

Seasonal succession and UV sensitivity of marine bacterioplankton at an Antarctic coastal site

Anouk M.-T. Piquet¹, Henk Bolhuis², Andrew T. Davidson³ & Anita G.J. Buma¹

¹Department of Ocean Ecosystems, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands; ²Department of Marine Microbiology, Centre for Estuarine and Marine Ecology, Netherlands Institute of Ecology (NIOO-CEME), Yerseke, The Netherlands; and ³Antarctic Climate and Ecosystems Cooperative Research Centre, Australian Antarctic Division, Kingston, Tasmania, Australia

Correspondence: Anouk M.-T. Piquet, Department of Ocean Ecosystems, Biological Centre, PO Box 14, 9750 AA Haren, The Netherlands. Tel.: +31 50 363 2286; fax: +31 50 363 2261; e-mail: a.m.t.piquet@rug.nl

Received 20 November 2009; revised 18 March 2010; accepted 22 March 2010. Final version published online 4 May 2010.

DOI:10.1111/j.1574-6941.2010.00882.x

Editor: Gary King

Keywords

Eastern Antarctic; polar; bacteria; 16S rRNA gene; DGGE; sequencing.

Abstract

Despite extensive microbial biodiversity studies around the globe, studies focusing on diversity and community composition of Bacteria in Antarctic coastal regions are still scarce. Here, we studied the diversity and development of bacterioplankton communities from Prydz Bay (Eastern Antarctic) during spring and early summer 2002-2003. Additionally, we investigated the possible shaping effects of solar UV radiation (UV-R: 280-400 nm) on bacterioplankton communities incubated for 13-14 days in 650-L minicosm tanks. Ribosomal DNA sequence analysis of the natural bacterioplankton communities revealed an initial springtime community composed of three evenly abundant bacterial classes: Cytophaga-Flavobacteria-Bacteroidetes (CFB), Gammaproteobacteria and Alphaproteobacteria. At the end of spring, a shift occurred toward a CFB-dominated community, most likely a response to the onset of a springtime phytoplankton bloom. The tail end of Prydz Bay clone library diversity revealed sequences related to Deltaproteobacteria, Verrucomicrobiales, Planctomycetes, Gemmatimonadetes and an unclassified bacterium (ANT4E12). Minicosm experiments showed that incubation time was the principal determinant of bacterial community composition and that UV-R treatment significantly changed the composition in only two of the four experiments. Thus, the successional maturity of the microbial community in our minicosm studies appears to be a greater determinant of bacterial community composition rather than the nonprofound and subtle effects of UV-R.

Introduction

FEMS MICROBIOLOGY ECOLOGY

Bacterioplankton play a key role in the global carbon cycle. The main carbon pools in marine systems – particulate organic carbon and dissolved organic carbon – are largely produced by phytoplankton, while heterotrophic bacteria are largely responsible for the degradation and recycling of organic carbon and essential nutrients, thereby fuelling marine productivity through the microbial loop (Azam, 2001).

Initially, studies conducted on Antarctic bacterioplankton focused on their role in the carbon cycle and studied the bacterial carbon uptake, by measuring productivity and activity in relation to phytoplankton abundance. Thereafter, scientific interest shifted toward determining the species composition of Antarctic bacterioplankton communities. Species identification was first implemented by cultivation and later by culture-independent approaches, provided by the development of molecular tools. Analysis of the 16S rRNA gene from various oceanic regions revealed an unexpected diversity and led to the discovery of numerous novel bacterial and archaeal groups (Giovannoni et al., 1990; Fuhrman et al., 1992; DeLong, 2001; Venter et al., 2004). In recent years, the number of studies devoted to analyzing the composition of marine bacterial communities has increased considerably, providing a huge and valuable database of rRNA sequences. Yet, our knowledge of Antarctic bacterioplankton diversity and dynamics is still limited (Murray & Grzymski, 2007). Most studies have been performed in the Antarctic Peninsula and Ross Sea regions (Gentile et al., 2006; Grzymski et al., 2006), while bacterioplankton communities from other regions, such as the Eastern Antarctic,

are still scarcely studied. Furthermore, little is known about the possible shaping effect of environmental conditions on marine bacterial communities in this area. Natural UV radiation (UV-R: 280–400 nm), whether or not enhanced by springtime stratospheric ozone depletion, is thought to affect Antarctic marine organisms significantly, but primarily bacterioplankton through the induction of DNA damage (Visser *et al.*, 1999; Davidson & van der Heijden, 2000; Buma *et al.*, 2001). Therefore, it can be hypothesized that prolonged natural UV-R exposure significantly shapes bacterial community composition, as occasionally demonstrated for other areas (Arrieta *et al.*, 2000; Winter *et al.*, 2001; Alonso-Sáez *et al.*, 2006).

In the present study, the bacterial community composition of subsurface samples collected from late spring to early summer from Prydz Bay (Eastern Antarctic) was studied by analyzing clone libraries of partial 16S rRNA gene fragments. The time span of the sampling period coincided with the transition from sea ice covered, sea ice melting toward the peak of the summer phytoplankton bloom, providing an insight into the natural succession of the bacterial community. Additionally, four series of UV-R incubation experiments were conducted using natural microbial communities harvested from Prydz Bay during the season. These experiments were performed for up to 2 weeks in 650-L containers covered with six different spectral UV cut-off filters. Community shifts were assessed over time by generating molecular fingerprints of partial 16S rRNA gene fragments by denaturing gradient gel electrophoresis (DGGE). Samples exposed to the lowest and the highest UV-R conditions were selected for cloning and sequencing.

Materials and methods

Sample collection and experimental setup

Prydz Bay subsurface seawater (2 m depth) was sampled 60 m offshore from Davis Station ($68^{\circ}35'S$, $77^{\circ}58'E$), Antarctica, on November 11 and 26, December 14 and January 6, 2002/2003. Samples were collected using a Teflon diaphragm pump to minimize both contamination of the seawater and damage to the microbial community. The intake was covered with a 200-µm mesh to exclude meso-zooplankton. In November and December, samples were obtained through a hole drilled in the sea ice, while later in summer (January), when the sea ice had disappeared, a buoy and anchor were deployed to pump water from the same location and depth. Samples (2 L) were immediately transported to the laboratory for further processing.

Natural Prydz Bay marine microbial communities ($< 200 \,\mu$ m) were used for the four UV-R incubation experiments. Briefly, six 650-L minicosm tanks, housed in a refrigerated shipping container, were filled simultaneously

and directly from the sampling site with the 200-µm prefiltered seawater samples. Each minicosm was gently mixed by a paddle set at 3 r.p.m. to prevent cell sedimentation and to ensure vertical mixing of the community over the entire water column. The marine microbial communities were incubated for 13-14 days at ambient temperatures $(\pm 0.84 \,^{\circ}\text{C})$ under six distinct solar irradiation conditions: PAR (P), one PAR+UVA (A) and four PAR+" UVA+UVB (B_1-B_4) . More details on the experimental setup and UV-irradiation conditions are provided in Piquet et al. (2008) and Thomson *et al.* (2008). The initial sample (T_0) , obtained from the pump while filling the minicosm tanks, reflected the natural community in Prydz Bay. Teflon sample lines fitted to the tanks were used to obtain samples from each of the six tanks after 7 and 14 days (T_7 and T_{14}) respectively).

Sample handling and DNA isolation

Each sample (2 L) was prefiltered over 2- μ m pore-size filters, then collected onto 0.2- μ m pore-size polycarbonate filters (Millipore). The samples were stored in 1.5-mL sterile lysis buffer (EDTA 40 mM; Tris-HCl 50 mM, pH 8.5; sucrose 0.75 M) at -80 °C until further processing. DNA isolation was performed by application of mechanical, chemical and enzymatic DNA extraction procedures as described previously (Piquet *et al.*, 2008). The DNA pellet was resuspended in sterile MilliQ and purified using the Wizard DNA Clean-Up kit (Promega Benelux B.V., Leiden, the Netherlands).

165 rRNA gene amplification, cloning and sequencing

A 1400-bp fragment of the 16S rRNA gene was amplified using the bacterial-specific primer set: B8F (5'-AGAGTTT GATCMTGGCTCAG-3') forward primer (Edwards et al., 1989) and universal U1406R (5'-ACGGGCGGTGTGTRC-3') reverse primer (Lane, 1991). Twenty-five microliters of amplification mixtures consisted of a dNTP mix in a final concentration of 200 μ M, 200 nM primers, 1 × PCR buffer (GE Healthcare, Diegem, Belgium), 2.3 mM MgCl₂, 2% dimethyl sulfoxide, 0.2 mg mL⁻¹ bovine serum albumin (Roche, Woerden, the Netherlands) and 1U Tag DNA polymerase (GE Healthcare). The reaction was run on a thermal cycler (GeneAmp[®], PCR system 9700, Perkin-Elmer, Applied Biosystems, Nieuwerkerk a/d IJsel, the Netherlands) using the following program: 94 °C for 130 s; 35 cycles of 94 °C for 30 s, 56 °C for 45 s, 72 °C for 130 s; followed by a final elongation step of 72 °C for 7 min. PCR products were separated by DNA gel electrophoresis on a 1% agarose gel, stained with ethidium bromide and visualized with an Image Master (Amersham Biosciences, Pharma Biotech, Roosendaal, the Netherlands). Amplicon size and

yield was estimated by comparison with a DNA Smart Ladder (Eurogentec, Maastricht, the Netherlands).

Clone libraries were generated for the selection of 12 samples: the inoculum samples (T_0) and T_{14} samples incubated under the lowest (P) and highest (B4, B3 for experiment 2) irradiation conditions. PCR products were cloned in the pGEM-t Easy vector system (Promega Benelux B.V.) and transformed to Escherichia coli strain JM109 according to the manufacturer's protocol. Positive inserts were amplified by colony PCR using the pGEM-t-specific primers T7 (5'-TAATACGACTCACTCTAGGG-3') and SP6 (5'-GATTTAGGTGACACTATAG-3'). PCR mixtures were identical to the above description, while the amplification conditions were: 94 °C for 5 min, 30 cycles of 94 °C for 60 s, 48 °C for 30 s, 72 °C for 4 min, followed by a final elongation step of 72 °C for 7 min. Amplicons were cleaned by polyethylene glycol 8000 (Sigma-Aldrich Chemie B.V., Zwijndrecht, the Netherlands) precipitation and insert size was checked on agarose gels. All clones with inserts of the proper size were selected for sequencing. Positive amplicons were selected for partial 16S rRNA gene sequencing using the Big Dye chemistry (Applied Biosystems, Nieuwerkerk a/d IJsel, the Netherlands) and the reverse primer U1406R as the sequencing primer. Sequence products were cleaned by standard isopropanol precipitation and analyzed on an automated ABI 377 DNA sequencer (Applied Biosystems, Foster City, CA).

Sequence analysis

The partial sequences obtained were manually checked with CHROMAS v.2.3.1. Suspected chimeric sequences were checked online using the Ribosomal Database Project II 8.1 CHIMERA CHECK program. Chimeric sequences were excluded from the dataset. MOLECULAR EVOLUTIONARY GENETICS ANALYSIS (MEGA) version 4.0 (Tamura et al., 2007) and its add-in CLUSTALW was used to align the DNA sequences and to create neighbor-joining trees based on the maximum composite likelihood algorithm (Hartl et al., 1994; Zhu & Bustamante, 2005) with 1000 bootstrap permutations (Felsenstein, 1985). In the phylogenetic tree, sequences with 99% identity were grouped into operational taxonomic units (OTUs). OTUs were classified at the taxonomic phylum and class level as deduced from their closest match obtained with NCBI BLAST (http://www.ncbi.nlm. nih.gov/BLAST), which were included in the phylogenetic analysis.

Shannon–Weaver indices of diversity and richness estimators Chao and Ace were calculated for each clone library and the entire sequence dataset using the DOTUR program (http://www.plantpath.wisc.edu/fac/joh/dotur. html) on the distribution of bacterial OTUs defined at the 99% identity level using average neighbor sequence assignment (Schloss & Handelsman, 2005). For comparison purposes, the bacterioplankton community composition was simplified and sequences (excluding 16S-like chloroplast sequences) were redistributed into OTUs at the 97% identity level and presented as pie charts to depict changes in community composition among clone libraries. The similarity between the bacterial communities of the samples selected for clone libraries was determined using the Morisita–Horn index of similarity, which is not affected by differences in sample size (Wolda, 1981). Comparison of the bacterial communities was performed with PAST (Hammer *et al.*, 2001) by cluster analysis and presented in the form of a dendrogram.

DGGE

In order to maximize the similarity between the bacterioplankton community analyzed through cloning sequencing and community fingerprinting: a nested PCR was performed on the products of the B8F-U1406R amplification, using the primer set 968GC-1401R that amplifies an ~430-bp fragment of the variable V6 region of the 16S rRNA bacterial gene (Nübel et al., 1996). The forward primer 968 was extended with a GC-rich clamp at the 5'-end for DGGE application (Muyzer et al., 1993; Nübel et al., 1996). DGGE was run on the PhorU system (Ingeny, Goes, the Netherlands) as described previously (Muyzer et al., 1993, 2004). The best separation was obtained on a 6% polyacrylamide gel using a 40-70% urea-formamide DNA denaturing gradient, with 100% urea-formamide being defined as 7 M urea (Bio-Rad, Veenendal, the Netherlands) and 40% deionized formamide (Sigma-Aldrich Chemie B.V.). We ran 200 ng of PCR product for each sample, supplemented with loading buffer (0.05% w/v bromophenol blue, 40% sucrose, 0.1 M EDTA pH 8.0, 0.5% sodium lauryl sulfate), for 16 h at 100 V in $1 \times TAE$ buffer. Gels were stained with Sybr[®]GOLD (Invitrogen, Molecular Probes, Breda, the Netherlands) and visualized with UV-R using the Image Master (Amersham Biosciences). A marker sample was added onto each gel for references and analytical purposes.

DGGE pattern analysis was performed using BioNumerics[®] version 3.5 (Applied Maths N.V., Sint-Martens-Latem, Belgium) as described in Piquet *et al.* (2008). In brief, the gels were digitized and normalized using the flanking marker bands. BIONUMERICS translated band patterns into a presence/absence matrix. Ordination analysis was run on the presence and absence of bands, from each experiment, using CANOCO version 4.5.2 (Ter Braak & Šmilauer, 1998). Both time and cumulated UV-irradiance variables were used in the redundancy analysis (Van den Wollenberg, 2007). A Monte–Carlo's unrestricted permutation test (1000 permutations) was run to determine the significance of the variables in explaining the observed variation.

Nucleotide sequence accession numbers

Sequences reported in this paper have been deposited in GenBank under accession numbers GU191464–GU191546.

Results

Bacterial community composition

A total of 671 partial 16S rRNA gene sequences (~750 bp) were recovered in this study. Phylogenetic analysis revealed that these sequences included members of the *Cytophaga–Flavobacteria–Bacteroidetes* (CFB), *Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Planctomycetes, Gemmatimonadetes, Verrucomicrobia* and an unclassified bacterium class (Fig. 1). Additionally, 90 sequences were identified to be related to phytoplankton 16S rRNA gene-like chloroplast/plastids (16S-like, Fig. 1). Phylogenetic analysis unveiled 83 OTUs, including 41 unique sequences (phylotypes). An overview of all identified OTUs is given in Table 1, with the nearest uncultivated clone, the nearest cultivated BLAST match or both, if available.

Overall, members of the CFB class dominated with 284 sequences and included the most abundant OTU '120-52' related to the uncultured *Polaribacter* Arctic 96B-11 clone (AF354261). The *Gammaproteobacteria* was the most diverse class with 31 OTUs, comprising 15 phylotypes. Within the sequence dataset, four phylotypes had 93% or less identity to any sequence from the NCBI database, suggesting that these have derived from yet undiscovered species: two CFB (156-46 and 120-51), one *Gemmatimonadetes* (141-63) and one alphaproteobacterium (42-64).

Prydz Bay bacterial community succession

Samples collected on November 11 (T₀1), November 26 (T_02) , December 14 (T_03) 2002 and January 6 (T_04) 2003 provide an insight into the seasonal changes of natural Prydz Bay bacterial communities from mid-spring to early summer. Clones with at least 97% sequence identity were grouped into another set of OTUs (51 in total) and were named according to taxonomic affiliation. For example, 'uGprot' stands for 'uncultivated Gammaproteobacteria'; 'uPolarib' for uncultivated Polaribacter; and 'Roseob2' for cluster 2 of Roseobacter-related sequences. Their proportion within each clone library is presented in Fig. 2. Gammaproteobacteria (shades of blue) constituted an abundant fraction of the bacterial community comprising 41%, 32%, 43% and 35% of the sequences at the start of experiments 1-4 (T_01-T_04) , respectively. In mid-spring $(T_01 \text{ and } T_02)$, Alphaproteobacteria (shades of red to yellow) codominated the bacterial community, but they were gradually replaced by members of the CFB class, along with the appearance of some 'rare sequences' related to Deltaproteobacteria,

Planctomycetes and *Gemmatimonadetes*. In the last two samples (T_03 and T_04), collected in late-spring and early summer, the CFBs dominated the Prydz Bay bacterial community, forming 45% and 52% of the community. Sequences related to the *Polaribacter* genus, which includes the 'uPolarib' OTU (clone '120-52' related to clone Arctic 96B-11, AF354621) and 'Polarib' OTU (clone '120-39' related to *Polaribacter irgensii*, AY771712), formed the most abundant group, comprising 30% and 40% of the sequences.

The samples collected in spring before the sea-ice breakup had the highest microbial diversity, with Shannon– Weaver indices (H') of 2.6, 2.7 and 2.6. After the sea-ice break-up, the diversity index decreased to 2.1 (Table 2). The first sample had the highest richness, with a predicted total of 81 and 89 OTUs using Chao and Ace's indices, respectively.

Community shifts during incubation

Samples collected from the Prydz Bay community were used in the minicosm experiments and incubated under six distinct irradiation conditions. The average downwelling UV-R dose in the middle of each minicosm tank was cumulated over time for each tank. After 14 days, the communities incubated under PAR irradiation had experienced an average 83.1 (\pm 4.2) J m⁻² UV-R erythemal dose, while under the highest UV-R condition (B₄), the average cumulated irradiation was 1892.4 (\pm 74.7) J m⁻² (see Table 1 in Piquet *et al.*, 2008).

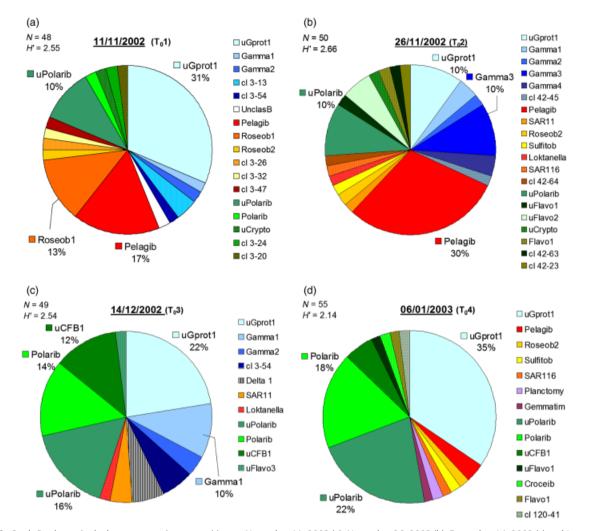
Samples $T_{14}B_{4}$ _Exp2 and T_7B1 _Exp4 were lacking in the analysis: DNA extraction failed for samples $T_{14}B_{4}$ _Exp2, while T_7B1 _Exp4 could not be sampled due to water shortage during the experiment. Samples collected from each minicosm after 7 and 14 days of incubation were run alongside on a DGGE (Fig. 3).

Overall, the duration of incubation was the principal factor that affected the composition of the bacterial community, while UV-R had a significant effect on half of the experiments performed. In experiment 1 (Fig. 3a), the initial community fingerprint (T_0) was conserved in all tanks after 7 days of incubation, but changed after 14 days of incubation, with communities exposed to the highest UVB irradiances (B₃ and B₄), showing a decrease in band numbers and intensity. UV-R-induced changes in species composition were confirmed by a Monte-Carlo permutation test (Table 3), where 15.7% of the variation among band patterns was explained by UV-R. However, the variable incubation time significantly explained 27.8% of the variance. Similarly, UV-R significantly explained 15.4% of the variance in band patterns for experiment 3 (Fig. 3c), while the incubation time significantly explained 30.3% of the variance.

In contrast, only the incubation time significantly explained the variance among the banding patterns in

Fig. 1. Neighbor-joining phylogenetic tree of partial 16S rRNA gene sequences.

experiments 2 and 4 (Fig. 3b and d). In experiment 2 (Fig. 3b), banding patterns differed little between incubation time and light treatments; however, incubation time explained a


significant 20% of the variance. In experiment 4 (Fig. 3d), banding patterns were also similar among incubation time and light treatments, except in sample T_7A_1 , which was

natches
tivated m
id cultiv
'ated ar
uncultiv
of best (
31 BLAST (
tive NCB
respectiv
nd their
c tree an
ogeneti
he phylo
own in t
OTUs sho
ion of C
Descripti
T able 1. D
Tabl

Cite 129/2 0.197/2 0.45/45/1 67/55/1 9 Moldance rights M(377)11 9 123/3 0.197/23 0.46/16/16/1 A75/36/1 A75/36/1 A75/36/1 A77/371 9 123/3 0.197/37 0.46/16/17/16/0 A75/36/1 A		OTUS	Accession no.	OTUs Accession no. Nearest uncultivated BLAST match Accession no. Similarity (%) Nearest cu	Accession no.	Similarity (%)	Nearest cultivated BLAST match	Accession no.	Similarity (%)
Title Clinitistic Clinitistic <thclinitistic< th=""> <thc< th=""><th>C FR</th><th></th><th>61101537</th><th>11 Polarihacter Arctic 968-11</th><th>AF354671</th><th>00</th><th>Polariharter iroensii</th><th>017177V</th><th>66</th></thc<></thclinitistic<>	C FR		61101537	11 Polarihacter Arctic 968-11	AF354671	00	Polariharter iroensii	017177V	66
The control of the control o				C. I Diampacter Alctic JOB-11 Flauchartariareae Bac G031103hr01			Dolaribacter franzmanii	NROJEGEG	
State Constrained Constrained <thconstrained< th=""> <thc< td=""><td></td><td></td><td>12010100</td><td>I MAR DAL CI ANTIONO</td><td></td><td></td><td>Dolaribactor iranarii etrain ANTO242</td><td></td><td></td></thc<></thconstrained<>			12010100	I MAR DAL CI ANTIONO			Dolaribactor iranarii etrain ANTO242		
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td>									5
Seven Current Cite Seven Current Cite Aryons 3-50 GU191424 UBE. ACKCZG, JT 4742023 10 Aryons 3-55 GU191426 UBE. ACKCZG, JT 4748023 10 Aryons 3-55 GU191426 UBE. ACKCZG, JT US 4748023 10 Aryons 3-55 GU191426 UBE. ACKCZG, JT US 1000551 414336 17-48 GU19122 NA Aryons 414336 10 1414336 17-48 GU19124 UBE. ACKCZ, JT 10005512 10 10005512 10 1414336 22-41 GU19124 UC 75 GU19124 UBE. ACMCZ 4143451 1144336 17-45 GU19129 UA BBC. CI. MAL 772368 117336 4143451 17-45 GU19124 UBE. CI. MAL ArXA 104004764 472351 4123351 17-45 GU19129 UBE. CI. MAL ArXA 104004764 4723502 4123351 17-45 <td></td> <td></td> <td>15619100</td> <td>U. BAC. AKLIL3/_F_UO</td> <td>EU/92244</td> <td>99</td> <td></td> <td></td> <td></td>			15619100	U. BAC. AKLIL3/_F_UO	EU/92244	99			
3-50 GU19743 Unker Bac Cl KG, A3, 120n/32 Uo Randbacterinkerae Bac GS (21/M) A728354 1 17-56 GU19755 Mac Bac Cl KG, A3, 120n/32 100 Randbacterinkerae Bac GS (21/M) A728356 17-56 GU19722 Mac Bac Cl KG, A3, 120n/10 EU005733 100 Randbacterinkerae Bac GS (21/M) A728356 17-64 GU19722 Mac Bac Cl KG, A3, 120n/10 EU005733 100 Randbacterinkerae Bac GS (21/M) A728356 17-04 GU19447 U Bacterinkerae Bac Cl KG, A3, 120n/10 EU005733 100 Randbacterinkerae Bac GS (21/M) A728356 17-14 GU19447 U Bacterinkerae Bac Cl KG, A3, 120n/10 EU005731 90 Monobacterinkerae Bac GS (21/M) A728356 17-15 GU19447 U Bacterinkerae Bac Cl KG, A3, 120n/10 EU005731 90 Monobacterinkerae Bac GS (21/M) A728356 17-14 GU191750 U Bac Cl KG, A3, 120n/10 EU0407056 A728424 90 Monobacterinkerae Bac GR (21/G) A728356 17-14 GU191750 U Bac Cl KG, A3, 120 B727443 B747416 B7724		<u> </u>	GU191544	U. Bac. Cl. 131/68	AY922235	93	Havobacteriaceae Bac. 14III/A01/012	AY 5/6695	93
15 CU101555 Andrease and refac. ANI (02773) 100 Reindocator adjance MX2556 177-48 CU101525 Mar and CL (KG A3_120m39) LU005733 100 Reindocator adjance MX2556 22.0 CU101524 Mar and CL (KG A3_120m30) LU005813 100 Reindocator adjance MX2556 22.0 CU101523 UMar Bac CL (KG A3_120m10) LU005811 MX2556 Reindocator adjance		-	GU191474	U. Bac. ARCTIC26_B_07	EU795086	100	NA		
551 U197355 U.Mar Bac Ci KG, AJ, 120m29 EU005733 100 Reino sp. J/s EU143366 174-46 CU191224 M A A A A 20-9 CU191232 M A A A A 32-0 CU191436 M A A A A A 32-0 CU191435 U MF Bac Ci KG, AJ, 120m110 EU005314 100 Mis Bac Ci KG, AJ, 120m110 A A 32-0 CU191435 U MF Bac Ci KG, AJ, 120m110 EU005314 100 Mis Bac Ci KG, AJ, 120m110 A </td <td></td> <td>-</td> <td>GU191505</td> <td></td> <td>AF468427</td> <td>66</td> <td>Flavobacteriaceae Bac. G512M1</td> <td>AY 285948</td> <td>100</td>		-	GU191505		AF468427	66	Flavobacteriaceae Bac. G512M1	AY 285948	100
1170 6(1)9122 M 1170 6(1)9122 M 1170 6(1)9123 M 1170 6(1)9123 M 1170 6(1)9123 M 200 6(1)9123 M 211 6(1)9123 M M 220 6(1)9123 M M 221 6(1)9123 U//// Bacrenordene Bac. Cl. MuBOS SPhacteds EU-// MAGN 223 6(1)9153 U. CFB group Bac. METC, JOCNL 154 Art31351 90 Provabacrenium inform stain CFT SA1000 Ar03813 224 6(1)9153 U. Bacc CL (MACL 154 Ar13179 90 Overneeksia hongkrongensis Ar135002 224 6(1)9153 U. Bacc CL (MACL 154 Ar132150 90 Overneeksia hongkrongensis Ar135002 220 6(1)9166 M Ar13179 90 Overneeksia hongkrongensis Ar135002 2104 119450 U. Bacc CL (MAC 21) Ar13416 Ar131700 Ar132602 2104 119451 U. Bacc (HAC 21) H18			GU191545		EU005733	100	<i>Bizionia</i> sp. J69	EU143366	96
120 GU19122 M 220 GU19146 M 220 GU19146 M 220 GU19146 M 211 GU19146 M Mar. Bac. CL, Arr.(LIF6 M030732 9 Prevolver agrees as cuality as an endered and micro. AV3043 224 GU19146 U. Bacrendered Bac. Mar. Bac. CL, Arr.(LIF6 M03053 9 Prevolver agrees as cuality as an endered and micro. AV30431 117-25 GU191451 U. Bacrendered Bac. A124351 9 Overweets in programs an endered and micro. AV30431 117-25 GU191451 U. Bac. Disobacterion. A124351 9 Overweets in programs an endered and micro. A132602 117-25 GU191451 U. Bac. Disobacterion. A143150 A143150 A143150 A132602 A132602 117-25 GU191451 U. Bac. Disobacterion. A143150 A143150 A143150 A143150 A132602 A13301260 20-5 GU191451 U. Bac. Disobacterion. Bac.			GU191522	NA			Krokinobacter diaphorus	AB198089	97
320 Gilo 1091466 MA 321 GU19145 Mar. Bac. Cl. McL. J. 200110 K12062 324 GU19145 UMar. Bac. Cl. McL. J. 200110 K12062 324 GU19145 UMar. Bac. Cl. McL. J. 200110 K12062 324 GU19147 U. Restronderes Bac. Cl. MAGOS. SPbact65 D/200534 99 Prodocters and return. McConstration McConstra			GU191524	NA			Croceibacter atlanticus strain HTCC2559T	AY 163576	66
42:11 UMr BAC CL KGA3, 120m1(1) E0005814 100 Mar BAC CL KGA3, 120m1(1) E100583 12:04 0119153 UMar BAC CL KGA3, 120m1(1) E0005812 89 Flavobarterum maccum stani GFTS, 1003 A007802 12:05 0119151 U. CFB group BAC. MRFLZ, OCM, 154 A143351 90 Plavobarterum maccum stani GFTS, 1003 A005502 12:17:5 01191520 U BACTONGREE BAC. CL MATCL A143351 90 Ownerweekia hongkongenisis A0112002 12:17:5 01191520 U BACTONGREE BAC. CL MATCL A143351 90 Ownerweekia hongkongenisis A0112002 12:04:10191520 U BACT CLESGE-BB-0.3 U BACT CLESGE-BB-0.3 A0191426 A0191426 A0191426 12:04:10191520 U BACT CLESGE-BB-0.3 D0513037 A932223 A0191426 A0191426 12:04:1019153 U BACT CLESGE-BB-0.3 D051303 BACTONTVERES A. CLAT A01905013 20:04:1018 U BACT CLESGE-BB-0.3 D051303 BACTONTVERES A. CLAT A01905013 20:04:1018 U BACT CLESGE-BB-0.3 D0513012 BACTONTVERES A. CLAT A0120			GU191466	NA			Flavobacteriaceae Bac. G812M2	AY 298788	95
120-4 GU19123 Under Bie, CL, MiCC, IFIG D0300732 Beviabaterium inderum stati GTS100.0 AP07300.2 3.2.4 GU191347 U. Berenoideres Bac. CL MaDOS, SPbact85 U.Berenoideres Bac. AB12002.2 111-75 GU191319 U. Berenoideres Bac. AB12002.2 AB12002.2 120-41 GU191320 U. Berenoideres Bac. AB12002.2 AB12002.2 120-41 GU191320 U. Bercnoideres Bac. AB1202.2 AB12002.2 120-41 GU191320 U. Bercnoideres Bac. AB1202.2 AB1202.2 120-41 GU191420 U.Bercnoideres Bac. AB1202.2 AB1202.2 2120-5 GU191420 U.Bercnoideres Bac. AB1202.2 AB1202.2 2120-5			GU191495		EU005814	100	Mar. Bac. CON-A2	EF100858	97
3.1 GU19147 U. Greenoideres Bac. CI.NMB0S. SSTbactS5 EIG54400 99 Piavobacterium indican strain GFTSA1004 X8125062 117-55 GU191519 U. Berconderes Bac. CI.NMB0S. SSTbactS5 FE73485 99 Ownweeksia hongkongensis A8125062 22-9 GU191529 U. Bacc CI.S22, 1555 FE73485 99 Ownweeksia hongkongensis A8125062 22-9 GU191530 U. Bacc CI.S22, 1555 FE73485 99 Mercongkongensis A8125062 22-9 GU191530 U. Bacc CI.S22, 1555 FE73485 99 Mercongkongensis A8125062 22-53 GU191483 U. Bacc CI.S22 GU191483 U. Bacc CI.S23 A059051 22-20 GU191483 U. Bacc CI.S25 FE574491 89 Pianconyceres A.2 A07102143 22-20 GU191483 U. Bacc CI.S25 FE574491 88 FE15466 A7702144 23-20 GU191480 M. Bac. CI.S25 FE574491 88 FE15466 A7702144 23-22 GU191481 M. Bac. CI.S25 FE574491 89			GU191523		DQ906732	98	Flexibacter aggregans ssp. catalaticus	AB078042	92
11-63 GU191541 U. GRB group Bac. MERTZ_JOCM_154 AF424351 90 Overweeksia hongkongensis A812502 17-25 GU191529 U. Baccroideres Bac. CL A117346 97 Overweeksia hongkongensis A812502 22-9 GU191529 U. Baccroideres Bac. CL A117346 97 Monores A7251345 120-41 GU191529 U. Baccroideres Bac. CL A117340 A732134 A13510 120-51 GU19153 U. Bac. CL PSC. PXX2b106 A732134 A1393602 23-9 GU19143 U. Bac. CL EU319793 98 Bacroinelies Bac. MOLA 103 A0056027 5-18 GU19143 U. Bac. CL EU319793 99 Monores A773143 22-22 GU19148 U. Bac. CL EU319793 96 Monores A773143 22-23 GU19148 U. Bac. CL MA3 A1702144 A1732144 22-24 GU19148 U. Bac. CL EU319383 A173114 22-25 GU19148 U. Bac. CL A173114 <			GU191467	U. Bacteroidetes Bac. Cl. NABOS_SSPbact85	EU544840	66	Flavobacterium indicum strain GPTSA100-9) AY904351	83
117.25 GU19159 U. Bacterodetes Bac. AB183346 97 Owenweeksia brongkongensis AB12502 22.49 GU191739 U. Bacc. (1) 37.31. (135) U. Bacc. (1) 37.31. (135) AV3231.31 AV3231.31 12.0-45 GU191539 U. Bacc. (1) 37.31. (135) U. Bacc. (1) 37.31. (135) AV3231.31 AV3231.31 12.0-45 GU191539 U. Bacc. (1) PX2bF/H06 B9 Bacr. (10.10.103) AV930877 12.0-51 GU191439 U. Bac. (1) PX2bF/H06 B9 Bacr. (M10.4.103) AV302143 22.22 GU191438 U. Bac. (1) CX255 EF57.4491 B9 Phaenotychis stata and constrain strain RC (187) AY702145 39-16 GU191438 U. Bac. (1) CX255 EF57.4491 B9 Phaenotychis stata and constrain strain RC (187) AY702144 39-20 GU191438 U. Bac. (C, S25 EF57.4491 B9 Phaenotychis stata and constrain strain RC (187) AY702144 39-20 GU191439 N. A. U. Bac. (C, S25) EU919323 B6 AV702144 39-20 GU191438 N. Bac. (11.60 M/W) PA			GU191541	U. CFB group Bac. MERTZ_0CM_154	AF424351	06	Owenweeksia hongkongensis	AB125062	88
22-9 GU19478 U Bac. Cl. (23, 1585 EF57346 90 Microscillas ID G946 A7258124 120-41 GU191530 U Bac. Cl. (526, 586) D317119 A7922133 99 Bactronyters Bac. MOLA 103 AM990277 120-45 GU191530 U Bac. Cl. (526, 586) D317119 A7922133 99 Bactronyters Bac. MOLA 103 AM9902677 5-Hke 3-9 GU191630 U Bac. Cl. (526, 586) EU919733 99 Bactronyters A.2 AV02143 22-22 GU191483 U Bac. Cl. (525 EF574491 98 Pinacronyters A.2 A703143 22-22 GU191483 U Bac. Cl. (225 EF574491 98 Pinacronyters A.2 A703143 3-30 GU191483 U Bac. Cl. (207) EF574491 98 Pinacronyters A.2 A703143 3-30 GU191483 U Bac. Cl. (207) EF574491 98 Pinophysis Intra choroplast A703144 3-30 GU191483 U Bac. Cl. (707) EF919270 F1456335 96 Pinophysis Intra choroplast A703144 <			GU191519	U. Bacteroidetes Bac.	AB189346	97	Owenweeksia hongkongensis	AB125062	91
120-41 CU191520 U. Bacteroideres Bac. CI. 131719 AY92223 99 Bacteroideres Bac. MOLA 103 AM990877 120-45 CU1919530 U. Bac. CI. PS2022H06 DQ513078 98 Parceroideres A-2 AM050021 5-Ike 3-9 GU191465 N.a. CI. PS2022H06 Mantoniella squamata X30641 5-Ike 3-9 GU191465 N.a. CI. PS2022H06 Mantoniella squamata X30641 5-Ike 3-9 GU191485 U. Bac. CI. LD78 EU919739 99 Phenocyclis duea strain RCC187 AN1702143 3-9 GU191487 M.a Dac. CI. LD78 EU919739 99 Phenocyclis duea strain RCC187 AN1702144 3-9 GU191487 M.a Dac. CI. S15 F1574491 98 Dinophysic intract chonoplast A8193368 3-9 GU191487 M.a Dac. CI. S15 EU919752 A7702144 3-9 GU191487 M.a Dac. CI. S15 EU919752 A7702146 3-9 GU191516 M.a Dac. CI. S15 EU9191828			GU191478	U. Bac. Cl. S23_1585	EF573486	66	Microscilla sp. DG946	AY 258124	94
120-45 GU191530 U Bac. CL IF3266:288-03 DQ513078 S Phanctomyceres A.2 AM056027 5-Ike 3-9 GU191453 U Bac. CL IP322:06 89 Bac. Ellin52.00 A723451 5-Ike 3-9 GU191463 U Bac. CL b78 EU491266 89 Bac. Ellin52.00 A702143 22-22 GU191483 U Bac. CL b78 EU919793 99 Phaeocystis globoes strain RCC 187 A7702143 22-22 GU191483 U Bac. CL b78 E1051850 96 Phaeocystis globoes strain RCC 187 A7702144 39-20 GU191483 U Bac. CL A072 E145685 96 Phaeocystis globoes strain RCC 288 A7702144 39-20 GU191480 NA A7702144 A7702144 A7702144 39-20 GU191480 NA A7702144 A7702144 A7702145 39-20 GU191480 NA A67070244 E693668 A7702144 39-20 GU191490 NA Bac. CL A072 E145685 A7702144 3126 GU151670			GU191529	U. Bacteroidetes Bac. Cl. 131719	AY922223	66	Bacteroidetes Bac. MOLA 103	AM990877	98
120-51 GU191531 U. Bac. Cl. P9X2b2H06 EU491266 89 Bac. Elin5220 AY234571 5-like 3-3 GU191483 U. Bac. Cl. b78 700641 20641 2-3 GU191483 U. Bac. Cl. b78 EU919733 99 Mantoniels paterane X703143 2-3-5 GU191484 U. Bac. Cl. 525 EF051850 96 Pharoninous parkee A7702145 2-3-5 GU191487 Na. EU93143 98 Dinophysis mita chioophat A1703144 2-3-5 GU191487 Na. EU491265 96 Pharanimons parkee A7702145 3-3-0 GU191487 Na. EU491265 96 Pharanimons parkee A7702145 3-3-0 GU191487 Na. EU491265 96 Pharanimons parkee A7702145 3-3-10 GU191487 Na. Cl. Cl. 255 EU49128 E1002200 3-3-25 GU191516 Na. Cl. Cl. 255 E195835 A700144 3-3-3 GU191471 U. Bac. Cl. 160021201 E4058	Ŀ.		GU191530	U. Bac. Cl. FS266-28B-03	DQ513078	98	Planctomycetes A-2	AM056027	83
3-9 GU191455 M 3-9 GU191455 M 2-22 GU191484 U. Bac: CL b78 EU919793 99 Phaecoystis globoas strain RC (187 X702143 2-22 GU191484 U. Bac: CL b78 EU919793 99 Phaecoystis globoas strain RC (187 A7702143 2-22 GU191484 U. Bac: CL b702 EF051850 96 Pyraminons prices A7302144 2-22 GU191490 U. Prasinophyte CL MC597 EF051850 96 Pyraminons prices A7302144 2-23 GU191460 NA Arroundification as strain RC (218) A7702144 2-24 GU19156 NA Arroundification as strain RC (238 A7702144 2-25 GU191450 NA Arroundification as strain RC (238 A7702144 2-26 GU19151 NA Baidomonas meditermanes strain RC (238 A7702144 2-26 GU19151 NA Baidomonas meditermanes strain RC (238 A7702144 2-26 GU19151 NA Baidomonas meditermanes strain RC (238 A7702145 2-26 GU19151 NA Baidomonas meditermanes strain RC (238		-	GU191531	U. Bac. Cl. P9X2b2H06	EU491266	89	Bac. Ellin5220	AY234571	81
GU191483 U. Bac. Cl. b78 EU919793 99 Phaeocystis globosa strain RCC187 AY 702143 GU191483 U. Bac. Cl. S25 EF574491 98 Dinophysis mira chloroplast AB199883 GU191483 U. Bac. Cl. S25 EF574491 98 Dinophysis mira chloroplast AB199883 GU191483 U. Bac. Cl. A072 E1456835 96 Pharminonas parkeee A7702144 GU191469 NA Ankylochrysis lutra chloroplast AB072114 A702144 GU191516 NA EU3 EU3 Boidomonas parkeee A7702144 GU191516 NA EU3 EU3 Boidomonas parkeee A7702144 GU191516 NA EU3 EU3 Boidomonas parkeee A7702144 GU191516 NA EU3 EU3 Boidomonas endireranea strain RCC238 A7702144 GU191517 U. Mar. Bac. Cl. Fodbw.22 EU3 Gemingera cryophila plastid AB07311 GU191512 U. Mar. Bac. Cl. Fodbw.22 EU337024 99 Gemingera cryophila plastid A1687178	16S-like		GU191465	NA			Mantoniella squamata	X90641	98
GU191484 U. Bac. CI. S25 EF574491 98 Dinophysis mitra chloroplast AB199883 GU191487 NA AF393608 AF393608 GU191487 NA AF302146 AF393608 GU191487 NA AF302146 AF393508 GU191487 NA AF302146 AF393508 GU191487 N. Bac. CI. A072 F1456835 96 Boildononas mediteranea strain RCC238 A7702146 GU191469 NA Thalassiosia anacricia solate C128 F1002200 AF30311 GU191516 NA Bac. CI. S116 EU919855 98 Geminigera cryophila plastid AB07311 GU191513 U. Bac. CI. S104 99 Gammaproteobacteria IMCC2047 EF468718 GU191513 U. Mar. Bac. CI. ER04bw.22 EU919834 99 Gammaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. B78-116 EU9337024 95 Gammaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. B78-116 EU9337024 95 Gammaproteobacteria IMCC2047 EF468718 GU191526 U. Mar. Bac. CI. B78-116 EU9337024 95		-	GU191483	U. Bac. Cl. b78	EU919793	66	Phaeocystis globosa strain RCC187	AY 702143	66
GU191490 U. Prasinophyte CI. MC597 EF051850 96 Pyramimonas parkeae AF393608 GU191487 NA Ankylochrysis lutea strain RCC286 AY702146 GU191468 NA Ankylochrysis lutea strain RCC286 AY702144 GU191469 NA Ankylochrysis lutea strain RCC286 AY702144 GU191469 NA Ankylochrysis lutea strain RCC288 AY702144 GU191469 NA Arenorellopsis glacialis isolate C128 F1002200 GU191516 NA Arenorellopsis glacialis isolate C128 F1002233 GU191517 U. Bac. CI. S116 EU919835 99 Gammaproteobacteria INIC C2047 EF468718 GU191517 U. Mar. Bac. CI. FB04bw.22 EU837024 99 Gammaproteobacteria INIC C2047 EF468718 GU191525 U. Mar. Bac. CI. B04bw.22 EU837024 99 Gammaproteobacteria INIC C2047 EF468718 GU191526 U. Mar. Bac. CI. B04bw.22 EU837024 99 Gammaproteobacteria INIC C2047 EF468718 GU191526 U. Mar. Bac. CI. B04bw.22 EU837024 95 Gammaproteobacteria INIC C2047 EF468718 GU191526 U. Mar. Bac. CI. B74bw		-	GU191484	U. Bac. Cl. S25	EF574491	98	Dinophysis mitra chloroplast	AB199883	96
GU191487 NA GU191487 NA GU191488 U. Bac. CI. A072 F1456835 96 Ankylochrysis lutea strain RCC238 Ar702146 GU191488 U. Bac. CI. A072 F1456835 96 Bolidomonas mediterranea strain RCC238 Ar702144 GU191516 NA Aasterionellopsis glacialis isolate C12 F1002200 7002333 GU191516 NA EU919855 98 Geminigera cryophila plastid AB07311 GU191513 U. Bac. CI. S106 EU919834 99 Geminigera cryophila plastid AB07311 GU191513 U. Mar. Bac. CI. FB04bw.22 EU919834 99 Geminigera cryophila plastid AB07311 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Glariecobacteria INC C2047 EF468718 GU191526 U. Mar. Bac. CI. KG_A3_120m32 EU837024 95 Glariecobacteria INC C2047 EF468718 GU191526 U. Mar. Bac. CI. KG_A3_120m32 EU837024 95 Glariecobacteria INC C2047 EF468718 GU191526 U. Mar. Bac. CI. B04bw.22 EU837024 95 Glariecobacteria INC C2047 EF468718 GU191518		-	GU191490	U. Prasinophyte Cl. MC597	EF051850	96	Pyramimonas parkeae	AF393608	91
GU191488 U. Bac. CI. A072 F1456835 96 Bolidomonas mediterranea strain RCC238 AY702144 GU191469 NA Thalassiosiria antarctica isolate C128 F1002200 GU191516 NA Asterionellopsis glacialis isolate C128 F1002203 GU191516 NA Asterionellopsis glacialis isolate C128 F1002233 GU191517 U. Bac. CI. s116 EU919855 98 Germiyera cryophila plastid AB07311 GU191713 U. Bac. CI. FB04bw.222 EU919834 99 Gamaproteobacteria IMCC2047 F5468718 GU191725 U. Mar. Bac. CI. FB04bw.222 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191725 U. Mar. Bac. CI. AntCL1C7 DQ906718 99 Gamaproteobacteria IMCC2047 F5468718 GU191526 U. Mar. Bac. CI. KG_A3_120m32 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191526 U. Mar. Bac. CI. KG_A3_120m32 EU287080 99 Gamaproteobacteria IMCC2047 F5468718 GU191547 NA Mar. Bac. CI. KG_A3_120m32 EU287080 99 Gamaproteobacteria IMCC2047 F1468718 GU191512 NA U. M			GU191487	NA			Ankylochrysis lutea strain RCC286	AY 702146	97
GU191469 NA Thalassiosira antarctica isolate C128 FJ002200 GU191516 NA Asterionellopsis glacialis isolate C12 FJ002233 GU191516 NA Asterionellopsis glacialis isolate C12 FJ002233 GU191513 U. Bac. C1. s116 EU919855 98 Geminigera cryophila plastid AB07311 GU191513 U. Bac. C1. s116 EU919834 99 Gammaproteobacteria IMC C2047 EF468718 GU191525 U. Mar. Bac. C1. FB04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191525 U. Mar. Bac. C1. B04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191525 U. Mar. Bac. C1. B78-1116 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU19153 U. Mar. Bac. C1. B78-116 Pacinetobacter is IMC C2047 EF468718 GU19154 NA Mar. Bac. MC C2047 EF468718 GU191512 NA Am907505 Glaciecola sp. NF1-37 F136025 GU191518 U. Bac. C1. B78-1116 EU287080 99 Ratinotaca case Bac. MOLA 455		-	GU191488	CI. A	FJ456835	96	Bolidomonas mediterranea strain RCC238	AY 702144	96
GU191516 NA Asterionellopsis glacialis isolate C42 F1002233 GU191507 U. Bac. CI. s116 EU919855 98 Geminigera cryophila plastid AB07311 GU191513 U. Bac. CI. s28 EU919835 99 Geminigera cryophila plastid AB07311 GU191513 U. Bac. CI. S28 EU919834 99 Geminigera cryophila plastid AB07311 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191525 U. Mar. Bac. CI. B04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 GU191526 U. Mar. Bac. CI. B04bw.22 EU837024 95 Glaciecola sp. NF1-37 F196025 GU191543 NA Ant.CLIC7 DQ906718 99 Gammaproteobacteria IMC C2047 F468718 GU191543 NA Bac. CI. S78-116 EU287080 99 Gammaproteobacteria IMC C2047 F106025 GU191518 U. Bac. CI. S78-116 EU287080 99 Mar. Bac. MSC 35 GU1953145 G			GU191469	NA			Thalassiosira antarctica isolate C128	FJ002200	66
GU191507 U. Bac. CI. s116 EU919855 98 Geminigera cryophila plastid AB07311 GU191513 U. Bac. CI. S28 EU919834 99 Gemmaproteobacteria IMCC2047 EF468718 GU191515 U. Mar. Bac. CI. S28 EU919834 99 Gemmaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gamaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gamaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gamaproteobacteria IMCC2047 EF468718 GU191526 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gamaproteobacteria IMCC2047 EF468718 GU191526 U. Mar. Bac. CI. Stout-Multician AN905554 AM906554 AM905554 GU191518 U. Bac. CI. KG_A3_120m32 EU919848 99 Mar. Bac. MOLA 455 AM990927 GU191518 U. Bac. ARCTIC09_G_07 EU759505 99 Pseudomonad stutzeri AM990927 GU191518 U. Bac. ARCTIC09_G_07 EU795095 99 Pseudomonad acea Bac. MOLA 455 AM990			GU191516	NA			Asterionellopsis glacialis isolate C42	FJ002233	66
GU191513 U. Bac. CI. S28 EU919834 99 Gammaproteobacteria IMCC2047 EF468718 GU191471 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gammaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gammaproteobacteria IMCC2047 EF468718 GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gammaproteobacteria IMCC2047 EF468718 GU191526 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gammaproteobacteria IMCC2047 EF468718 GU191526 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Gammaproteobacteria IMCC2047 EF468718 GU191543 NA Sec. CI. B78-116 EU237024 99 Gammaproteobacteria IMCC2047 EF468718 GU191543 NA Sec. CI. B78-116 EU237024 99 Gammaproteobacteria IMCC2047 EF468718 GU191518 U. Bac. CI. B78-116 EU237024 99 Gammaproteobacter sp. BF-5 EU753145 GU191518 U. Bac. CI. KG_A3_120m32 EU919848 99 Mar. Bac. MOLA 455 AM990927 GU191514 NA Secudomonad ceae Bac. MOLA 455		-	GU191507	U. Bac. Cl. s116	EU919855	98	Geminigera cryophila plastid	AB07311	98
GU191471 U. Mar. Bac. CI. FB04bw.22 EU837024 99 Gammaproteobacteria IMC C2047 EF468718 I GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 I GU191526 U. Mar. Bac. CI. AntCL1C7 DQ906718 99 Gammaproteobacteria IMC C2047 EF468718 I GU191526 U. Mar. Bac. CI. AntCL1C7 DQ906718 99 Gammaproteobacteria IMC C2047 EF468718 I GU191543 NA Bac. CI. AntCL1C7 DQ906718 99 Gammaproteobacteria IMC C2047 EF468718 I GU191543 NA Bac. CI. B78-116 EU287080 99 Mar. Bac. MS C35 EU753145 GU191518 U. Bac. CI. KG_A3_120m32 EU919848 99 Mar. Bac. MS C35 AM9005854 GU191518 U. Mar. Bac. CI. KG_A3_1120m32 EU795095 99 Pseudomonadceae Bac. MOLA 455 AM990927 GU191514 NA Mar. Bac. ARCTIC09_G_07 EU795095 99 Pseudomonadceae Bac. MOLA 455 AM990927 GU191512 NA Mar. Bac. ARCTIC09_G_07 EU795095 99 Pseudomonadceae Bac. MOLA 455 <td< td=""><td>Gammaproteobacter</td><td>-</td><td>GU191513</td><td>U. Bac. Cl. S28</td><td>EU919834</td><td>66</td><td>Gammaproteobacteria IMCC2047</td><td>EF468718</td><td>92</td></td<>	Gammaproteobacter	-	GU191513	U. Bac. Cl. S28	EU919834	66	Gammaproteobacteria IMCC2047	EF468718	92
I GU191525 U. Mar. Bac. CI. FB04bw.22 EU837024 95 Glaciecola sp. NF1-37 F1196025 I GU191526 U. Mar. Bac. CI. AntCL1C7 DQ906718 99 Gammaproteobacteria IMCC2047 F5468718 I GU191543 NA Bac. CI. AntCL1C7 DQ906718 99 Gammaproteobacteria IMCC2047 EF468718 I GU191543 NA E466718 Acinetobacter sp. BF-5 F1592170 AM905854 GU191475 NA EU287080 99 Gammaproteobacter sp. BF-5 F1592170 GU191475 NA Bac. CI. KG_A3_120m32 EU919848 99 Mar. Bac. MSC35 EU753145 GU191518 U. Mar. Bac. CI. KG_A3_120m32 EU795095 99 Mar. Bac. MSC35 AM990927 GU191514 NA Bac. ARCTIC09_G_07 EU795095 99 Pseudomonadaceae Bac. MOLA 455 AM990927 GU191512 NA GU191512 NA Garciocola sp. ANT F1160025 1 GU191512 NA GU191512 NA Garciocola sp. ANT F1196025 1 GU191511 NA A Garciocola sp. ANT </td <td></td> <td></td> <td>GU191471</td> <td></td> <td>EU837024</td> <td>66</td> <td>Gammaproteobacteria IMC C2047</td> <td>EF468718</td> <td>93</td>			GU191471		EU837024	66	Gammaproteobacteria IMC C2047	EF468718	93
Image: Hold Signal S			GU191525		EU837024	95	Glaciecola sp. NF1-37	FJ196025	91
2 GU191543 NA Acinetobacter sp. BF-5 FJ592170 3 GU191475 NA AM905854 AM905854 4 GU191475 NA AM905854 AM905854 6 U191518 U. Bac. CL B78-116 EU287080 99 Mar. Bac. MSC 35 EU753145 6 U191480 U. Mar. Bac. CL KG_A3_120m32 EU919848 99 Pseudomonadceae Bac. MOLA 455 AM990927 8 GU191514 NA Bac. MCTIC09_G_07 EU795095 99 Pseudomonadceae Bac. MOLA 455 AM990927 7 GU191512 NA FU047560 Fundibacter sp. MOLA 455 AM990927 7 GU191512 NA Fundibacter sp. MOLA 455 AM990927 6U191512 NA GU191498 NA AM990818 GU191512 NA Fundibacter sp. MOLA 43 AM990818 GU191512 NA Glaciecola sp. ANT9177 F1196025 1 GU191511 NA Antric sea ice Bac. ARK10130 AF468395 7			GU191526		DQ906718	66	Gammaproteobacteria IMCC2047	EF468718	93
GU191475 NA Pseudomonas stutzeri AM905854 I GU191518 U. Bac. CI. B78-116 EU287080 99 Mar. Bac. MSC 35 EU753145 GU191480 U. Mar. Bac. CI. KG_A3_120m32 EU919848 99 Pseudomonadceae Bac. MOLA 455 AM990927 8 GU191539 U. Bac. ARCTIC09_G_07 EU795095 99 Pseudomonadceae Bac. MOLA 455 AM990927 7 GU191514 NA Fundibacteer sp. MOLA 455 AM990927 Alcanivorax sp. PA7 EU647560 6 GU191512 NA Gu191646 Pseudomonadceae Bac. MOLA 455 AM990927 7 GU191512 NA EU795095 99 Pseudomonadceae Bac. MOLA 455 AM990927 7 GU191512 NA Fundibacter sp. MOLA 43 AM9900818 G1947560 Fundibacter sp. MOLA 43 AM9900818 GU191512 NA GU191502 T AM9900817 F196025 1 7 GU191511 NA A A AM9008177 F105025 1 8 GU191511 NA A A A A A A <			GU191543	NA			Acinetobacter sp. BF-5	FJ592170	66
I GU191518 U. Bac. CI. B78-116 EU287080 99 Mar. Bac. MSC 35 EU753145 GU191480 U. Mar. Bac. CI. KG_A3_120m32 EU919848 99 <i>Pseudomonadaceae</i> Bac. MOLA 455 AM990927 3 GU191539 U. Bac. ARCTIC09_G_07 EU795095 99 <i>Pseudomonadaceae</i> Bac. MOLA 455 AM990927 7 GU191514 NA Addomonadaceae Bac. MOLA 455 AM990927 7 GU191512 NA <i>Adcanivorax</i> sp. PA7 EU647560 6U191512 NA <i>Glaciecola</i> sp. AN19177 F1196025 1 GU191511 NA Glaciecola sp. ANT9177 F1196025 1		-	GU191475	NA			Pseudomonas stutzeri	AM905854	95
GU191480 U. Mar. Bac. Cl. KG_A3_120m32 EU919848 99 <i>Pseudomonadaceae</i> Bac. MOLA 455 AM990927 8 GU191539 U. Bac. ARCTIC09_G_07 EU795095 99 <i>Pseudomonadaceae</i> Bac. MOLA 455 AM990927 7 GU191514 NA A <i>Alcanivorax</i> sp. PA7 EU647560 6 GU191512 NA <i>Alcanivorax</i> sp. AN1 AM990818 6 GU191512 NA <i>Alcanivorax</i> sp. AN1 FJ196025 1 6 GU191511 NA Arctic sea ice Bac. ARK 10130 AF468395 Ar68395			GU191518	U. Bac. Cl. B78-116	EU287080	66	Mar. Bac. MSC35	EU753145	93
3 GU191539 U. Bac. ARCTIC09_G_07 EU795095 99 <i>Pseudomonadaceae</i> Bac. MOLA 455 AM990927 7 GU191514 NA A/canivorax sp. Pa7 EU647560 6 GU191512 NA A/canivorax sp. Pa7 EU647560 6 GU191512 NA A/canivorax sp. Pa7 EU647560 6 GU191512 NA A/molibacter sp. MOLA 43 A/m990818 6 GU191498 NA Glaciecola sp. ANT9177 FJ196025 1 6 GU191511 NA Arctic sea ice Bac. ARK10130 AF468395 3		-	GU191480		EU919848	66	Pseudomonadaceae Bac. MOLA 455	AM990927	66
7 GU191514 NA EU647560 GU191512 NA EU647560 EU647560 GU191498 NA AM990818 Glaciecola sp. MOLA 43 AM990818 GU191498 NA Glaciecola sp. ANT9177 FJ196025 1 GU191511 NA Arctic sea ice Bac. ARK10130 AF468395		-	GU191539		EU795095	66	Pseudomonadaceae Bac. MOLA 455	AM990927	66
GU191512 NA AM990818 AM990818 AM990818 AM990818 Claim Claim <thclaim< th=""> Claim <thclaim< th=""></thclaim<></thclaim<>			GU191514	NA			Alcanivorax sp. PA7	EU647560	66
GU191498 NA Glaciecola sp. ANT9177 FJ196025 Y GU191511 NA Arctic sea ice Bac. ARK10130 AF468395 AF468395		-	GU191512	NA			Fundibacter sp. MOLA 43	AM990818	66
GU191511 NA AF468395 Arctic sea ice Bac. ARK10130 AF468395		-	GU191498	NA			Glaciecola sp. ANT9177	FJ196025	100
		-	GU191511	NA			Arctic sea ice Bac. ARK10130	AF468395	96

Continued
÷
Table

	OTUS	Accession no	Accession no. Nearest uncultivated BLAST match	Accession no.	Similarity (%)	Nearest cultivated BLAST match	Accession no.	Similarity (%)
	3-5	GU191464	U. Mar. Bac. Cl. KG_A3_120m16	EU005720	66	NA		
	22-20	GU191481	U. Bac. ARCTIC10_F_05	EU795251	66	NA		
	42-45	GU191497	U. Bac. ARCTIC31_H_08	EU795096	100	Thiotrophic endosymbiont	EU683304	95
	22-63	GU191486	NA			Pseudomonas sp. 168	AM396934	66
	22-17	GU191479	NA			Pseudomonas sp. NUST03	AY293865	66
	42-34	GU191496	NA			Pseudomonas sp. 168	AM396934	96
	22-55	GU191485	NA			Marinobacter sp. MOLA 126	006066MA	66
	22-2	GU191477	NA			Cycloclasticus spirillensus	DQ659429	66
	141-10	GU191534	U. Antarctic sea ice Bac. Cl. AntCL3E3	DQ906761	66	Gammaproteobacteria UMB6E	AF505730	98
	42-2	GU191493	NA			Psychromonas sp. ANT9265	AY167326	66
	141-13	GU191535	NA			<i>Moritella</i> sp. JML-2005	DQ087416	100
	156-19	GU191542	NA			Pseudoalteromonas sp. Mn13	FJ594949	100
	117-37	GU191521	NA			Marinomonas sp. NF3-30	FJ196055	66
	42-7	GU191494	NA			Alteromonadaceae Bac. SN-1009	AB097610	97
	3-55	GU191476	U. Bac. ARCTIC03_F_03	EU795247	66	Colwellia sp. ANT9381	AY167329	97
	75-9	GU191501	NA			Colwellia sp. ANT9183a	DQ906771	66
	81-56	GU191510	NA			Colwellia rossensis strain ANT9279	AY167311	66
	75-22	GU191502	NA			Colwellia sp. ZS3-28	FJ196031	66
	39-37	GU191491	U. Bac. Cl. s2	EU919823	66	NA		
DP.	81-36	GU191508	U. Bac. Cl. B8S-8	EU652615	98	Bacteriovorax sp. NZAH13	DQ631790	94
	81-13	GU191506	U. Deltaproteobacteria Sva0447	AJ240999	66	Bacteriovorax sp. EPC3	AY294222	06
U.	3-39	GU191472	U. Mar. Bac. Ant4E12	DQ295238	100	NA		
Ň	141-58	GU191540	U. Verrucomicrobiales cl.	DQ351768	96	Fucophilus fucoidanolyticus	AB073078	96
Alphaproteobacteria	141-44	GU191538	NA			Roseobacter sp. ANT909	AY167254	100
	156-54	GU191546	NA			Roseobacter sp. ANT9274	AY167261	66
	81-55	GU191509	NA			Loktanella sp. ZS6-12	FJ196061	66
	117-30	GU191520	U. Bac. Cl. EPR4055-N3-Bc60	EU491925	66	Sulfitobacter dubius strain LMG20555	DQ915635	66
	117-5	GU191517	NA			Octadecabacter arcticus strain CIP106732	DQ915618	66
	39-64	GU191492	U. Mar. Bac. Cl. KG_C11_100m8	EU005899	66	NA		
	3-26	GU191468	U. Alphaproteobacteria Cl. MS190-2A	EF508147	66	NA		
	141-26	GU191536	NA			Hyphomonas sp. MOLA 116	AM990890	66
	120-54	GU191533	U. Mar. Bac. Cl. KG_C11_100m97	EU005965	66	NA		
	3-32	GU191470	U. Bac. Cl. 1C226611	EU799056	95	NA		
	3-47	GU191473	U. Bac. Cl. 4C230385	EU802984	96	NA		
	42-64	GU191499	U. Alphaproteobacteria Cl. NABOS_SSPbact67	EU544837	91	NA		
	81-2	GU191504	U. Alphaproteobacteria Cl. NABOS_SSPbact67	EU544837	66	NA		
	75-36	GU191503	U. Bac. Cl. 1C227590	EU799917	66	NA		
	102-33	GU191515	U. Mar. Bac. Cl. AntCL1F11	DQ906730	66	NA		
	22-21	GU191482	U. Bac. Cl. b107	EU919806	98	NA		
	63-16	GU191500	U. Bac. Cl. 2C228982	EU800782	66	Pelagibacter ubique strain HTCC 1062	AF510191	66
	39-28	GU191489	NA			Pelagibacter ubique strain HTCC 1062	EU836995	66
P., Planctomycetes; G.,	, Gemmat	timonadetes; D	P., Planctomycetes; G., Gemmatimonadetes; DP., Deltaproteobacteria; U., uncultivated; V., Verrucomicrobia; Bac., bacterium; Mar., marine; CI., clone; NA, not available	ucomicrobia; B	ac., bacterium;	Mar., marine; Cl., clone; NA, not available.		

Fig. 2. Prydz Bay bacterioplankton community composition on November 11, 2002 (a), November 26, 2002 (b), December 14, 2002 (c) and January 6, 2003 (d), serving as inocula (T_0) for incubation experiments 1–4. Sequences were classified into OTUs at the 97% similarity level. OTUs representing at least 10% of the community are specified next to the chart. *N* is the number of analyzed sequences and *H'* is Shannon's diversity index. Color codes used: shades of blue, *Gammaproteobacteria*; red to yellow, *Alphaproteobacteria*; shades of green, CFB; white, unclassified bacteria; gray, *Deltaproteobacteria*; mauve, *Planctomycetes*; purple, *Gemmatimonadetes*.

probably an artifact of prefiltration. Here, incubation time significantly explained 18.9% of the variance among the band patterns. Thus, changes in the bacterial community composition were not rapid or dramatic. Incubation time was either the sole or the dominant factor effecting the composition of the bacterial community, while UV-R commonly exerted little effect.

Minicosm incubation and bacterial community composition

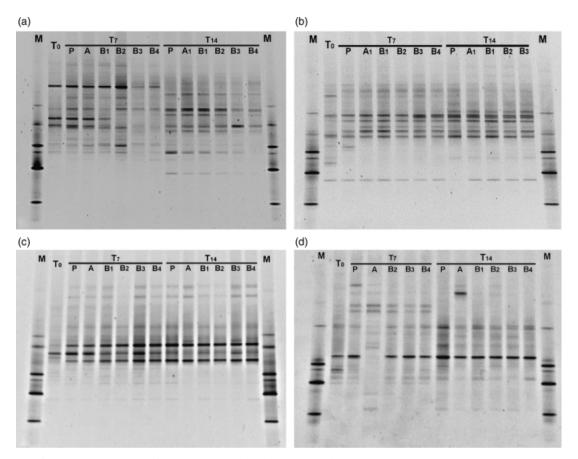
As done previously for the Prydz Bay (T_0) samples, the sequences were clustered into OTUs at the 97% identity level

(Fig. 4). This revealed that the OTU composition and relative abundance of clones of communities exposed to PAR and the highest UV-R (B_4 , B_3 for experiment 2) for 14 days differed from the initial (T_0) community composition.

The composition of clone libraries generated from experiment 1 communities exposed to PAR (P) and high UVB (B4) irradiation revealed that the proportion of CFBs increased, while *Gammaproteobacteria* decreased. *Alphaproteobacteria* reacted differently to the irradiation treatments: after PAR-only irradiation, their proportion was unchanged, while incubation under high UVB reduced the proportion of *Alphaproteobacteria* clones. Incubation also affected the community composition within classes as revealed by

	Experiment 1			Experiment 2			Experiment 3			Experiment 4		
	11/11/2002	T14P	T14B4	11/26/2002	T14P	T14B3	12/14/2002	T14P	T14B4	1/6/2003	T14P	T14B4
Clones	55	60	50	52	60	60	54	52	60	56	54	58
surveyed 16S-like	7	17	18	2	4	7	Ū	œ	21	,	0	0
sequences Bacterial	48	43	32	50	56	53	49	44	6E	55	54	58
clones OTUs (99% similarity) 21	21	16	œ	23	ъ	œ	19	10	14	17	15	16
Shannon-	2.550	2.109	1.55578	2.658	1.079	1.141	2.538	1.649	2.235	2.148	2.237	2.107
Weaver index												
$(\pm SD)$	(±0.32)	(± 0.36)	(±0.37)	(±0.32)	(±0.21)	(±0.33)	(± 0.28)	(± 0.33)	(±0.32)	(±0.3)	(± 0.26)	(±0.3)
Chao	81 (38–237)	49 (24–147)	9 (8–19)	49 (30–115)	6 (5–19)	11 (8–31)	52 (27–150)	15 (11–42)	32 (18–95)	35 (21–92)	29 (18–82)	39 (21–113)
Ace	87 (40–250)	77 (29–294)	10 (8–24)	51 (32–111)	9 (5–48)	14 (9–45)	43 (26–104)	19 (12–56)	33 (19–89)	68 (32–185)	30 (19–77)	41 (23–109)

changes in dominant OTU. Initially, the 'uGprot1' OTU (cluster of clones '120-16, 3-34, 120-11, 120-14', with clone 120-16 sharing 99% identity with clone ANT4D3) dominated among the Gammaproteobacteria, 'Pelagib' (clones '39-28, 141-58') and 'Roseob1' (clone '141-44' related to ANT909) OTUs among the Alphaproteobacteria, and 'uPolarib' dominated within the CFBs. After incubation under PAR, the 'uGprot1' OTU no longer dominated the Gammaproteobacteria, OTU 'Pelagib' overtook the Alphaproteobacteria, while the relative abundance of 'uPolarib' increased among the CFBs. In the B4-community, 'uPolarib' constituted half of all sequences, 'Pelagib' dominated within the Alphaproteobacteria and 'uGprot1' dominated within the Gammaproteobacteria. In experiment 1, the bacterial diversity decreased under both irradiation conditions from H' = 2.6 to H' = 2.1 (P) and H' = 1.6 (B₄) (Table 2).


The community composition of the clone libraries generated from experiment 2 revealed similar changes for the PAR-only and high UVB (B3) communities: members of the CFB class overtook the entire community after 14 days of incubation, representing $\sim 80\%$ of all sequences. Within this class, 'uPolarib' OTU dominated, with 59% and 68% of all sequences. Consequently, the diversity decreased from H' = 2.7 to H' = 1.1. The proportion of Alphaproteobacteria and Gammaproteobacteria decreased strongly: the latter only subsisted as a tiny proportion of the community.

Experiment 3 had a different initial community and incubation appeared to have a different effect on the 'P' and 'B' community composition. The proportion of CFB sequences remained stable, representing \sim 50% of all sequences; Gammaproteobacteria decreased from 43% to 25% and 10%, for the P and B₄ communities, respectively. The proportion of Alphaproteobacteria-related sequences increased from 6% in the inoculum to 18% and 38% in the P and B_4 communities.

Experiment 4 clone libraries of the incubated communities also revealed a strong increase in the proportion of Alphaproteobacteria, with 'Roeseob1'-related sequences dominating both the 'P' and the 'B' communities. The proportion of CFB sequences decreased slightly, and as in the other experiments, the proportion of Gammaproteobacteria strongly decreased, especially in the community exposed to high UVB.

Overall, under PAR irradiation and after 14 days of incubation, two patterns emerged: either a strong dominance of CFBs or an even contribution by CFBs, Gammaand Alphaproteobacteria. Under high UV-R irradiation ('B'), the proportion of Gammaproteobacteria sequences strongly decreased, while sequences belonging to the CFBs formed at least 50% of the community. Alphaproteobacteria showed two responses: their contribution to the community composition decreased during incubation in the first two

© 2010 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved

Fig. 3. DGGE of the bacterial communities from experiments 1 (a), 2 (b), 3 (c) and 4 (d). Codes used are: M, marker; T_0 , inoculum; T_7 , day 7 and T_{14} , day 14 of the incubation, irradiation conditions P = PAR, A = PAR+UVA, B₁–B₄ = low (1) to highest (4) PAR+UVA+UVB irradiation treatment.

experiments, but increased in the last two, reaching at least a third of the community.

Cluster analysis of the bacterioplankton community composition, calculated from the relative abundance of sequences clustered within OTUs at the 97% identity level, is presented as a dendrogram (Fig. 5). All the initial (T_0) bacterioplankton communities, except for the second experiment, appeared as grouped. T_0 for the second experiment was grouped separately with Exp1 T_{14} P. All the remaining incubated communities, samples from experiments 2 and 4 were highly similar, reflecting a consistent community composition irrespective of the irradiance treatment to which they were exposed.

Discussion

Prydz Bay bacterioplankton

The data presented in this study provide a first insight into the composition of coastal Eastern Antarctic marine bacteria

using culture-independent molecular methods. So far, only a handful of studies have characterized marine bacterial communities from the Antarctic, while a few more have explored the composition of archaeal communities (see the review by Hollibaugh et al., 2007; Murray & Grzymski, 2007). Analysis of late spring - early summer bacterioplankton communities from Prydz Bay revealed the presence and relative dominance of bacterial classes that are expected for polar marine systems: the CFB (48.9%), Alpha- (26.3%) and Gammaproteobacteria (23.6%) classes that were also reported in other bacterioplankton studies conducted in the Arctic and Antarctic (Bano & Hollibaugh, 2002; Hollibaugh et al., 2007). Murray & Grzymski (2007) studied the springtime bacterioplankton in offshore waters collected near Anvers Island, Antarctic Peninsula, and observed a similar springtime bacterial community composition with an equal distribution of clones over those three classes (CFB, Alphaand Gammaproteobacteria).

Most *Alphaproteobacteria* sequences collected from Prydz Bay revealed a close relationship with *Pelagibacter ubique*, a cosmopolitan marine bacterium and a member of the

	Experiment	1		Experiment	: 2		Experiment	3		Experimen	t 4	
	T and UV	Т	UV	T and UV	Т	UV	T and UV	Т	UV	T and UV	Т	UV
δ^{\dagger}	35.2	27.8	15.7	31.8	20.5	13	36.7	30.3	15.4	27.4	18.9	12.3
P^{\ddagger}	0.002**	0.001**	0.031*	0.004**	0.001**	NS	0.002**	0.001**	0.037*	0.019*	0.004**	NS

Table 3. Redundancy analysis and Monte-Carlo's permutation test results of species variance and environmental variables time (T) and UV-R (UV) explaining a part of the variation in the bacterial communities

[†]Part of the variation (in percentage).

[‡]P-value, significance level:

* < 0.05,

** < 0.005.

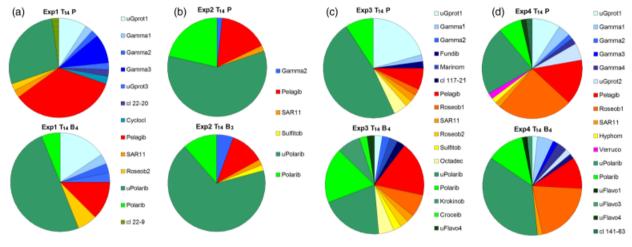


Fig. 4. Pie chart of the relative abundance of OTUs revealing shifts in community composition after 14 days of incubation under PAR (P) or high UV-R (B). For color codes, see Fig. 2.

SAR11 cluster (Morris et al., 2002; Giovannoni et al., 2005). Within the SAR11 members of Prydz Bay, we also recovered sequences closely related to Arctic SAR11 sequences: Arctic 97A-1 (Bano & Hollibaugh, 2002). The second most dominant group belonged to the Roseobacter, which included sequences related to the Roseobacter spp., Sulfitobacter spp. and Octadecabacter spp. The latter is a common inhabitant of sea ice and underlying seawater (Brinkmeyer et al., 2003).

The dominant fraction of the Gammaproteobacteria sequences clustered within the 'uGprot1' OTU, which is related to clone ANT4D3 from Grzymski et al. (2006), a member of the oligotrophic marine Gammaproteobacteria HTTC2180 (Cho & Giovannoni, 2004). A fraction of the Prydz Bay bacterioplankton clustered within the proteorhodopsin containing the SAR92 clade, which had a strong identity (98%) to the cultivated HTCC231 strain (Stingl et al., 2007). The Gammaproteobacteria sequences revealed a high level of microdiversity with 15 single sequence phylotypes, making it by far the most diverse class within the Prydz Bay bacterioplankton community.

The major fraction of CFB-related sequences had the highest identity to the cultivated P. irgensii ANT4243 strain (Brinkmeyer et al., 2003) and an uncultivated Polaribacter Arctic 96B-11 sequence (Bano & Hollibaugh, 2002). The psychrophilic genus Polaribacter forms a dominant fraction of the CFB group and is known to have a bipolar distribution (Staley & Gosink, 1999; Brinkmeyer et al., 2003; Abell & Bowman, 2005).

The tail end of our Prydz Bay clone library (1.1%) comprised 'rare' bacterial classes with sequences related to the Deltaproteobacteria, Verrucomicrobiales, Planctomycetes, Gemmatimonadetes and an uncultured bacterium (ANT4E12, Grzymski et al., 2006). The clone library generated from Prydz Bay seawater is the first study reporting on the presence of these five 'rare' classes within a single sample set, once again supporting the endless potential of marine samples in discovering novel and rare sequences (Pedrós-Alió, 2006). Previous reports of these five classes from Antarctic waters exist, but, as in our study, showed that they were minor components of the community.

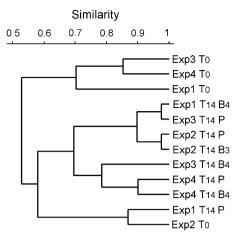


Fig. 5. Cluster analysis of Morisita-Horn similarities between natural and incubated bacterioplankton communities. Similarity was calculated using the relative abundance of sequences within 97% OTUs.

Natural springtime bacterioplankton succession

Previously, the Prydz Bay microeukaryotic communities were analyzed using the same samples as those presented in this study (Piquet et al., 2008; Thomson et al., 2008). Those studies revealed three microeukaryotic communities: a mixed postwinter community (T₀1: November 11), a flagellate-dominated community (T₀2 and T₀3: November 26 and December 14) and a diatom-dominated community (T_04 : January 6). The temporal shifts in the bacterioplankton community composition presented in this study did not mirror those observed for microeukarvotic communities. In contrast, Morisita similarity analysis of the four natural (T_0) communities calculated from the relative abundance of bacterial classes (data not shown) revealed two clusters: the November 11 and 26 (T₀1 and T₀2) samples were 97.5% similar, while the December 14 (T_03) and January 6 (T_04) samples shared 98% similarity. Previous studies have shown that bacterioplankton community composition and productivity change in response to phytoplankton blooms and species succession (Pinhassi & Hagström, 2000; Alonso-Sáez et al., 2007), albeit with a delay of several days (Billen & Becquevort, 1991; Fuhrman & Steele, 2008). Differences in the bacterioplankton response to phytoplankton blooms can be attributed to the size and composition of the available DOM pool released by the phytoplankton after the bloom. Horner-Devine et al. (2003) conducted mesocosm experiments and observed a variable response time to increased primary productivity between bacterial classes, with CFBs responding most rapidly. Especially CFB bacteria are capable of rapidly degrading high-molecular-weight organic matter produced by phytoplankton (Glöckner et al., 1999). The apparent mismatch between microeukaryotic and bacterial community shifts observed in the Prydz Bay might have

been caused by a similar lag in the bacterioplankton response. However, the shift observed in T₀3 occurred before the microeukaryotic community composition shift. Here, the bacterioplankton community composition might have been shaped by organic material released from the surrounding decaying sea ice, often enriched in sea-ice microalgae. The observed similarity of the bacterial communities composition agrees with changes in the abundance of eukaryotes as phytoplankton abundance was low in experiments 1 and 2, but had more than doubled in T₀ samples used in experiments 3 and 4 (Thomson et al., 2008). Thus, our results could indicate that the composition of the bacterial community is principally determined by eukaryote abundance rather than species composition.

Incubation-driven community composition shifts

Several studies performing incubation experiments have successfully used DGGE to reveal shifts in prokaryotic and eukaryotic communities (Schäfer et al., 2000, 2001; Massana et al., 2001; Casamayor et al., 2002; Vázquez-Domínguez et al., 2005; Piquet et al., 2008). Winter et al. (2001) used DGGE to assess the impact of distinct irradiation regimes on natural North Sea bacterioplankton communities. Small, but consistent, shifts in the DGGE patterns were revealed after exposure to UVB and to a lesser extent UVA radiation (315-400 nm). Although DGGE cannot unveil quantitative shifts, its efficiency and applicability in revealing changes in microbial community composition following incubation experiments is supported by the publications cited above.

Studying the response of natural microbial communities to specific variables, like for example irradiance, remains a major challenge. Incubation itself can affect the eukaryotic as well as the bacterial fraction of the community (as discussed in Piquet et al., 2008). The simulated system should be large enough in order to prevent enclosure artifacts and yet not too large for logistic constraints. The experiments carried out in Prydz Bay had relatively large volumes (650 L). The community was 200 µm prefiltered in order to avoid zooplankton grazing-mediated shifts and it was mixed to ensure even irradiance regimes. It is also evident that different initial communities will respond differently to irradiance exposure. The DGGE patterns generated for heterotrophic bacteria sampled along an eastern Pacific Ocean transect revealed biogeographic clustering according to latitude. Light incubation experiments conducted with these bacterioplankton communities revealed a latitudinal trend in the incorporation rates of leucine and thymidine matching the observed bacterial community clusters (Pakulski et al., 2007).

Exposure of the Prydz Bay bacterioplankton community to distinct UV-R conditions in minicosms for 13-14 days did not induce a clear response in community composition. Two out of the four experiments were significantly shaped by UV irradiation (experiments 1 and 3). This contrasts with previous studies of bacterioplankton sensitivity to UV-R. Analyses of natural Antarctic and tropical bacterioplankton have reported the accumulation of UV-induced DNA damage in the smallest size fraction (Visser et al., 1999; Buma et al., 2001) and diel patterns were also observed in the expression of dark repair mechanisms (RecA protein) (Booth et al., 2001). Analysis of the sensitivity of coastal marine bacterial isolates to UVB revealed large interspecific differences between isolates (Joux et al., 1999; Arrieta et al., 2000). Dilution cultures of North Sea bacterioplankton exposed to UV-R analyzed by community fingerprints with DGGE revealed minor shifts in the banding pattern, with interspecific responses for CFB-related OTUs (Winter et al., 2001). Furthermore, in Mediterranean waters, Alonso-Sáez et al. (2006) found that the heterotrophic activity of Alphaproteobacteria was inhibited, while CFB and Gammaproteobacteria remained unaffected. In our incubation experiments, the only class-related effect was observed for the relative abundance of Gammaproteobacteria, in particular the 'uGprot1' OTU, which decreased as a result of UVB exposure.

In conclusion, changes in the Prydz Bay bacterioplankton community were mostly affected by the incubation itself as well as the incubation duration. Furthermore, our study has shown that the impact of UV-R can be significant, affecting the composition of natural Antarctic bacterioplankton communities. However, these changes are not profound and are frequently subtle.

Acknowledgements

We thank the Davis Station personnel for the excellent logistic support during the field campaign. We are very grateful for the sample filtering support provided by Marjolein van Polanen-Petel Tamara van Polanen-Petel and Paul Janknegt. We also acknowledge the sequencing work conducted by Ing. J.K. Brons. This research was financed by the Australian Antarctic Division and Netherlands Organization for Scientific Research (NWO travel grant).

References

- Abell GCJ & Bowman JP (2005) Ecological and biogeographic relationships of class *Flavobacteria* in the Southern Ocean. *FEMS Microbiol Ecol* **51**: 265–277.
- Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommer U & Sommaruga R (2006) Effects of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters. *Appl Environ Microb* 72: 5806–5813.

- Alonso-Sáez L, Arístegui J, Pinhassi J, Gómez-Consarnau L, González JM, Vaqué D, Aqustí S & Gasol JM (2007) Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean. *Aquat Microb Ecol* 46: 45–53.
- Arrieta JM, Weinbauer MG & Herndl GJ (2000) Interspecific variability in sensitivity to UV-radiation and subsequent recovery in selected isolates of marine bacteria. *Appl Environ Microb* **66**: 1468–1473.
- Azam F (2001) Microbial control of oceanic carbon flux: the plot thickens. *Science* **280**: 694–697.
- Bano N & Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microb 68: 505–518.
- Billen G & Becquevort S (1991) Phytoplankton–bacteria relationship in the Antarctic marine ecosystem. *Polar Res* 10: 245–253.
- Booth MG, Hutchinson L, Brumstead M *et al.* (2001) Quantification of *rec*A gene expression as an indicator of repair potential in marine bacterioplankton communities of Antarctica. *Aquat Microb Ecol* **24**: 51–59.
- Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann RI & Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. *Appl Environ Microb* **69**: 6610–6619.
- Buma AGJ, de Boer MK & Boelen P (2001) Depth distribution of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation. *J Phycol* 37: 200–208.
- Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F & Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. *Environ Microbiol* 4: 338–348.
- Cho J-C & Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine *Gammaproteobacteria*. *Appl Environ Microb* **70**: 432–440.
- Davidson AT & van der Heijden A (2000) Exposure of natural Antarctic marine microbial assemblages to ambient UV radiation: effects on bacterioplankton. *Aquat Microb Ecol* **21**: 257–264.
- DeLong EF (2001) Microbial seascapes revisited. *Curr Opin Microbiol* **4**: 290–295.
- Edwards U, Rogall T, Blöcker H, Emde M & Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. *Nucleic Acids Res* **17**: 7843–7853.
- Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**: 783–791.
- Fuhrman JA & Steele JA (2008) Community structure of marine bacterioplankton: patterns, networks, and

relationships to function. *Aquat Microb Ecol* **53**: 69–81.

Fuhrman JA, McCallum K & Davis AA (1992) Novel major archaebacterial group from marine plankton. *Nature* 356: 148–149.

Gentile G, Giuliano L, D'Aurelia G, Smedile F, Azzaro M, Domenico MD & Yakimov MM (2006) Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. *Environ Microbiol* 8: 2150–2161.

Giovannoni SJ, Britschgi TB, Moyer CL & Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. *Nature* **345**: 60–63.

Giovannoni SJ, Tripp HJ, Givan S *et al.* (2005) Genome streamlining in a cosmopolitan oceanic bacterium. *Science* **309**: 1242–1245.

Glöckner FO, Fuchs BM & Amann RI (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence *in situ* hybridization. *Appl Environ Microb* 65: 3721–3726.

Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A & Murray AE (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. *Appl Environ Microb* **72**: 1532–1541.

Hammer Ø, Harper DAT & Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. *Palaeontol Electron* **4**: 38–47.

Hartl DL, Moriyama EN & Sawyer SA (1994) Selection intensity for codon bias. *Genetics* **138**: 227–234.

Hollibaugh JT, Lovejoy C & Murray AE (2007) Microbiology in polar oceans. *Oceanography* **20**: 140–145.

Horner-Devine M, Leibold MA, Smith VH & Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. *Ecol Lett* **6**: 613–622.

Joux F, Jeffrey WH, Lebaron P & Mitchell BG (1999) Marine bacterial isolates display diverse responses to UV-B radiation. *Appl Environ Microb* **65**: 3820–3827.

Lane DJ (1991) 16S/23S rRNA sequencing. *Nucleic Acid Techniques in Bacterial Systematics* (Stackebrandt E & Goodfellow M, eds), pp. 115–175. John Wiley and Sons, New York.

Massana R, Pedrós-Alió C, Casamayor EO & Gasol JP (2001) Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters. *Limnol Oceanogr* **46**: 1181–1188.

Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA & Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. *Nature* **420**: 806–810.

Murray AE & Grzymski JJ (2007) Diversity and genomics of Antarctic marine micro-organisms. *Philos T R Soc B* **362**: 2259–2271.

Muyzer G, de Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rDNA. *Appl Environ Microb* **59**: 695–700.

Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H & Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. *Molecular Microbial Ecology Manual* (Kowalchuk GA, de Bruin FJ, Head IM, Akkermans DL & van Elsas JD, eds), pp. 743–770. Kluwer Academic Publishers, Dordrecht.

Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W & Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNA in *Paenibacillus polymyxa* detected by TGGE. *J Bacteriol* **178**: 5636–5643.

Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? *Trends Microbiol* **14**: 257–263.

Pinhassi J & Hagström Å (2000) Seasonal succession of marine bacterioplankton. *Aquat Microb Ecol* **21**: 245–256.

Piquet AM-T, Bolhuis H, Davidson AT, Thomson PG & Buma AGJ (2008) Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. *FEMS Microbiol Ecol* **66**: 352–366.

Schäfer H, Servais P & Muyzer G (2000) Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. *Arch Microbiol* 173: 138–145.

Schäfer H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Vives-Rego J & Muyzer G (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in genetic diversity of bacterial populations. *FEMS Microbiol Ecol* 34: 243–253.

Schloss PD & Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimation species richness. *Appl Environ Microb* 71: 1501–1506.

Staley JT & Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. *Annu Rev Microbiol* 53: 189–215.

Stingl U, Desiderio RA, Cho J-C, Vergin KL & Giovannoni SJ (2007) The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. *Appl Environ Microb* 73: 2290–2296.

Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 24: 1596–1599.

Ter Braak CJF & Šmilauer P (1998) CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5.2). Microcomputer Power, Ithaca, New York.

Thomson PG, Davidson AT & Cadman N (2008) Temporal changes in effects of ambient UV radiation on natural communities of Antarctic marine protists. *Aquat Microb Ecol* **52**: 131–147.

Pakulski JD, Baldwin AJ, Dean AL *et al.* (2007) Response of heterotrophic bacteria to solar irradiance in the eastern Pacific Ocean. *Aquat Microb Ecol* **47**: 153–162.

- Van den Wollenberg AL (2007) Redundancy analysis. An alternative for canonical correlation analysis. *Psychometrika* **42**: 207–219.
- Vázquez-Domínguez E, Casamayor EO, Català P & Lebaron P (2005) Different marine heterotrophic nanoflagellates affect differentially the composition of enriched bacterial communities. *Microb Ecol* **49**: 474–485.
- Venter JC, Remington K, Heidelberg JF *et al.* (2004) Environmental genome shotgun sequencing of the Sargasso Sea. *Science* **304**: 66–74.
- Visser PM, Snelder E, Kop AJ, Boelen P, Buma AGJ & van Duyl FC (1999) Effects of UV radiation on DNA

photodamage and production in bacterioplankton in the coastal Caribbean Sea. *Aquat Microb Ecol* **20**: 49–58.

- Winter C, Moeseneder MM & Herndl GJ (2001) Impact of UV radiation on bacterioplankton community composition. *Appl Environ Microb* **67**: 665–672.
- Wolda H (1981) Similarity indices, sample size and diversity. *Oecologia* **50**: 296–302.
- Zhu L & Bustamante CD (2005) A composite-likelihood method for detecting directional selection from DNA sequence data. *Genetics* **170**: 1411–1421.