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Staphylococcus aureus nasal isolates from healthy individuals cause
highly variable host cell responses in vitro
The Tromsø Staph and Skin Study
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This study illustrates that a small series of nasal isolates of Staphyloccoccus aureus, belonging to different genotypes, do
behave differently from a phenotypic standpoint (biofilm production, adhesion and invasion properties) but also in the host
responses they induce (cytokine profiling). This underlines the caution we must exercise when trying to generalize
observations in S. aureus.
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Abstract

Studies on Staphylococcus aureus populations colonizing the nasal cavity reveal
that some bacterial strains are more common, while others are rarely found. This
study included five isolates with the most common spa types and five isolates with
rare spa types from healthy population. Selected phenotypic traits and genomic
content among nasal S. aureus isolates were compared. Besides the rather
similar growth rates, our data revealed a high diversity among isolates; that is, in
biofilm formation, the ability to attach to and be internalized in keratinocytes as well
as ability to induce pro- and anti-inflammatory cytokines. The results showed that
S. aureus isolates from healthy hosts are phenotypically diverse and cause highly
variable host cell responses. Therefore, generalizing the results from one
S. aureus isolate to all is highly questionable.

Introduction

Normal skin is exposed to various bacteria, including
Staphylococcus aureus. Staphylococcus aureus persis-
tently colonizes the anterior nares of 20–30% of healthy
individuals (Costello et al., 2009) and can cause several
life-threatening infections such as endocarditis and sepsis
(Kluytmans et al., 1997; von Eiff et al., 2001; Fowler et al.,
2003; Bardoel et al., 2012). Nasal carriage is a risk factor
for infection (von Eiff et al., 2001; Ammerlaan et al., 2009),
and invasive disease is often caused by the S. aureus
strain carried by the patient (Vaudaux & Schrenzel, 2004).
Increased prevalence of antimicrobial-resistant strains
combined with increasing numbers of immune compro-
mised patients is a major clinical challenge for S. aureus
treatment (Fowler et al., 2005; Naber, 2009). Eradication of

S. aureus carriage may reduce the numbers of nosocomial
infections.
Nasal carriers of S. aureus are classified as persistent

carriers and others (intermittent and noncarriers) (van
Belkum et al., 2009b). The persistent S. aureus nasal
carriage rate varies between developed and developing
countries, age, sex, smoking, and blood glucose levels
(Sivaraman et al., 2009). Colonization of the nasal cavity is
a multifactorial process influenced by concerted activity of
bacterial, host, and possibly environmental factors (Vaud-
aux & Schrenzel, 2004; van Belkum et al., 2009a, DeLeo
et al., 2010). Bacteria contain several conserved molecules
collectively referred to as pathogen-associated molecular
patterns (PAMPs). These can be recognized by pattern
recognition receptors such as Toll-like receptors (TLRs)
present on the host cell, which can result in expression of
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antimicrobial peptides and proinflammatory cytokines (Nish
& Medzhitov, 2011). Certain polymorphisms in TLR2,
mannose-binding lectin, CRP, glucocorticoid receptor, and
vitamin D receptor have been found to be associated with
carriage (reviewed by Johannessen et al., 2012). Moreover,
the level of b-defensin-2 and a-defensins 1–3 was elevated
in nasal secretions from carriers compared with noncarriers
(Cole et al., 2001).
Among the bacterial factors important for colonization

are various molecules involved in adhesion and/or immune
evasion such as clumping factor B (ClfB), iron-regulated
surface determinant protein A (IsdA), and wall techoid acid
(Edwards et al., 2012; Weidenmaier et al., 2012). Although
S. aureus has been regarded as an extracellular bacte-
rium, intracellular localization of S. aureus has been found
in biopsies from the anterior part of the middle turbinate or
tonsils from patients with recurrent rhinosinusitis or tonsil-
litis, respectively (Clement et al., 2005; Zautner et al.,
2010). The bacteria can be internalized by various cell
types in addition to the professional phagocytes (Garzoni &
Kelley, 2009). Prolonged survival of internalized bacterial
cells can result in the release of viable bacterial cells when
the host cell dies. However, whether S. aureus is internal-
ized in keratinocytes during colonization remains elusive.
The prevalence of virulence factors as well as surface

proteins may vary between S. aureus isolates (Dreisbach
et al., 2010; Ziebandt et al., 2010; Piechowicz et al., 2011;
McCarthy & Lindsay, 2012). Still, all S. aureus strains are
able to induce infection, although there are discussions
about whether some strains are, or can evolve to be, more
virulent than others (Foster, 2004; Melles et al., 2004;
Lindsay, 2010). The population of clinical or nasal S. aureus
strains has been grouped into different clusters based on
multilocus sequence typing (MLST), amplified fragment
length polymorphisms (AFLP), or spa typing (Melles et al.,
2004; Grundmann et al., 2010; Lamers et al., 2011; Sangvik
et al., 2011). Spa typing is based on sequencing of a single
polymorphic variable number tandem repeat, which is the
repeat region of the protein A gene. The spa typing of nasal
isolates from healthy carriers has revealed that some types
are commonly found in individuals from a general popula-

tion, while other types are more seldom encountered
(Sangvik et al., 2011).
Host–microbe interaction studies are often carried out

using one or a few isolates defined as invasive or
colonizing. The aim of this study was to address whether
colonizing isolates have common phenotypic traits such as
growth rate, biofilm formation, and host cell attachment or
internalization as well as the ability to induce host inflam-
matory response in keratinocytes. Furthermore, we aimed
to investigate whether colonizing isolates of the more
common spa types differ from those with rare spa types.

Materials and methods

Bacterial strains

In total, 1113 S. aureus nasal isolates from healthy partic-
ipants were assigned to 368 spa types as described
previously (Sangvik et al., 2011). One isolate from each of
the five most commonly found spa types (no. 1–5) and one
of each of five rare spa types (no. 6–10; Table 1) were
selected for further investigation. MLST types, spa clonal
complex, and MLST clonal complex for all isolates are
indicated in Table 1.
Staphylococcus aureus subsp. aureus Rosenbach

MSSA476 and S. aureus subsp. aureus NCTC8325 were
purchased from LGC standard AB (ATCC-BAA-1721, Swe-
den) and National Collection of Type Cultures. S. aureus
subsp. aureus COL and S. aureus subsp. aureus N315 were
kindly donated by A.R. Larsen (Statens Serum Institut, Den-
mark) and T. Ito (Juntendo University, Japan), respectively.

Mammalian cell line

HaCaT cells were purchased from PromoCell (Germany).
The cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM; Sigma Aldrich, Germany), supplemented
with 10% (v/v) fetal bovine serum (FBS; Invitrogen Life
Technologies), penicillin (100 units mL�1), and 100 lg mL�1

streptomycin (Sigma Aldrich) in a CO2 incubator (5% CO2) at
37 °C.

Table 1 The overview of the 10 selected Staphylococcus aureus nasal isolates (n = 1113)

Isolate

no. Strain identity spa type

Number of

isolates

spa clonal

complexes MLST

MLST clonal

complexes

1 61010029 t012 94 spa-CC012 ST30 CC30

2 61010044 t065 55 spa-CC065 ST45 CC45

3 61010165 t084 85 spa-CC084 ST15 CC15

4 61010527 t021 42 spa-CC012 ST30 CC30

5 61011308 t015 38 spa-CC065 ST45 CC45

6 61010305 t186 1 NA ST78 CC88

7 61010555 t5229 1 NA ST188 CC1

8 61010701 t5234 1 NA ST12 CC12

9 61010771 t2573 1 NA ST42 Singleton

10 61011501 t082 2 NA ST395 CC395

NA, These isolates did not belong to a spa clonal complex. MLST clonal complexes are based on eBURST on the entire public MLST database

(January 2011) (Sangvik et al., 2011).
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Comparative genomic hybridization (CGH)

The prevalence of genes encoding surface proteins and
proteins involved in immune evasion (listed in Table 2) was
assessed by microarrays. Eight isolates belonging to seven
different MLST clonal complexes were selected.
The microarrays (S. aureus, version 9) were obtained

from the Pathogen Functional Genomics Resource Center
(PFGRC) at the J. Craig Venter Institute (JCVI). Genomic
DNA was isolated from overnight cultures grown in BHI
using the Genomic-tip 100/G column (QIAGEN). 5-lg
genomic DNA was labeled and purified using the Bio-Prime
Array CGH Genomic labeling System (Invitrogen) and the
Cyanine Smart Pack dUTP (PerkinElmer Life Sciences),
according to the manufacturer’s protocol. The hybridization
(with dye-swap), scanning, and analysis of fluorescent
intensities/spot morphologies were performed as previously
described (Solheim et al., 2009).
Standard methods in the LIMMA package (Smyth &

Speed, 2003) in R (http://www.r-project.org/), available from
the Bioconductor website (http://www.bioconductor.org),
were employed for preprocessing and normalization.
Within-array normalization was first conducted by subtract-
ing the median from the log ratios for each array. Standard
loess normalization was then performed, where smoothing
was based only on spots with abs (log ratio) < 2.0 to avoid
biases due to extreme skewness in the log ratio distribution.
For the determination of present and divergent genes, we
used the approach outlined in the study by Snipen et al.
(2009). This method requires the BLASTing of probe
sequences to one or several known genome sequences,
and these genomes must also be hybridized to the arrays as
a calibration step. For this purpose, we used the genome
sequence of S. aureus strain N315. A threshold of 0.7 was

used to classify a gene as present or absent. The microarray
data have been deposited in the ArrayExpress database
with the series accession number E-MTAB-1672.

Measurement of bacterial growth

Bacterial growth was quantified by viable count and optical
density (OD600 nm) data. Overnight cultures were diluted
1 : 100 in fresh BHI broth media (brain–heart infusion broth,
Sigma Aldrich), and OD600 nm was measured by spectro-
photometer at t = 0, 30, 60, 90, 120, 150, 180, and 210 min
after inoculation. Serial dilutions were plated on blood agar
to determine bacterial viable counts. The specific growth
rate constant (l) was calculated by the following formula:

lðh-1Þ ¼ ((log10 N� log10 N0) 2:303)/(t� t0)

Biofilm formation

Semi-quantitative determination of biofilm formation by
different S. aureus strains was carried out by the microtitre
plate method as described previously (Flemming et al.,
2009). The biofilm-forming capacities of all isolates were
tested using Trypticase soy broth supplemented with 5%
glucose and 3% NaCl. Briefly, strains were inoculated from
overnight cultures, distributed into 96-well plates, incubated
at 37 °C overnight, washed, and stained. S. aureus PIA90
and PIA9 were used as negative and positive controls,
respectively. Cutoff value was calculated principally as
described previously (Christensen et al., 1985).

Cell stimulation practices

An overnight culture of S. aureus was diluted 1 : 100 in BHI
(brain–heart infusion broth, Sigma Aldrich) and incubated at
37 °C, 220 r.p.m. Bacterial growth was monitored by optical
density at 600 nm (OD600 nm). The bacteria were pelleted,
washed twice in 19 PBS (Biochrom, Germany; 37 °C), and
diluted to the selected CFU mL�1 in DMEM with 10% FBS
depending on the experimental set-up.

Internalization and adhesion assay

Internalization and adhesion assays were carried out 3
times in triplicate as previously described (35). Briefly,
HaCaT cells were seeded into 24-well plates at confluent
concentration between 1.5 and 1.7 9 105 cells per well in
DMEM supplemented with 10% FBS and 1% penicillin/
streptomycin with 10% FBS. The day after, the cells were
washed, and fresh antibiotic-free DMEM supplemented with
10% FBS was added. Approximately 5 9 107 CFU of the
indicated S. aureus isolate (Table 1), suspended in DMEM,
was added to the HaCaT cells, and the plates were
incubated for 90 min at 37 °C in a 5% CO2–95% air
atmosphere (Kintarak et al., 2004). Adhered and internal-
ized bacteria were quantified after washing off nonadhered
bacteria. Extracellular bacteria were killed by replacing of
the culture medium by DMEM containing 50 lg mL�1

gentamicin (Sigma Aldrich) and 20 lg mL�1 lysostaphin

Table 2 Staphylococcus aureus genes evaluated by microarray in this

study

Encoded function

Gene

symbol Protein full name (Protein symbol)

Surface protein clfB Clumping factor B (ClfB)

isdA Iron-regulated surface determinants

A (IsdA)

fnb Fibronectin-binding protein A (FnBPA)

fnbB Fibronectin-binding protein B (FnBPB)

sdrC Serine aspartate repeat protein C (SdrC)

sdrD Serine aspartate repeat protein D (SdrD)

sasG Staphylococcus aureus protein G (SasG)

sasH Staphylococcus aureus protein H (SasH)

Immune evasion

protein

chp Chemotaxis inhibitory protein of

Staphylococcus aureus (CHIPS)

flr FPR-like 1 inhibitory protein (FLIPr)

fll FPR-like 1 inhibitory protein like

(FLIPr-like)

oatA O-acetyltransferase (OatA)

sak Staphylokinase

scn Staphylococcal complement

inhibitor (SCIN)
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(Sigma Aldrich) (Agerer et al., 2003). The cells were then
incubated for 1 h at 37 °C in a 5% CO2–95% air atmo-
sphere. This procedure is essential for the internalization
assay, where only internalized bacteria remain viable and
can be assessed. The determination of bacterial viable
counts was carried out through serial dilution after trypsi-
nizing and lysing of HaCaT cells with trypsin–EDTA (Sigma
Aldrich) and 0.1% Triton X-100 (Sigma Aldrich) (Kintarak
et al., 2004). The number of attached bacteria represents
bacteria attached to HaCaT cells plus the viable internalized
bacteria, while the number for internalization represents
viable intracellular bacteria when all the extracellular bacte-
ria were killed by gentamicin and lysostaphin treatments.

Cytokine assay

HaCaT cells were seeded in six-well plates (Corning) at
confluent concentration, 1.2–1.5 9 106 cells per well in
DMEM supplemented with 10% FBS. The cells were left
untreated or added 3.5 9 107 S. aureus cells of the
indicated S. aureus isolate (Table 1). After 8- or 24-h
incubation, the culture supernatants were collected and
centrifuged at 4 °C 13 000 g for 7 min to pellet cellular
debris. The supernatant containing secreted cytokines was
transferred to a new Eppendorf tube. Secretion of IL-1a,
IL-1b, TNF-a, IL-6, IL-8, CXCL-1, IL-10, and IL-1RA in the
culture supernatants were measured using MILLIPLEX�
MAP kit (Millipore Corp.) based on Luminex technology,
according to the manufacturer’s instructions. Each sample
was assayed in duplicate. The previously described
S. aureus strains COL, MSSA476, and NCTCT8325 were
also included in the experiment as controls.

Ethical approval

The Tromsø Staph and Skin Study was approved by the
Regional Committee for Medical Research Ethics, North

Norway (Ref. 200605174-12/IAY/400), and the Norwegian
Data Inspectorate (Ref. 07/00886-2/CAO) and is in the
Biobank Registry (Ref. 2397).

Statistical analysis

Numerical data are presented as mean � standard devia-
tions. The validity of the results in the experiments was
assured via repeating each experiment at least three times
with standard independent parallels. Statistical analysis
was performed using ANOVA and the nonparametric Mann–
Whitney U-test. Correlation analysis was performed using
Pearson’s correlation coefficients. P values of < 0.05 were
considered significant.

Results

Prevalence of genes encoding proteins involved in
adhesion or immune evasion

Within an adult healthy population, some genotypes of
S. aureus were more common than others (Sangvik et al.,
2011). To find any putative genetic traits associated with the
relative abundance in the population, the prevalence of
selected genes encoding proteins involved in adhesion and
immune evasion was investigated by comparative genomics
of eight selected isolates. However, no specific pattern was
identified for either common or rare spa types of S. aureus
(Table 3). Among genes linked to adhesive properties, all 8
isolates had clfB, isdA, sasH, sdrD, and sdrC genes, seven
had fnb and/or fnbB, while the sasG gene was only present
in isolate no 6 (Table 3). From the genes encoding immune
evasive proteins, oatA was present among all tested
isolates. Six and five of eight isolates possessed genes
encoding scn and sak, respectively. The chp and fll genes
were only detected in a few isolates, while none of them
contained the flr gene (Table 3).

Table 3 Gene prevalence detected by microarray in eight selected isolates

Strain no. MLST clonal complex 1

CC30

4

CC30

5

CC45

6

CC88

7

CC1

8

CC12

9

Singleton

10

CC395
Gene Identifier

chp SA1755

clfB SACOL2652, SAR2709, SA2423

isdA SA0977, SAR1103

fll SAS1089

flr SA1001

fnb SA2291, SACOL2511, SAR2580

fnbB SA2290, SACOL2509, SAS2387

oatA SA2354

sak SA1758

sasG SACOL2505

sasH SACOL0024

scn SA1754

sdrC SACOL0608, SA0519, SAR0566

sdrD SACOL0609, SA0520, MW0517

Genes are listed alphabetically, and their annotated gene number (identifier) that was used as the template on microarray is given. Presence and

absence of a gene was shown by ■ and □, respectively.
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Similar growth rates among common and rare spa
types isolated from healthy adults

To determine the difference in growth rates among the
selected S. aureus isolates, the specific growth rate con-
stant (l) was calculated (Table 4). The maximum and
minimum specific growth rate constants were 1.66 (� 0.08)
and 1.17 (� 0.14), respectively (Table 4). However, no
significant difference was identified between the common
spa types (isolates 1–5) and the rare spa types (isolates
6–10) in distribution of growth rates in BHI media.

Most of the selected S. aureus isolates did not produce
biofilm in vitro

A previous study has indicated that there is a correlation
between the ability to form a biofilm and nasal colonization
(Iwase et al., 2010). The biofilm formation ability of the
ten selected S. aureus isolates was tested. From the
semi-quantitative determination, 1 of 10 isolates (isolate
no 10) was found to produce biofilm in vitro. However, the
biofilm-positive isolate produced only weak biofilm as the
measured OD570 nm was slightly above the cutoff value set
to 0.28 (Table 4).

Internalization and adhesion assay

Staphylococcus aureus can be internalized by various cell
types (Garzoni & Kelley, 2009). Whether the ability to attach
to and be internalized in keratinocytes was common for all
10 selected isolates was unknown and was therefore
investigated.
Adhesion and internalization assays were performed in

HaCaT cells as described previously (Kintarak et al., 2004).
The number of attached bacteria was significantly higher
than that of internalized bacteria (P < 0.01). Even though
the same number of bacteria was seeded out on host cells,
the number of attached bacteria was in the range
0.6 9 106–63 9 106 CFU mL�1 (i.e. 100-fold difference),
and the number of viable internalized bacteria was in the

range 0.13 9 103–160 9 103 CFU mL�1 (i.e. 1000-fold
difference; Table 5). These results clearly show variations
in the attachment and internalization ability among isolates
from a healthy population. The numerical results of adhered
and internalized bacteria were higher in isolate no 1, which
belonged to the most commonly found spa type (Table 5).

Cytokine profiles from HaCaT stimulated with selected
isolates of S. aureus

Cytokines are secreted by mammalian cells in response to
stimuli such as LTA from S. aureus (Ellingsen et al., 2002).
Some clinical S. aureus isolates differ greatly in their ability
to induce inflammatory response in endothelial cells (Grun-
dmeier et al., 2010). This led us to investigate whether
isolates from healthy individuals differ in their ability to
induce production of cytokines from keratinocytes.
All isolates were able to induce the release of proinflam-

matory cytokines, including IL-1a, TNF-a, IL-6, IL-8, and
CXCL-1, and with minor exceptions; the overall pattern was
the same after 8 and 24 h for the ten different isolates

Table 4 Growth rate measurement and biofilm formation ability of the 10 selected Staphylococcus aureus isolates

Isolate no. l (h�1)*

Cell concentration at 1.0 OD600 nm

(CFU mL�1)* Biofilm formation**

1 1.44 � 0.04 1.66 9 109 � 1.7 9 106 0.18 � 0.02

2 1.17 � 0.14 2.34 9 109 � 2.1 9 106 0.12 � 0.01

3 1.65 � 0.05 1.66 9 109 � 1.5 9 106 0.13 � 0.00

4 1.48 � 0.05 1.36 9 109 � 1.1 9 106 0.21 � 0.01

5 1.44 � 0.38 1.55 9 109 � 1.1 9 106 0.15 � 0.01

6 1.66 � 0.08 1.70 9 109 � 1.7 9 106 0.21 � 0.04

7 1.48 � 0.00 1.92 9 109 � 2.2 9 106 0.17 � 0.02

8 1.61 � 0.18 1.74 9 109 � 1.7 9 106 0.14 � 0.01

9 1.40 � 0.47 1.39 9 109 � 1.1 9 106 0.14 � 0.01

10 1.29 � 0.06 1.65 9 109 � 1.7 9 106 0.44 � 0.06

*Mean � SD of two replicates of one representative experiment for growth rate measurement.

**Mean � SD of three independent experiments for biofilm analysis. Isolates were considered as biofilm positive (+) and biofilm negative (�) if they

had an OD570 nm of > 0.28 and OD570 nm of < 0.28 in the assay, respectively. OD570 nm in PIA9 and PIA90 was 2.59 and 0.28, respectively, in our

experimental condition.

Table 5 Attachment and internalization of the 10 selected Staphylo-

coccus aureus strains to the HaCaT cells

Isolate no.

Attachment

(9 106 CFU mL�1)

Internalization

(9 103 CFU mL�1)

1 63 � 3.5 160 � 2.5

2 6.8 � 0.57 18 � 2.3

3 31 � 8 1.3 � 0.24

4 25 � 1.3 1.4 � 0.15

5 0.6 � 0.25 0.7 � 0.01

6 17 � 0.071 19 � 0.77

7 35 � 5.5 2 � 0.14

8 27 � 2.8 0.14 � 0.007

9 12 � 2.8 0.17 � 0.24

10 4 � 1.2 0.13 � 0.03

Mean � SD of three replicates of one representative experiment.
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(Fig. 1 and results not shown). However, the magnitude of
induction was strain dependent and showed wide ranges of
values (Fig. 1 and results not shown). Furthermore, IL-1b
was not induced in some of the studied isolates including
isolate nos 2, 5, and 8.
Isolate no 6 induced the highest secretion of all the

studied proinflammatory cytokines, except for IL-1b (Fig. 1
and results not shown). Interestingly, this particular isolate
could induce a higher level of proinflammatory cytokines
than the commercial strains S. aureus COL, NCTC8325,
and MSSA476 except in the case of IL-1b. The highest IL-1b
was induced by the presence of COL (Fig. 1).
The ability of HaCaT cells to produce IL-10 (as an

anti-inflammatory cytokine) and interleukin-1 receptor
antagonist (IL1-RA) responses was also strain dependent,
and the magnitude of induction varied between different
isolates. The overall pattern of IL-10 expression was the
same for all isolates in both time points and included a
narrow range of values except for S. aureus COL (Fig. 2
and results not shown). However, higher IL1-RA level was
found after prolonged stimulation of HaCaT cells with
S. aureus isolates and included a wide range of values
(P < 0.01). Furthermore, fluctuation in IL-1a levels was
significantly correlated with IL1-RA induction (r = 0.88,
P < 0.01).

Discussion

The potential of S. aureus to colonize its host is the result of
a complex set of interactions, as well as overcoming host
defenses and adhering to nasal or throat surfaces (Edwards
et al., 2012; Weidenmaier et al., 2012). In this study,
several phenotypic traits among 10 different nasal S. aureus
isolates were investigated. These isolates represented the
five most common (nos 1–5) and five rare spa types (nos 6–
10) from a healthy population.
Changes in S. aureus growth rate influence opsonization

and neutrophil–staphylococcal interactions through changes
in surface hydrophobicity (Domingue et al., 1996). The
results of our study showed that there was no significant
difference in the growth rate (Table 4) that could explain the
observed success for the isolates with more common spa
types. However, S. aureus growth rate is dependent on
nutritional and other conditions and can be highly variable
between in vitro and in vivo situations.
Several mechanisms have been reported for the regula-

tion of biofilm formation in S. aureus, including agr quorum
sensing, phenol-soluble peptides, autoinducing peptides,
several surface proteins, DNase, protease, cis-2-decenoic
acid, D-amino acids, and pH changes (Boles & Horswill,
2011). The potential of S. aureus to form biofilm on host

Fig. 1 Proinflammatory cytokines secreted

by HaCaT cells after stimulation with

Staphylococcus aureus for 24 h. The

HaCaT cells were left untreated or

stimulated with 3.5 9 107 CFU mL�1 of

S. aureus in DMEM. The untreated control

cells were arbitrarily set as 1, and secretion

of cytokine in the treated cells is presented

as fold induction. The data are expressed

as mean � SD of three independent pooled

experiments.
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tissues and medical devices is thought to support chronic
infections (Boles & Horswill, 2008). A recent study revealed
that secretion of a protease called Esp by S. epidermidis
inhibits S. aureus biofilm formation and nasal colonization
(Iwase et al., 2010). However, S. aureus growth during
nasal colonization seems to be dispersed rather than
biofilm-associated (Krismer & Peschel, 2011). Our results
showed that only one of ten selected nasal isolates (no 10)
could produce biofilm under our experimental conditions,
and the biofilm was also considered to be weak (Table 4).
Studies of cytokine profiles contribute to understanding of

the pathophysiology of infectious diseases. Our data
showed that all selected isolates had the capacity to induce
expression of proinflammatory cytokines in HaCaT cells,
including IL-1a, TNF-a, IL-6, IL-8, and CXCL-1 (Fig. 1).
Cytokines enhance leukocyte recruitment to the site of
infection (Ozaki & Leonard, 2002; Strindhall et al., 2005).
Moreover, cytokines can ligate to their cognate receptor,
thereby resulting in an increased host response (Nestle
et al., 2009). The magnitude of proinflammatory cytokine
secretion varied after induction by different isolates (Fig. 1),
and this is in agreement with previous studies. Indeed,
comparisons between so-called carrier and noncarrier
strains of S. aureus showed that they varied in their ability
to interfere with expression of TLR2, b-defensin 3, IL-1a,
IL-1b, and IL-1Ra in nasal epithelial cell culture (Quinn &
Cole, 2007; Quinn et al., 2009). Moreover, great variability
in the expression of IL-6, IL-8, CXCL-1, and G-CSF by
HUVEC has been reported previously among different
clinical S. aureus strains (Strindhall et al., 2005).
A crucial step in the nasal colonization establishment is

attachment/adhesion of S. aureus to the epithelial cells in
the nasal cavity (Weidenmaier et al., 2012) and on ciliated
epithelial cells deeper inside the vestibulum nasi (Clement
et al., 2005; Weidenmaier & Peschel, 2008). The surface
proteins ClfB, IsdA, SdrD, and SdrC mediate S. aureus
attachment to the squamous epithelial cells in vitro (O’Brien
et al., 2002; Clarke et al., 2006; Corrigan et al., 2009), and
some of them can promote nasal colonization in mice
(Clarke et al., 2006; Schaffer et al., 2006) and humans
(Wertheim et al., 2008). The results of the microarray
studies showed the presence of clfB, isdA, sdrD, and sdrC
in the genomes of all the selected isolates, with the
exception of sasG (Table 3). This is in agreement with

previous reports that sasG was present in eight of twenty
studied lineages (McCarthy & Lindsay, 2010). Interestingly,
the ability to adhere to the HaCaT cells varied 100-fold
between isolates. This may show that different S. aureus
isolates may encode variant adhesins that have diverse
binding properties and/or expression levels. However, this
remains to be investigated.
Staphylococcus aureus is able to internalize into different

types of host cells, including human keratinocyte cells
(Kintarak et al., 2004). Here, we found that the ability to
internalize HaCaT cells varies a 1000-fold between isolates.
But, regardless of the numbers, all isolates could internalize
into the HaCaT cells (Table 5). The essential role of
S. aureus internalization in cytokine secretion was previ-
ously observed in HUVEC (Yao et al., 1995, 2000). How-
ever, in our study, no direct correlation was found in the
bacterial ability to internalize and the magnitude of cytokine
secretion from HaCaT cells.
Taken together, we have compared S. aureus isolates

from the nasal cavity of healthy adults. This study clearly
demonstrates that S. aureus isolates with different spa
types show great variability in several traits. These varia-
tions among isolates may be of importance in their fitness in
specific nasal carriers. Thus, these variations should be
considered before generalizing experimental results based
on single S. aureus and merit further investigations.
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