) and, in the
absence of other primary producers, allow biological soil crust
forming Cyanobacterial taxa to establish (Garcia-Pichel, Lopez-
Cortes and Niibel 2001). Anoxic wetland and rice paddy envi-
ronments support diverse communities of anaerobic Firmicutes,
Chloroflexi and methanogenic Archaea (He et al. 2019; Finn
et al. 2020b). These trends were noted prior to bioinformatic
advances of metagenome assembled genomes (MAGs) that allow
for the specific comparison of individual traits between uncul-
tured environmental prokaryote genomes (Hug et al. 2013). The
generation of MAGs has emerged as a useful tool for identifying
traits necessary for life in such environments, and particularly
for expanding knowledge of severely under-represented, diffi-
cult to culture taxonomic groups. For example, the recent recon-
struction of 52515 MAGs from a wide range of host-associated
and environmental metagenomes was able to increase genomic
information of Planctomycetes and Verrucomicrobia by 79% and
68%, respectively (Nayfach et al. 2021). Importantly, both 16S
rRNA gene surveys and MAGs demonstrate that some functional
traits that facilitate life under certain environmental conditions
are intrinsically linked to taxonomy.

The ecological coherence observed in Fig. 2 does not imply
that closely related taxa (e.g. Bacillus velezensis LS69 and Bacil-
lus amyloliquefaciens plantarum FZB42) have identical phenotypes.
Close relatives possess a combination of core and accessory
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genes (traits) and the presence of even a single accessory gene is
sufficient to dramatically alter a strain’s phenotype (van Rossum
et al. 2020). Rather, our results (Fig. 2) demonstrate that the
composition of core and accessory traits in alphaproteobacte-
rial Beijerinckiaceae are most similar to each other, relative to
alphaproteobacterial Rhizobiaceae or to Actinobacteria, Firmi-
cutes etc.

What can the Random Forests tell us?

The Random Forest works by identifying the traits that are most
reliable in classifying individual Phyla and Families. It selects
traits that tend to be: (i) of equal copy number per genome within
a taxonomic group; and (ii) that differ markedly in copy number
between taxonomic groups, since distinct separation of copies
will maximise successful classification. A clear example of this
is the consistent identification of eukaryote-like basal transcrip-
tion factors, proteasome and RNA transport present in the Thau-
marchaeota and Euryarchaeota, since they are absent from the
majority of Bacterial Phyla. The binary nature of these traits (yes
Archaea, no Bacteria) make them strong indicators. The pres-
ence of these and more eukaryote-like vesicular trafficking and
actin traits have been noted in the Archaeal TACK super-phylum
previously, and lend credence to the hypothesis that eukaryotes
are descended from Archaea (Embley and Martin 2006; Spang
et al. 2015). However, the Random Forest will not identify a trait
unique to Can. Nitrosotalea devanterra that is absent from other
Thaumarchaeota, as this single trait will not improve classifi-
cation of the group as a whole. Consequently, the traits identi-
fied via Random Forest all tended to be core, fundamental traits
shared by other members of a taxon’s Phylum/Family.

Many of the best traits for distinguishing taxa have been
historically used by microbiologists to do exactly that. These
included fundamental cell physiology traits, such as oxidative
phosphorylation, LPS biosynthesis, sporulation, flagellar assem-
bly and chemotaxis. The Phylum model separated Betapro-
teobacteria, Actinobacteria and Bacteroidetes as taxa with the
highest copies of oxidative phosphorylation traits. Firmicutes,
Chloroflexi and Methanogens were identified as anaerobes
depleted in oxidative phosphorylation, and all other taxa as sit-
ting in between (Fig. S4 and Table S9, Supporting Information).
Some Gram-negative Families were significantly enriched in LPS
biosynthesis compared to others. These were the Pseudomon-
adaceae, Burkholderiaceae, Chitinophagaceae, divergent Aci-
dobacteria and Verrucomicrobia (Table 1). This has been noted
in soil communities previously. The extensive repertoire of LPS-
associated genes in Chitinophagaceae, Acidobacteria and Ver-
rucomicrobia likely play a critical role in enhancing soil aggre-
gation (Cania et al. 2019) potentially through high LPS produc-
tion and/or biofilm formation (discussed further below). In a
demonstration of the robustness of the methods used here, the
highly unusual Firmicute Sporomusaceae were shown to pos-
sess similar counts of LPS biosynthesis traits relative to most
Gram-negative Families (Table S4, Supporting Information) in
addition to sharing heat-resistant spore formation with Bacil-
laceae and Clostridiaceae (Table 1). The presence of both traits
in a single Family have been remarked upon previously and
used to conceptualise the evolution of Gram-negative versus
Gram-positive lineages (Stackebrandt et al. 1985). The Sporo-
musaceae were also shown to have high Porphyrin and Chloro-
phyll metabolism traits in the Firmicutes model (Table S10, Sup-
porting Information). The capacity to dechlorinate the soil pollu-
tant perchloroethene to trichloroethylene via a porphyrin-based
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corrinoid is yet another interesting trait of this Family (Terzen-
bach and Blaut 1994).

Finally, flagella assembly and chemotaxis traits identi-
fied Alphaproteobacteria, Betaproteobacteria and Acidobacte-
ria as Phyla that were particularly enriched with this mecha-
nism of motility, while bacterial Actinobacteria, Bacteroidetes,
Cyanobacteria, Chloroflexi and Verrucomicrobia were depleted
(Table S9, Supporting Information). The Proteobacteria, Firmi-
cutes and Under-represented models were better suited for
identifying specific Families homogenously enriched or depleted
in bacterial flagella and chemotaxis (Tables S10 and S11, Sup-
porting Information). Enriched Families included the Rhodospir-
illaceae, Nitrosomonadaceae, Neisseriales lineage, divergent
Acidobacteria lineage, Sporomusaceae, Bacillaceae, Clostridi-
aceae and Planctomycetes. Other forms of motility such as
twitching and gliding have been noted in the Pseudomon-
adaceae, Myxococcaceae and Cyanobacteria (McBride 2001) but
these traits were not identified by the Random Forest as being
homogenously enriched in any Families. Furthermore, while
Thaumarchaeota and Methanogens were both identified as
being depleted in bacterial flagella assembly and chemotaxis
traits (Tables S9 and S11, Supporting Information), Archaea
possess a structurally distinct flagellum more similar to the
Type IV bacterial pilus (Jarrell and Albers 2012). These taxa
were not enriched with Type IV pilus, either, and it is pos-
sible that archaeal flagella may have failed proper character-
isation by KEGG. Thus, while some Families were relatively
enriched/depleted in bacterial flagella and chemotaxis traits,
specific taxa depleted in these are not necessarily non-motile.

In summary, while the Random Forests may overlook cer-
tain traits in individual taxa, the models were highly robust
in detecting conserved, shared traits within a Phylum/Family.
Here the ‘depth’ of shared traits is limited by the number of
taxa that could be considered as Phylum or Family. In future,
if five (or more) taxa belonging to the same Genus or even
Species could be compared, unique traits would be observed to
explain how these subgroups have evolved from their respec-
tive Families to occupy distinct niches. Ideally the selection of
individual taxa within groups for such future comparative anal-
yses would also be standardised based on phylogenetic dis-
tance, either with P or a similar method, that would improve the
robustness of trait-based comparisons at such a fine taxonomic
level.

Plant-derived carbon metabolism and nutrient
acquisition

Secondly, we hypothesised that the traits differentially enriched
between taxonomic groups would largely reflect those asso-
ciated with copiotrophs or oligotrophs, namely metabolism,
nutrient acquisition and environmental stress response and
tolerance. Of fundamental interest to soil microbiologists
is the decomposition of plant biomass. This is the primary
source of organic carbon to non-arid terrestrial systems (Kogel-
Knabner 2002) and the transformation of plant material to
substrates bioavailable for microorganisms is essential for
community growth and activity. The traits involved in plant
material catabolism belonged to the BRITE categories ‘Starch
and Sucrose Metabolism’ (e.g. extracellular cellobiosidases,
endoglucanases, glucosidases, trehalases, amylases) and ‘Gly-
cosyltransferases’, all of which are carbohydrate activated
enzymes (CAZy). The Families particularly enriched in these
traits were the Polyangiaceae, Myxococcaceae, Rhizobiaceae,

Streptomycetaceae, Mycobacteriaceae, Frankiaceae and Ver-
rucomicrobia (Table 1; Table S11, Supporting Information).
Genomic and culture-dependent analyses support Sorangium
cellulosum (Polyangiaceae), Streptomyces coelicolor A3(2) (Strep-
tomycetaceae) and Chthoniobacter flavus (Verrucomicrobia) as
having particularly large genomes with extensive repertoires for
cellulose, hemicellulose, pectin and lignin degradation (Bentley
et al. 2002; Sangwan et al. 2004; Schneiker et al. 2007). Compar-
ative genomics analyses have also identified Actinobacteria,
Acidobacteria and Verrucomicrobia as being enriched in numer-
ous enzymes for cellulose, hemicellulose and starch catabolism
(Trivedi, Anderson and Singh 2013). In situ these Families likely
play a critical role in making organic carbon bioavailable as di-
and monosaccharides for the microbial community.

The Families equipped with many copies of high-affinity
sugar uptake ‘Phosphotransferase systems’ (3-14 copies) did
not necessarily correspond to those enriched with CAZy-only
the Myxococcaceae and Verrucomicrobia were enriched in both.
Pseudomonadaceae, Rhodospirillaceae, Neisseriales lineage and
Clostridiaceae were only enriched in PTS. Despite being enriched
in CAZy, the Frankiaceae were simultaneously depleted in PTS.
The complex interplay between taxa capable of producing extra-
cellular CAZy and competitors that rapidly scavenge available
di- and monosaccharides has been well described by models
that predict such competitive interactions exert important con-
trols on the growth rate of the community as a whole (Freilich
et al. 2011) and may even act to aid terrestrial carbon storage
and limit carbon dioxide emissions from microbial respiration
(Kaiser et al. 2015). Here, we identified the ‘specialist’ Families
enriched in CAZy traits versus the ‘opportunists’ scavenging for
sugars via PTS (Table 1; Table S11, Supporting Information).

ABC transporters facilitate the ATP-dependent uptake of sol-
uble compounds across membranes or export waste metabo-
lites, extracellular enzymes and toxins (Young and Holland 1999;
Higgins 2001). This means of active transport allows microor-
ganisms to acquire nutrients with high affinity at concentra-
tions of 5-500 ug carbon L-! versus the less efficient diffu-
sion of nutrients across membranes, dependent on extracellu-
lar concentrations of 0.5-5 mg carbon L' (Kuznetsov, Dubin-
ina and Lapteva 1979). In the spatially heterogenous soil envi-
ronment where the concentration of bioavailable carbon sub-
strate often limits growth (Blagodatsky and Richter 1998), pos-
session of high affinity transporters likely provides a competi-
tive advantage. The rhizosphere-associated Rhodospirillaceae,
Rhizobiaceae and Burkholderiaceae tended to have the high-
est trait copies of ABC transporters (100-350 copies per genome,
Fig. S4, Supporting Information). The diverse, non-rhizospheric
Deltaproteobacteria, Actinobacteria, Firmicutes, Cyanobacteria
and Verrucomicrobia all had greater than 50 copies per genome,
highlighting the importance of these traits in soil. The par-
ticularly high gene copy number in rhizosphere-associated
taxa from presumably nutrient-rich environments contrasts the
assumption that ABC transporters are considered to play a
greater role in nutrient-poor environments (Lauro et al. 2009).
Comparative genomics analyses of soil bacteria have also found
putatively copiotrophic Proteobacteria and Firmicutes to be par-
ticularly enriched in PTS and ABC transporters (Trivedi, Ander-
son and Singh 2013). In this study, the transporters enriched in
rhizosphere-associated taxa were primarily aimed at scaveng-
ing maltose, phosphate, amino acids, oligopeptides and export
of LPS, and these results suggest that these traits are not only
for survival in nutrient-poor environments but also likely con-
fer a competitive advantage in the rhizosphere. As prokaryotes
compete simultaneously with other prokaryotes and plants for
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nitrogen and phosphorus in the rhizosphere, the high affinity
acquisition of such nutrients is likely critical for growth.

Nitrogen and methane metabolism

The BRITE category ‘Nitrogen metabolism’ encompasses nitro-
gen fixation, denitrification, ammonia oxidation and synthe-
sis of glutamate/glutamine which are critical amino acids for
peptide synthesis. Since nitrogen limitation acts as an impor-
tant control on soil microbial activity, these traits are also
of interest to soil microbiologists. Three Proteobacterial Fam-
ilies, Rhodospirillaceae, Bradyrhizobiaceae and Burkholderi-
aceae, were particularly enriched in these traits. Genomic and
culture-dependent analyses show these Families to be free-
living or symbiotic diazotrophs in soil and freshwater envi-
ronments (Madigan, Cox and Stegeman 1984; Itakura et al.
2009; de los Santos et al. 2018). Given their significantly greater
copies of nitrogen-fixing genes, these Families may be a par-
ticularly important source of organic nitrogen for soil com-
munities. Saprotrophic Mycobacteriaceae genomes, also iden-
tified as nitrogen cyclers, tend to have many copies of genes
involved in ammonia uptake and glutamate synthesis (Amon,
Titgemeyer and Burkovski 2010). This taxon may play an alter-
native role in converting mineral nitrogen to biomass where
organic nitrogen as protein in excreted products or necromass
can undergo proteolysis and uptake between other community
members. The identification of Sporomusaceae as enriched in
‘Nitrogen metabolism’ traits is unusual as these obligate anaero-
bic fermenters cannot use nitrate as an electron acceptor (Moller
et al. 1984). Nor were the Sporomusaceae enriched in ammo-
nia uptake or glutamate synthesis genes (data not shown),
and so it is uncertain what role this Family plays in nitro-
gen cycling. Thaumarchaeota and Nitrosomonadaceae, known
ammonia oxidisers, were not enriched in ‘Nitrogen metabolism’
traits relative to other Families (Fig. S5, Supporting Information)
despite Nitrosomonadaceae possessing multiple copies of the
operon responsible for ammonia oxidation (Klotz and Norton
1998). Specific traits may be overlooked here if the BRITE cate-
gory includes many diverse KOs (e.g. ammonia oxidation, nitro-
gen fixation, glutamate synthesis etc).

Another specialised metabolic pathway of interest involves
‘Methane metabolism’ that includes production and oxidation of
a potent greenhouse gas. Unsurprisingly, the Methanogens and
methanotrophic Methylococcaceae, Beijerinckiaceae, Methylo-
cystaceae were all enriched in traits involved in methane
metabolism. While methane oxidation can be present in some
taxa from the Verrucomicrobia (Op den Camp et al. 2009) the
above proteobacterial representatives act as the primary terres-
trial methane sink (Dunfield 2007; Conrad 2009).

Sensing, responding and tolerating the environment

A particularly interesting divergence of traits were involved in
how taxa detect and respond to environmental stimuli. Gram-
negative Pseudomonadaceae, Rhodospirillaceae, Bradyrhizobi-
aceae and Myxococcaceae were enriched in two-component
systems. These membrane-bound histidine kinases respond
rapidly to extracellular stimuli (Galperin 2005) and these traits
were primarily involved in nitrogen, potassium, initiating
chemotaxis and C,-dicarboxylate responses. Families enriched
in transcription factors were the Myxococcaceae, Polyangiaceae,
Streptomycetaceae, Mycobacteriaceae and Frankiaceae. These
factors regulate transcription in response to intracellular cues
and here these factors were primarily rpoD (housekeeping),
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rpoH (heat-shock/protein damage), rpoE (extra-cellular cytoplas-
mic stress) and rpoS (starvation) responses (Shimada, Tanaka
and Ishihama 2017). The genomes of these taxa are also heav-
ily enriched in regulatory genes for complex developmental
stages, fruiting bodies and/or filamentous branching growth in
soils (Bentley et al. 2002; Gao, Paramanathan and Gupta 2006;
Schneiker et al. 2007). Thus, certain taxa may respond primarily
to extracellular cues while others strictly monitor and respond
to changes in cell homeostasis. This trend has been noted previ-
ously in 167 genomes across various Bacteria and Archaea, Pro-
teobacteria had a higher ratio of sensors for external versus inter-
nal stimuli and were considered ‘extroverts’, while Cyanobacte-
ria were considered strong ‘introverts’ focussed on responding
to internal stimuli (Galperin 2005).

As mentioned above, Archaea exhibited unique traits in basal
transcription and protein regulation via proteasome. These
transcription factors were primarily involved in identifying
DNA damage and excision repair: TFII-B, TFII-D, ERCC-2 and
ERCC-3. DNA repair differs markedly between Bacteria and
Archaea/eukaryotes. Specifically, Bacteria excise 12 nucleotides
around a damaged site with a 3 polypeptide system whereas
Archaea excise 24-32 nucleotides with a 13-16 polypeptide sys-
tem (Sancar 1996). The use of ubiquitin-labelling and protea-
some degradation of misfolded or ‘old’ proteins is arguably a
more efficient system for recycling amino acids and regulat-
ing the ‘lifespan’ of a protein in eukaryotes, however, Bacteria
are still fully capable of regulating protein misfolding or pro-
teolysis with RpoH (and others) induced upon environmental
stress (Goldberg 2003). From an ecological perspective, it is dif-
ficult to discern if these eukaryote-like traits confer any sort of
competitive advantage to Archaea. They may simply be exam-
ples of convergent evolution for dealing with environmental
stress.

Finally, most microbial cells likely exist within complex
biofilms and/or assemblages adhered to surfaces with excreted
exopolysaccharides, DNA and protein that serve to protect
from adverse environmental factors (Flemming and Wingen-
der 2010). Families with high copy numbers of exopolysaccha-
ride biosynthesis and secretion systems may act as integral
members of soil communities by predominantly contributing to
biofilm/aggregate formation. The ‘LPS biosynthesis’ and ‘Starch
and sucrose metabolism’ BRITE categories can synthesise N-
acetyl glucosamine-based and cellulose-based exopolysaccha-
rides, respectively. Taxa enriched in both these categories and
secretion systems were the Polyangiaceae and Burkholderiaceae
(Table 1), and in the refined ‘Under-represented’ model, Aci-
dobacteria and Verrucomicrobia (Table S11, Supporting Informa-
tion).

Direct cell-cell interactions

Type IV secretion systems were another important trait identi-
fied in the Random Forest models. These were enriched in Pseu-
domonadaceae and Myxococcaceae (Table 1) and Acidobacte-
ria, Planctomycetes and Verrucomicrobia (Table S11, Supporting
Information). These are highly specialised exporters that deliver
DNA and/or toxins directly to other bacterial or plant cells, how-
ever, their role in ecology is poorly understood beyond root galls
induced by Agrobacterium tumefaciens (Christie and Vogel 2000).
These taxa should be explored for whether they utilise these
traits for horizontal gene transfer or to inject toxins directly
into other prokaryotes, and thus potentially provide a selective
advantage for colonisation and competition.
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Another archetypal trait for interactions between commu-
nity members are production of antimicrobials and antimi-
crobial resistance genes. Penicillin and cephalosporin synthe-
sis were enriched in the Sporomusaceae and Bacillaceae rela-
tive to other Firmicutes. Polyketide and Type II polyketide syn-
theses were important for separating Frankiaceae and Strep-
tomycetaceae from other Actinobacteria (Table S10, Support-
ing Information). The Streptomycetaceae have a long history of
use in biotechnology as prolific antimicrobial producers (Bentley
et al. 2002). Bacillaceae (in particular Bacillus subtilis species) are
also well known producers of a wide variety of antimicrobials
(Caulier et al. 2019), but we noted that Sporomusaceae have an
even greater number of these traits (Fig. S9, Supporting Informa-
tion). To the authors’ knowledge, antibiotic production in Sporo-
musaceae has not been investigated thoroughly and this may
be a consequence of its obligate anaerobic nature and difficul-
ties in culturing. In addition to prolific Type II polyketide pro-
ducers, Streptomycetaceae were also enriched in antimicrobial
resistance genes, while Bacteroidetes, Planctomycetes and Ver-
rucomicrobia were specifically enriched in beta-Lactam resis-
tance (Tables S9 and S10, Supporting Information).

Life strategies emerge from differentially enriched traits

We hypothesised that taxa would emerge as being inherently
copiotrophic or oligotrophic based on trends in their enriched
traits. Traits were chosen based on identification via Ran-
dom Forest and identification as associated with copiotroph-
oligotroph species or in mixed communities as described pre-
viously (Lauro et al. 2009; Vieira-Silva and Rocha 2010; Roller
and Schmidt 2015; Pascual-Garcia and Bell 2020). Rhizosphere-
associated Gamma-, Alpha- and Betaproteobacteria in Clade
I fit the assumptions of a copiotrophic niche that invests in
high metabolic rate-these taxa were uniquely enriched in com-
peting for nutrient uptake via high-affinity ABC transporters,
and energy generation from pyruvate, fatty acids, benzoate
and glyoxylate carbon sources. Clade I was also enriched in
glutathione metabolism, which acts as the major antioxidant
for reducing intracellular free radicals produced during central
carbon metabolism (Smirnova and Oktyabrsky 2005). Antioxi-
dants have been hypothesised as an essential function for copi-
otrophs to survive their high metabolic rates (Koch 2001). All
five Clade I Families were enriched in oxidative phosphorylation.
The oxidative phosphorylation traits encompass a wide variety
of electron transport chain proteins (oxidoreductases, dehydro-
genases, cytochromes and ATPases) and are crucial for efficient
energy production (Brochier-Armanet, Talla and Gribaldo 2009).
All five Families were also enriched in nitrogen metabolism,
which included both nitrogen fixation and glutamate (i.e. pro-
tein) synthesis. Nitrogen fixation is an energy intensive process
requiring 20-30 ATP per reduced N, (Burris and Roberts 1993) and
may be intrinsically linked to taxa with high oxidative phospho-
rylation. Finally, Clade I also shared motility and chemotaxis,
which are also energy intensive traits. Clade II consisted of the
remaining Gamma-, Alpha- and Betaproteobacteria, yet these
were relatively less enriched in Clade I ‘copiotroph’ traits. These
particular taxa may be responsible for the lack of a consistent
copiotrophic response upon nutrient addition in Proteobacteria
(Ho, Paolo Di Lonardo and Bodelier 2017).

Clade III was comprised of taxa generally considered as
oligotrophs (Ho, Paolo Di Lonardo and Bodelier 2017) with the
exception of Bacteroidetes (Fierer, Bradford and Jackson 2007).
These taxa possessed high LPS and sphingolipid synthesis
that can defend against desiccation and antimicrobials through

biofilm and capsule/slime production (Flemming and Wingen-
der 2010), beta-Lactam resistance, penicillin biosynthesis and
several members had high pentose phosphate pathway for effi-
cient carbon metabolism under starvation (Hodgson 2000). Clade
III also possessed high CAZy traits, which Clade I largely lacked,
and is consistent with observations of oligotrophs being primar-
ily responsible for catabolising relatively recalcitrant plant mate-
rial (Goldfarb et al. 2011). While Clade III were equally enriched
in oxidative phosphorylation as Clade I, with the exception of
the Deltaproteobacteria, these taxa were depleted in glutathione
metabolism. The low copies per genome of this trait would
explain why the abundance of oligotrophs drop rapidly in nutri-
ent addition studies as they would be either out-competed by
glutathione-rich taxa capable of exploiting plentiful nutrients or
will lyse if their metabolic rate exceeds capacity to reduce free
radicals (Koch 2001). Taken together, all of these traits indicate
Clade III lead oligotrophic lifestyles whereby they are tolerant
to adverse environmental conditions, can acquire carbon from
recalcitrant plant material, and are incapable of rapid growth
rates.

These results support previous observations that Rho-
dospirillaceae, Bradyrhizobiaceae, Burkholderiaceae, Pseu-
domonadaceae and Rhizobiaceae are copiotrophic, while
Planctomycetes, Verrucomicrobia, Myxococcaceae, Polyan-
giaceae and Acidobacteria are oligotrophic (Ho, Paolo Di
Lonardo and Bodelier 2017 and references therein). As has
been proposed previously, the dominance of these groups in
certain soils can provide inferences for ecosystem processes in
that system, for example soils dominated by Verrucomicrobia,
Planctomycetes and Acidobacteria will have greater capac-
ity to degrade complex plant material while retaining most
catabolised carbon in biomass (i.e. high growth or carbon use
efficiency) or excreted byproducts that assist in soil aggrega-
tion (e.g. high LPS production) (Trivedi, Anderson and Singh
2013). Conversely, soils dominated by copiotrophic Proteobac-
teria Families will be systems primarily dependent on labile
di- and monosaccharides that demonstrate low carbon use
efficiency.

Streptomycetaceae, Mycobacteriaceae and Frankiaceae in
Clade IV shared enrichment of several Clade I copiotroph
traits. As mentioned above in Section 4.5, these Actinobacteria
invest carbon and energy into complex filamentous growth and
developmental cycles. They demonstrate classic copiotrophic
responses to nutrient addition (Goldfarb et al. 2011; Leff et al.
2015) and their enriched ABC transporters, pyruvate, glyoxy-
late, benzoate and fatty acid metabolism all likely contribute to
generating energy for complex lifecycles. Simultaneously, their
enrichment of Clade III oligotroph traits for CAZy metabolism in
addition to many traits for producing and resisting antimicro-
bials indicate a unique niche for these Actinobacteria that does
not necessarily fall within the classical copiotroph-oligotroph
framework.

Clade V differed markedly from all other clades and mostly
consisted of ‘specialist’ metabolic functional groups involved
in photosynthesis, ammonia oxidation, methanogenesis, lac-
tic acid production and other fermentation. Similar to Clade
III, these taxa would also be expected to have relatively low
metabolic rates due to depletion of copiotroph traits associated
with rapid metabolism and energy generation. Unlike Clade III,
these taxa seemed to lack consistent mechanisms for stress tol-
erance. Thus, while certain taxa did invest in traits for rapid
metabolic rate (Clades I and IV) and others primarily in stress
tolerance (Clades III and 1V), some taxa lacked these approaches
altogether and pursued entirely distinct niches (Clade V). As an
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Figure 5. A conceptual diagram of overlapping life strategies between the five functional clades identified in this study. (A) The classical copiotroph-oligotroph
dichotomy whereby the five clades are placed on a singular axis of ‘resource investment’, where growth strategies are either relatively more targeted toward rapid
growth (copiotroph) or toward stress tolerance (oligotroph). BRITE categories are given as examples of functional traits contributing to either axis pole. The space occu-
pied by clades along this axis is dependent on enrichment or depletion of these traits. All clades exhibit a great deal of overlap and certain clades, such as IV (including,
for example, Actinobacteria), are hard to identify as either copiotroph or oligotroph. (B) A multidimensional concept where three axes for ‘resource acquisition’ are
added, further separating taxa as either ‘competitors’, ‘degraders’ or ‘metabolic specialists’. Again, BRITE categories are provided as examples of traits contributing to
the additional axes and space occupied by clades is dependent on enrichment or depletion of these traits. These extra dimensions would suggest the niche space of

clade IV exists between ‘copiotrophic competitors’ (I) and ‘oligotrophic degraders’ (I

average of 47% of traits within each genome were Uncharac-
terised, Clade V is an over-simplification and that if novel, cur-
rently uncharacterised proteins and the traits they fulfil were
incorporated into hierarchical clustering, this clade would sep-
arate more meaningfully.

If one were to consider taxa within the one-dimensional
copiotroph-oligotroph spectrum, Clade I would represent one
extreme, Clades III and V another, with Clades II and IV falling
in between. Figure 5A is a conceptual diagram where these
Clades have been placed on a singular axis of ‘resource invest-
ment’, with the niche space of Clades enriched in traits associ-
ated with rapid growth (e.g. glutathione) toward the ‘copiotro-
phy’ pole while Clades enriched in stress tolerance traits (e.g.
LPS production) are placed toward the ‘oligotrophy’ pole. How-
ever, this approach overlooks the diverse functional potentials
(and distinct niches) for carbon and energy metabolism asso-
ciated with the various Clades. Furthermore, the large over-
laps in niche space between Clades would suggest taxa from
each group could not co-exist if ‘resource investment’ was the
only important consideration (Gause 1932; Hutchinson 1957; Lei-
bold 1995). A more meaningful perspective would be to consider
the additional role of ‘resource acquisition’ that incorporates
multiple axes for the life strategies identified via hierarchical
clustering of traits. Figure 5B is a conceptual diagram of niche

11), potentially allowing IV to co-exist alongside both.

space where clades have been further separated along addi-
tional dimensions based on their enrichment of traits involved
in competition, degradation or specialised metabolic pathways.
The BRITE categories listed on the various axes are chosen to be
useful markers in predicting the niche of a taxon. This expanded
niche space would suggest taxa in Clade I are well equipped
for nutrient acquisition (primarily, but not limited to, di- and
monosaccharides), rapid growth and oxidative stress regulation
as ‘copiotrophic competitors’. Clade 1I, which may not be capa-
ble of competing directly with Clade I for carbon and energy, may
thus occupy the niche space of specialist Proteobacterial methy-
lotrophs, methane and ammonia oxidisers so as to be ‘copi-
otrophic metabolic specialists’. The strategy of Clade III would
be to decompose plant material via diverse CAZy and possess a
variety of environmental stress tolerance traits as ‘oligotrophic
degraders’. Clade 1V, which include for example Actinobacteria
that share traits for competition, degradation and oligotrophy,
could thus occupy niche space between Clades I and III. Finally,
the strategy of Clade V would be to fill highly specialised, unre-
lated metabolic niches reliant on completely distinct carbon
sources to other taxa. The large space conceptualised for Clade
V in Fig. 5B, which does not imply either copiotrophic or olig-
otrophic resource investment, is an oversimplification and with
improved understanding of traits in these taxa it may be pos-
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sible to fracture and further separate them into more detailed
groups. This would prove particularly beneficial for the poorly
characterised Archaea.

Moving beyond a one-dimensional r-K spectrum to accom-
modate additional trait-driven life strategies has been proposed
in plant ecology (Grime 1977). Specifically, Grime argued that
plant taxa fall within a multi-dimensional space defined by
extremes on three axes: ‘competitors’ that acquire nutrients,
light, water etc. more effectively than neighbouring taxa in the
same environment, ‘stress tolerators’ that are long-lived, slow
growing taxa that resist desiccation, alkaline soils etc., and ‘rud-
erals’ that have very brief lifecycles between periods of distur-
bance and invest in environmentally hardy seeds. Despite these
varied strategies for resource investment, plants are unified in
that photosynthesis is their primary form of acquiring carbon
and energy. The diversity of microbial strategies for acquiring
carbon and energy enables them to explore a greater range of
potential niche space, and in addition to growth traits that allow
for a relatively more copiotrophic or oligotrophic investment of
those resources, likely contributes to the high diversity of co-
existing taxa observed in soil microbial communities.

However, to truly unravel differentiated niches and general
microbial life strategies, two limitations must be overcome. First,
a better understanding of the many ‘Uncharacterised’ traits
in environmental isolates is required. For example, the recent
large-scale MAG study by Nayfach et al. (2021) identified 5.8 mil-
lion protein clusters (traits), of which over 75% could not be
annotated meaningfully by current protein databases. Second,
robust trait-based analyses down to the finer scale of distinct
genomes will likely be necessary to consider how individual tax-
onomic members of a community have either differentiated in
order to co-exist or are in the throes of competition that will ulti-
mately exclude one of the competitors.

CONCLUSION

In a collection of 175 terrestrial prokaryotes that possess 220664
traits shared between at least two taxa, concepts in niche dif-
ferentiation were explored. Non-random trait distributions were
shown as preferential clustering of related taxa within most
Phyla with a general trend of highest similarity at the level of
Family. This strongly supported ecological coherence of shared
traits within close relatives. Random Forest models success-
fully identified BRITE 3 categories that best explained differing
traits between taxonomic groups. These traits were involved in
a wide range of biological functions, including core physiolog-
ical traits used historically to categorise taxa. Many traits were
also involved in functions often associated with copiotrophs and
oligotrophs, namely metabolism, nutrient acquisition and envi-
ronmental stress tolerance. Hierarchical clustering of differen-
tial traits formed five distinct clusters, with Clade I representing
the classical copiotrophic niche, Clades Il and V as oligotrophic,
and Clades II and IV in between. A more refined perspective
would be to consider each Clade as its own life strategy in a niche
space that considers both resource investment and acquisition
simultaneously; for example, the strategy of Clade I is to invest
in competition and rapid growth, while Clade V pursue highly
distinct, specialised metabolic functions. The trait-based analy-
ses here were effective in identifying general trends in potential
function of terrestrial microbial taxa at the Phylum and Fam-
ily level. Further investigation will be necessary to identify traits
that give rise to niche differentiation at lower taxonomic ranks
and, ultimately, the importance of this for ecosystem processes
of interest.
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