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ABSTRACT

In both freshwater and marine ecosystems, phytoplankton are the most dominant primary producers, contributing
substantially to aquatic food webs. Algicidal bacteria that can associate to microalgae from the phytoplankton have the
capability to control the proliferation and even to lyse them. These bacteria thus play an important role in shaping species
composition in pelagic environments. In this review, we discuss and categorise strategies used by algicidal bacteria for the
attack on microalgae. We highlight the complex regulation of algicidal activity and defence responses that govern
alga–bacteria interactions. We also discuss how algicidal bacteria impact algal physiology and metabolism and survey the
existing algicidal metabolites and enzymes. The review illustrates that the ecological role of algicidal bacteria is not yet
fully understood and critically discusses the challenges in obtaining ecologically relevant data.
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INTRODUCTION

The key players living in the Earths’ oceans and lakes are pho-
tosynthetic unicellular microbes, and their associated bacteria,
viruses and protist grazers. These organisms are found uni-
versally in freshwater and marine environments, from coastal
zones to open water. Phytoplankton on average accounts for
∼50% of global primary production by photosynthetic activity
(Behrenfeld et al. 2006). It also acts as a sink of inorganic nutri-
ents that are mobilised upon predation or cell death and con-
comitant lysis. Plankton species composition on both macro-
and microscale is affected by biotic interactions as well as by
temporal and spatial fluctuations of nutrients, resources and
temperature (Dann et al. 2016). It is estimated that up to 90%
of phytoplankton-derived organic matter is recycled by het-
erotrophic bacteria within the microbial loop (Azam et al. 1983).
Such high turnover rates of phytoplankton biomass substan-

tially impact the balance of biomass formation and respira-
tion in aqueous systems (Bidle and Falkowski 2004). Perpet-
ual changes in species abundance and community assemblages
are shaping the plankton communities over time. These dy-
namic processes are often driven by intra- and interspecies in-
teractions. Heterotrophic bacteria, for instance, can dwell on re-
sources excreted by living phytoplankton cells or resources re-
leased after algal cell death and lysis (Bidle and Falkowski 2004).
These heterotrophic bacteria can follow different trophic strate-
gies as a response to resource availability resulting in chem-
ical niche specialisation (Hunt et al. 2008; Hansell et al. 2009;
Kujawinski 2011; Mayali et al. 2014). During a phytoplankton
bloom (a massive algal proliferation event driven by e.g. light,
temperature and nutrient availability), the algal-associated mi-
crobial community can shift from being dominated by olig-
otrophic Alphaproteobacteria to copiotrophic Flavobacteria that
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grow on senescent algae and to Gammaproteobacteria that
profit from products released by the degradation of algal
biomass (Teeling et al. 2012; Ruff et al. 2014). Nutrient exchange
is frequently the driver of alga–bacteria interaction, irrespec-
tive of whether the relation is symbiotic or opportunistic. Field
observations suggest that phylogenetic diversity and specificity
of bacteria is correlated to phytoplankton groups (Jasti et al.
2005; Bunse et al. 2016) or even to phytoplankton species (Pin-
hassi et al. 2004; Amin et al. 2015). In an impressive, comprehen-
sive study of reoccurring patterns in bacterioplankton dynamics,
metagenome analyses revealed recurrent patterns at the func-
tional level, in particular with respect to algal polysaccharide
degradation genes. It was concluded that despite variability be-
tween spring phytoplankton blooms, the succession of bacterial
clades is driven by deterministic principles such as substrate-
induced forcing (Teeling et al. 2016).

Within this review, we specifically focus on the group of al-
gicidal bacteria that inhibit microalgal growth or actively lyse
unicellular algae. Other algicidal microorganisms that are not
considered in this review have been the subject of intensive
studies and of reviews, including work on viruses (Tomaru et al.
2008; Rohwer and Thurber 2009; Martiny et al. 2014) or fungi
(Gerphagnon et al. 2015). The investigation of the strategies of
algicidal bacteria is of substantial interest for scientists from di-
verse fields including biogeochemistry, algal physiology, ecology
and environmental sciences, and aspects from all these disci-
plines will be covered here. In addition, several applications of
algicidal bacteria in biotechnology and environmental engineer-
ing are currently under development. These are not the subject
of this contribution but are reviewed elsewhere: current and po-
tential applications of algicidal bacteria in biofuel production are
reviewed in the study by Wang et al. (2016b). For such purposes
bacteria might be used to stimulate high-value product forma-
tion, to support harvesting by promoting cell aggregation or to
perform cell lysis thereby reducing energy-intensive processing.
The specific use of algicidal microorganisms and algicides to in-
ducemicroalgal cell disruption for biomass processing is specifi-
cally addressed in a review by Demuez, Gonzalez-Fernandez and
Ballesteros (2015a). Natrah et al. (2014) summarised the role of
alga–bacteria interactions in aquaculture. The potential to con-
trol harmful algal blooms using algicidal bacteria is discussed
in several recent reviews (Gumbo, Ross and Cloete 2008; Kim
et al. 2008; Jancula and Marsalek 2011; Seong and Jeong 2013;
Shao et al. 2013). We also want to refer here to review arti-
cles on specific organismic groups or species that include as-
pects on the impact of algicidal bacteria. Reviews with a focus
on cyanobacteria (Dahms, Ying and Pfeiffer 2006; Leflaive and
Ten-Hage 2007; Van Wichelen et al. 2016), diatom–bacteria inter-
actions (Amin, Parker and Armbrust 2012) or Pseudoalteromonas
spp. (HolmstromandKjelleberg 1999) are noteworthy in this con-
text. In this review, we exclude the numerous studies that claim
the investigation of algicidal bacteria or algicides without any
ecological rationale. Here, metabolites are introduced that ei-
ther are not occurring in the environment in relevant concentra-
tions or the interactions of species are investigated that would
never encounter in nature. While these studies might be useful
for biotechnological purposes, they do not contribute to the eco-
logical and functional understanding of algicidal activity in the
plankton, which is in the focus of this contribution.

A most influential review defining the field has been pub-
lished in 2004 by Mayali and Azam; it summarises nicely the
state of research at that time and systematically defines ways
to consider ecological relevance in such plankton interactions
(Mayali and Azam 2004). Examining the Mayali review, it be-

Figure 1. Types of association of algicidal bacteria with phytoplankton. (a) Algi-
cidal bacteria (in blue) can operate in the immediate DOM-enriched vicinity of
algal cells (phycosphere, in green). (b) Activity of algicidal bacteria can be ob-
served upon direct cell-cell contact with the target organism. (c) Bacteria might
also be active in populations where they are not associated with specific algae.

Red cells indicate algal lysis by bacteria. The effect of algicidal bacteria within
the photic zone and their influence on export processes are listed.

comes evident that substantial progress has been made, mainly
driven by field and mesocosm experiments, genetic methods,
elaborated bioassays and advances in chemical analytics. In this
contribution, we focus on this progress with a special empha-
sis on emerging possibilities to address algicidal bacteria within
their natural environment. We place special emphasis on algi-
cidal metabolites, regulation of the interaction between algici-
dal bacteria and their target organisms and the ecological con-
sequences of alga–bacteria interaction.

Scales of interactions

It is often suggested that algicidal bacteria have a massive im-
pact on the productivity of aquatic systems by modulating en-
tire communities even if, as outlined below, solid experimental
prove for this hypothesis is difficult to obtain. Most yet described
algicidal bacteria are lytic to phytoplankton and are frequently
succeeding algal blooms of diatoms, coccolithophores, Phaeocys-
tis spp. as well as often toxic species belonging to the groups
of dinoflagellates and raphidoflagellates (Demuez, Gonzalez-
Fernandez and Ballesteros 2015a). These bacteria can interact
with freely floating unicellular or colonial algae, but consider-
ations of concentrations in the open water make it likely that
excretion of active algicidal metabolites would only be a feasi-
ble strategy during conditions with high cell densities (Fig. 1).
It can be thus argued that interactions between freely floating
organisms might not be very widely distributed.

Interactions in the phycosphere

The coupling between primary phytoplankton production and
secondary production by heterotrophic bacteria creates a very
heterogeneous environment (AzamandMalfatti 2007). Observed
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spatial heterogeneity is often driven by the formation of micro-
bial clusters around nutrient patches and gradients. Such three-
dimensional and temporal niches can originate from the in-
flux of nutrients from terrestrial environments, from exudates
of larger organisms, cell lysis and many other events, thereby
creating highly productive hotspots. Independent of the nature
of alga–microbe interactions, the regions around algal cells that
are termed ‘phycosphere’ have to be considered (Fig. 1) (Bell and
Mitchell 1972). The phycosphere is mainly enriched with fixed
carbon contributed by the algae but also signalling compounds
and allelochemicals can accumulate within this zone. It cre-
ates a high-nutrient, semiprotected area in which mass trans-
port is limited to diffusion and not influenced by turbulence.
The underlying reasons for creating such specific nutrient-rich
surroundings by phytoplankton are diverse but not fully under-
stood. The exudates can function as a chemical defence (Dutz,
Breteler andKramer 2005) or provide allelochemical activity (Van
Donk 2007), but excretion of organic matter has also been linked
to photoprotection (Cherrier et al. 2015) and protection against
heavy metal stress (Strmecki et al. 2010). Excreted dissolved
organic carbon (DOC) might also mediate mutualistic interac-
tions with non-algicidal bacteria (Aota and Nakajima 2001) and
even symbiotic trophic interaction between bacteria and phyto-
plankton is regulated within the phycosphere (Wagner-Döbler
and Biebl 2006; Armbrust 2009; Geng and Belas 2010; Amin,
Parker and Armbrust 2012; Cooper and Smith 2015; Kouzuma
and Watanabe 2015; Ramanan et al. 2016). The composition
of algal exudates varies between phytoplankton species and
even between growth phases of one species, thereby challeng-
ing the adaptive capabilities of bacteria (Barofsky, Vidoudez and
Pohnert 2009;Weber et al. 2013). In accordance, growth efficiency
and metabolic activity of heterotrophic bacteria can be dynami-
cally influenced by such algal exudates (Azam andMalfatti 2007;
Sapp et al. 2007; Natrah et al. 2014). On the other hand, it has also
to be considered that algae generate a chemical ‘fingerprint’ that
might guide motile bacteria towards nutrient hot spots. Since
the use of carbon derived from phytoplankton differs among
bacterioplankton, the specific excretions will directly influence
bacterial community composition (Sarmento and Gasol 2012).

Due to methodological restrictions arising from the analysis
of unicellular algae, the direct demonstration of chemical gradi-
ents within the phycosphere is difficult. The monitoring of this
zone and studies how it shapes the associated microbiome has
mainly been done with macroalgae and biofilms as study ob-
jects (Grosser et al. 2012; Saha et al. 2014). Recently, a very elegant
study revealed spatiotemporal patterns of bacteria around indi-
vidual Chaetoceros affinis diatoms that can be clearly explained
with a response to a phycosphere (Smriga et al. 2016). By combin-
ing videomicroscopy andmodelling, the role of bacterial chemo-
taxis in the resource exploitation around lysed algal cells could
be explained. It can thus be regarded as established fact that se-
cretions of unicellular algae provide noticeable amounts of dis-
solved organic matter (DOM) to the outside environment and
these carbon hotspots are valuable resources for bacteria that
would elsewhere have to deal withmuchmore oligotrophic con-
ditions (Amin, Parker and Armbrust 2012). To enter the phyco-
sphere, bacteria are dependent on encounters. Encounter rates
can be increased by directedmotility (Barbara andMitchell 2003;
Xie et al. 2011), and the duration of an interaction can be in-
creased by association with the phytoplankton cells by adhe-
sion (Grossart et al. 2005; Slightom and Buchan 2009; Grossart
2010). Colonisation can lead to complex associations of both
photoautotrophs and heterotrophs that are often surrounded
by a joint polysaccharide dominated matrix (Fig. 1). Ultimately,

the microbiome may be vertically transmitted to subsequent
generations relieving the bacteria of the need of anew encoun-
ters. Bacterial successions within high-productive areas such as
the phycosphere are thus generally governed by physiological
and behavioural responses of the bacteria. Complex signalling
chemistry involving specific chemoattractants or quorum sens-
ing (QS) regulators can mediate these processes (Cooper and
Smith 2015). Consequently, heterotrophic bacteria have to cope
with diverse settings and have developed means to actively
shape their environment. The diverse interaction situations in
the plankton and the phycosphere have surely contributed to
the evolution of a multitude of adapted algicidal strategies.

Algicidal bacteria and their lifestyle

Most known algicidal bacteria belong either to the phyla Bac-
teroidetes or Gammaproteobacteria (such as Alteromonas, Pseu-
domonas and Pseudoaltermonas) but algicidal Alphaproteobacte-
ria are also reported (Kirchman 2002; Goecke et al. 2013). Only
a minority are Gram positive such as members of the phylum
Actinobacteria and the genus Bacillus (Firmicutes) (Mayali and
Azam 2004; Zhou et al. 2015). Isolates of algicidal bacteria have
been obtained from diverse regions of the oceans; in fact, sur-
face waters (e.g. Jung et al. 2008), algal bloom samples (Park et al.
2010) and sediments (Lenneman,Wang andBarney 2014) are rich
reservoirs. These bacteria have adapted their strategies to the
diverse aqueous environments. Based on the available data, it
is however hard to predict under which situations or in which
environments the prevalence of algicidal bacteria is highest.
DeLong, Franks and Alldredge (1993) observed that the bacteria
in macroaggregates and marine snow are dominated by algici-
dal Cytophaga (Bacteroidetes) and Gammaproteobacteria. A sys-
tematic screening, however, is still lacking but first studies al-
ready point towards an increased hit rate in particle-associated
compared to free-living bacteria and a generally low host speci-
ficity (Park et al. 2010). This is in agreement with the observation
that nutrient shuttling between algae and bacteria is the basis
for these microbial interactions. A high nutrient availability as it
is found in the phycosphere is often a prerequisite for the pro-
duction of algicides. Under laboratory conditions, algicides are
often released under optimised culturing conditions at high cell
densities (Mayali and Doucette 2002; Roth et al. 2008). This mir-
rors an environmental situation with increased algicide expres-
sion rates at later phytoplankton bloom phases or in nutrient
hotspots. The observed preferred algicide production at high cell
densities might be additionally explained with the involvement
of bacterial QS mechanisms controlling algicide production in
a density-dependent way (Williams et al. 2007). Interestingly, a
change in lifestyle depending on the nutrient availability or cell
density has been observed for bacteria that can switch from an
algicidal to a symbiotic strategy (Amaro et al. 2005; see also sec-
tion Regulation).

The variety of microbial strategies to take advantage of algal
primary production is remarkable. Besides the use of algal ex-
udates as a resource, microbes can also actively modulate algal
activity and performance to increase their supply of nutrients.
Two fundamentally different lines of attack have been identi-
fied. One is only effective in situations where direct contact or
close proximity of the algicidal bacteria with the host organ-
ism is found (Fig. 1). The other relies on the indirect interac-
tion via excreted diffusive algicides. The contact-based algici-
dal activity has been shown for numerous bacteria (see for ex-
ample Wang et al. 2005; Roth et al. 2008), whereas examples for
non-contact interactions are less frequently reported (Paul and
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Pohnert 2011; Li, Geng and, Yang 2015). Even unusual modes of
action have been observed; for example, a freshwater Saprospira
sp. (Bacteroidetes) forms bundle-like structures that are sus-
pected to be involved in catching cyanobacterial prey before ly-
sis (Shi et al. 2006). Themost drastic way how algicidal activity is
manifested is clearly the lysis of algal cells. Other activities that
are also summarised under the concept of algicidity include the
induction of morphological changes, growth inhibition modu-
lated by excreted factors or nutrient competition as well as the
immobilisation of previously mobile algae (Wang et al. 2005; Mu
et al. 2007; Bai et al. 2011; Lenneman, Wang and Barney 2014;
Demuez et al. 2015b; Li et al. 2016).

Specificity of algicidal bacteria

The specificity of algicidal activity is a central topic if environ-
mental engineering by the addition of bacteria is envisioned. In-
vestigation of specificity also offers opportunities to understand
the mode of action of algicides and their targets. As a conse-
quence, many studies survey for algicidal activity using a broad
selection of algal test organisms. Specificity is commonly char-
acterised by toxic threshold concentrations but unfortunately,
most of these experiments are not comparable since the species
tested are arbitrarily selected and the assays are not standard-
ised.Many algicidal bacteria show a broad host range and inhibit
or lyse microalgae from different phyla (Skerratt et al. 2002; Roth
et al. 2008; Park et al. 2010). Others are only active against specific
groups or certain species. However, evenwithin species selectiv-
ity was observed with an algicidal bacterium from the phylum
Bacteroidetes. It was active against three Karenia brevis isolates
while six other isolates of the same specieswere unaffected. The
same bacterium was also active against two out of five Alexan-
drium isolates indicating a highly random, unexplained speci-
ficity (Roth et al. 2008). Park et al. (2010) surveyed patterns of algi-
cidal specificity and observed that 231 of 487 particle-associated
bacterial strains were algicidal while only 55 of 249 free-living
bacterial isolates showed activity. Interestingly, 80% of particle-
associated strains could kill multiple algal species, whereas 75%
of the isolates of free-living bacteria killed only one of the six
tested dinoflagellates and raphidophytes. If this pattern univer-
sally holds true, this findingmight support strategies for the iso-
lation of host-specific bacteria.

In the case of Cytophaga sp., results on algicidal specificity
in lab experiments could indirectly be linked to field obser-
vations. The Cytophaga sp. was initially isolated during the
bloom of the harmful red tide alga Chattonella antiqua. In lab-
oratory co-incubation experiments, it was proven to be rather
unspecific and lysed diatoms, dinoflagellates and raphidophytes
(Imai, Ishida and Hata 1993). This lack of specificity was also
reflected in the bacterial abundance during field surveys. Cy-
tophaga concentrations reached highest values after the peak
of C. antiqua. However, the abundance of this algicidal bac-
terium also followed the total amount of microalgal biomass
even when C. antiqua was absent, indicating that in field sit-
uations, it can also profit from resources provided by a wider
selection of algae (Imai et al. 2001). Several promising results
have been obtained from studies on mixed species assem-
blies in micro- and mesocosms. An important set of experi-
ments demonstrating nicely the effects on entire communi-
ties was performed with an algicidal bacterium Shewanella sp.
(Gammaproteobacteria). Extracts of this bacterium are specif-
ically algicidal against dinoflagellates, while a chlorophyte, a
cryptophyte and a diatom tested were not affected (Pokrzy-
winski et al. 2012). The active extract exhibited photosystem

II inhibition and induced loss of cell membrane integrity but
no conclusive cellular targets could be identified (Tilney et al.
2014b). In mixed laboratory microcosms initiated from three
natural dinoflagellate blooms, the Shewanella extract resulted in
decreased effects in communities compared to unicellular cul-
tures. The entire eukaryotic community composition was, how-
ever, shifted to increasing proportions of heterotrophic protists.
Diatom abundance also increased at low algicide concentra-
tions. In addition, ciliate abundance, as well as a bactivorous
chrysophytes, increased (Tilney et al. 2014a). This shift toward
communities dominated by heterotrophic and bacterivorous
organisms is often observed in treatments using algicidal bac-
teria. Remarkably, in the study cited the effect was also ob-
served in the absence of algicidal bacteria after treatment with
the algicidal extract. This observation points towards a deter-
mining effect of the organic substances released upon cell ly-
sis. Another example of the effect of specific algicides was re-
ported by Jung et al. who identified a Pseudomonas fluorescens
strain that was introduced as a candidate for the control of
the freshwater diatom Stephanodiscus hantzschii. In indoor meso-
cosms with natural species assemblies collected during an
S. hatzschii bloom, they confirmed the reduction of this alga by
88% while the amount of other phytoplankton remained unaf-
fected (Jung et al. 2008). A remarkable specificity was also ob-
served duringmicrocosm incubations with a not further charac-
terised algicide extracted from the actinobacterial Streptomyces
alboflavus (Cai et al. 2016). This algicide is active against Phaeo-
cystis globosa and could remove this species from microcosms
without affecting others. Exposure to the algicide led to the in-
stant increase of the plasma membrane permeability and dis-
ruption of the photosynthetic system, but these activities could
not explain the underlying mode of specificity.

Regulation of algicidal interactions

It can be hypothesised that pronounced regulation of activity
will be required for bacteria tomaintain efficient algicidal strate-
gies in an environment with spatial and temporal heterogeneity.
On the other hand, algaemight respondwith induced resistance
or even defence mechanisms against the attacker in situations
with fluctuating pathogen pressure. Only a few pioneering stud-
ies have reported on ecologically relevant regulated interactions
between algicidal bacteria and host algae. Besides dilution ef-
fects, a complicating factor in environmentally realistic studies
is the complexity of consortia with multiple species that might
interact in a complex network. In the following, concepts and,
if available, first examples of regulation during interactions will
be introduced.

Chemotaxis
Finding of prey species might be supported by the chemotac-
tic behaviour of some bacteria, directing them along chemical
gradients towards microalgae (Fig. 2a). In most reported cases,
a positive chemotaxis could be observed, leading the organ-
ism to higher concentrations of the signal (Sonnenschein et al.
2012; Smriga et al. 2016). Thus, for example, Li et al. (2016) could
demonstrate in a comprehensive study that Chitinimonas prasina
(Betaproteobacteria) behaves chemotactically towards the di-
atom Thalassiosira pseudonana. Chemotaxis of the flagellated
cells is directed towards the algae via a yet unknown cue and
upon encounters the cells adhere on the algaewith their flagella.
The bacterium uses chitinases to metabolise chitin from the cell
walls of diatoms. Chitin digestion leads to loss of cell integrity
in the diatoms and supplies the bacteria with nutrients and
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Figure 2. Modes of interactions between algicidal bacteria and their host. (a)
Chemotaxis-mediated finding behaviour might guide algicidal bacteria to the
host cells. The red cells indicate algae affected by algicidal bacteria. (b) QS chem-
icals (blue arrows) might trigger algicide formation (red circles) and as a con-
sequence cell lysis. (c) Algae might form resting stages (orange cells) that are

not targets of algicidal bacteria. (d) Upon perception of algicides or other signals
from bacteria (red circles) resistance is induced in algae that subsequently sur-
vive even in the presence of algicides (this physiological or metabolic change is

indicated by the darker colour of the cells).

energy. Contact between bacteria and the algae is a prerequi-
site for algicidal activity. Interestingly, all tested diatoms besides
Phaeodactylum tricornutum were lysed, which is in accordance
with the observation that this is also the only diatom that lacks
chitin in its cell walls.

Nutrient cues
Nutrient availability could also be a possible cue to trigger algi-
cide production in bacteria. However, evidence for such mecha-
nisms is very limited and rather indirect. This lack of knowledge
might be attributed to the difficulty to keep bacteria under fully
nutrient-deprived conditions, which would be a pre-requisite
for further experiments on the topic. This experimental limita-
tion might explain that such mechanisms have only been re-
ported for the cyanobacterium Oscillatoria laetevirens, where al-
gicide production is regulated by nutrient availability (Ray and
Bagchi 2001). Under conditions that limit growth (e.g. ammonia
as N-source or phosphate limitation), stimulated algicide pro-

duction was observed while in optimum growth conditions (e.g.
organic N-source) the algicide production was abolished.

Quorum sensing
The cell-to-cell communication at both intra- and inter-
species level is another factor to be considered if the dynam-
ics of algicide production is concerned. The mechanism of
concentration-dependent cell-to-cell-communication called QS
was first studied with the marine Gammaproteobacterium Vib-
rio fischeri (Aliivibrio fischeri) nearly 40 years ago by Nealson and
Hastings (1979). They showed that the bacterial enzyme lu-
ciferase responsible for bioluminescence occurred only at high
cell densities and is under the control of secreted autoinducer
signalling molecules. Bacterial behaviour regulation under the
concentration-dependent regulation by autoinducers was in de-
tail described in reviews by Bassler (Bassler 1999; Waters and
Bassler 2005). QS is used by bacteria to initiate processes with
high energy or resource costs only when they are beneficial to
the population (Keller and Surette 2006). Gram-negative bacteria
use not only acylated homoserine lactones (AHLs) as autoinduc-
ers (Fuqua and Greenberg 2002) but also 4-quinolon amide (Pesci
et al. 1999; Mashburn-Warren et al. 2008), fatty acids and fatty
acid methyl ester with similar function were reported (Deng
et al. 2010). In planktonic Gram-negative and Gram-positive bac-
teria, furanone complexes (AI-2) also induce genetic expression
(Skerratt et al. 2002; Williams et al. 2007). Due to their lifestyle in
a highly diluted changing environment, it has early been postu-
lated that algicidal bacteria regulate their activity by means of
QS. However, until now, only a few studies were able to unam-
biguously prove the connection of the two processes (Fig. 2b).
An indirect evidence for QS-type regulation of algicidal activ-
ity was provided by Nakashima et al. (2006b). They show that a
prodigiosin-type pigment PG-L-1 (see sectionAlkaloids), isolated
from a Gammaproteobacterium, has algicidal activity against
various red tide phytoplankton species. The production of the
pigment PG-L-1 is completely inhibited in the presence of ery-
thromycin or chloramphenicol but can be recovered by the ad-
dition of AHLs. This induced production and the fact that the
pigment production was inhibited by beta-cyclodextrin, an in-
hibitor of QS activities, are in fact pointing towards a control of
prodigiosin production by QS. Other marine Gammaproteobac-
teria such as Serratia sp., Pseudoalteromonas bacteriolytica and
V. ruber also produce prodigiosin-like pigments (Lewis and Corpe
1964; Sawabe et al. 1998; Shieh et al. 2003). For Serratia sp., produc-
tion is also controlled by AHLs (Thomson et al. 2000). The inves-
tigation of the exometabolome of themarine P. piscicida revealed
the bacterial signallingmolecule to be 2-heptyl-4-quinolone (see
section Alkaloids). This metabolite is not only a QS mediator,
but also induces slow lysis in three strains of Emiliania hux-
leyi at biologically relevant nanomolar concentrations (Harvey
et al. 2016). The quinolone thusmediates cross-kingdom interac-
tions that can shift the phytoplankton population dynamics and
trigger the intraspecies cell-to-cell communication (Diggle et al.
2007; Dubern and Diggle 2008). Paul and Pohnert (2011) studied
the lytic activity of Kordia algicida (Bacteroidetes) on the diatom
Skeletonema costatum and found that a concentration-dependent
growth-inhibiting or lytic effect of the bacteria was caused by
diffusible substances. Further tests showed that the algicidal
agent is a protease (see section Enzymes) released by the bac-
teria. Induction with the spent medium of dense K. algicida cul-
tures led to an increased protease release, which is a first evi-
dence for a QS-regulated process. Further studies are however
necessary to identify the mode of regulation in this system.
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Quorum quenching
In general, the use of signal molecules for the control of vi-
tal functions makes the producer susceptible to development
of resistance or to interference strategies targeting the sig-
nal molecules (reviewed in Grandclement et al. 2016). There is
much evidence frommarine bacteria that they employ so-called
quorum quenching (QQ) strategies in which QS signalling is
suppressed. Identified mechanisms include the inactivation of
N-acyl homoserine lactones by lactonases or by cleavage of the
amide bond through the action of acylases (Yates et al. 2002;
Romero et al. 2008; Safari et al. 2014). Some bacteria and mi-
croalgae are also able to locally raise the pH which can affect
the stability of QS molecules in their surroundings (Yates et al.
2002). There are several examples for QQ in the marine envi-
ronment (Romero, Martin-Cuadrado and Otero 2012). Especially
in dense marine microbial communities, such as sediments,
biofilms and on surfaces of algae, a large number of marine bac-
teria interfering with AHL signalling could be found (Romero
et al. 2011). A broader survey revealed that 84 isolates out of 464
from estuarine and oceanic water (0 and 10m depths) are able to
interfere with C6- and C10-AHL signalling. Prevalence of QQ
mechanisms is lower in estuarine isolates (2% of the investi-
gated samples) than in oceanic samples (28%) (Romero, Martin-
Cuadrado and Otero 2012). Given this wide distribution, it will
be of interest to specifically address the effect of QQ on algicidal
mechanisms. Especially in the close contact situations within
the phycosphere, biofilms or marine snow such mechanisms
might become relevant. Several microalgae have also developed
strategies for QQ or QS inhibition, but up to now no direct link to
interference mechanisms with algicidal activity is reported. The
diatom Nitzschia cf. pellucida, for example, produces a haloper-
oxidase which deactivates bacterial β-keto-AHL QS molecules.
The disruption of these signalmolecules is H2O2 dependent (Syr-
pas et al. 2014). The alga also produces the secondary metabo-
lite cyanogen bromide that is catalysing the cleavage of pep-
tide bonds as they occur in AHLs (Vanelslander et al. 2012).
The unicellular green alga Chlamydomonas reinhardtii can se-
crete lumichrome that mimics AHLs from associated bacteria
(Teplitski et al. 2004; Rajamani et al. 2008, 2011). The effects of
19 microalgal strains commonly used in aquaculture on QS-
regulated gene expression of three reporter strains were stud-
ied. Two out of 19 tested algae inhibited the AHL-dependent pig-
ment production in Chromobacterium violaceum (Betaproteobac-
teria). Reduced green fluorescent protein production in a QS-
controlled reporter strain Escherichia coli was observed with six
algae (Natrah et al. 2011). Again, this broad distribution of com-
plex signalling event prompts further investigation in the field
of algicidal bacteria.

Evasive strategies
Evasive strategies are another possible form of resistance
against algicidal activity. Algae have means to form morpho-
logically distinct resting stages as a survival strategy that could
potentially be employed to avoid contact with algicidal bacte-
ria (Fig. 2c) (Anderson and Rengefors 2006; Mertens et al. 2012).
Once the conditions ameliorate, these resting stages can fuel a
novel generation of proliferating algae. However, this interaction
mechanism is purely theoretical since to our knowledge, no ex-
perimental evidence for the mechanism has been provided till
to date. In general, marine bacteria can however induce such
resting stages. Roseobacter sp. (Alphaproteobacteria), for exam-
ple, induces cyst formation in the dinoflagellate Alexandrium
tamarense that is suspected to play an important role in bloom

dynamics (Adachi et al. 1999). Whether this Roseobacter sp. ex-
hibits algicidal activity is however not proven.

Induced resistance
A first example for an induced resistance against algicidal bacte-
ria has been found in the diatom Chaetocerous didymus. This alga
was the only resistant diatom in a screening performed with the
algicidal bacterium K. algicida (Fig. 2d) (Paul and Pohnert 2011).
Interestingly, the resistance of the algae goes ahead with an in-
duced production of own proteases that are suspected to coun-
teract the lytic enzymes of the bacteria (Paul and Pohnert 2013).
These proteases are substantially more effective compared to
the bacterial counterparts and can not only be triggered by the
bacteria but also by signals contained in the >30 kDa fraction of
a bacterial culture filtrate.

Complex interactions
A more complex interaction, potentially involving multiple
regulators, has been identified in the Alphaproteobacterium
Phaeobacter gallaeciensis (Seyedsayamdost et al. 2011b). The
‘Jekyll-and-Hyde’ chemistry of this bacterium illustrates impres-
sively that assigned functions of key organisms might change
dramatically in a context-dependent way. P. gallaeciensis is a bac-
terium that interacts with the bloom-forming coccolithophore
E. huxleyi. In situations where the E. huxleyi bloom is growing, P.
gallaeciensis produces the auxin phenylacetic acid and the broad-
spectrum antibiotic tropodithietic acid that support the devel-
opment of the alga. However, once the algal bloom decays, the
bacterium switches its lifestyle to an algicidal type. It releases
the potent and selective roseobacticides that lyse the aging al-
gae. The master switch triggering this dramatic change is p-
coumaric acid, a lignin degradation product released by aging
algae (Seyedsayamdost et al. 2011b). p-Coumaric acid also trig-
gers the production of a putative 226 g mol−1 roseobacticide
that causes loss of motility and cell enlargement in phytoplank-
ton (Sule and Belas 2013). Other highly complex interactions
take place in the phycosphere of the dinoflagellate A. tamarense.
In the presence of associated Alpha-, Beta- and Gammapro-
teobacteria, the growth of the alga is suppressed. The dinoflag-
ellate, however, associates closely with the small flagellate alga
Ochromonas sp. that ingests bacteria. This interaction, entirely
taking place in the phycosphere, relieves bacterial pressure from
the dinoflagellate and restores growth (Hu et al. 2015). Cascading
effects are also to be considered since alga-associated microbial
communities might modulate the potency of algicides (Mayali
and Doucette 2002; Roth et al. 2008).

Algae are also supposed to be able to fend off algicidal bacte-
ria by means of antibiotics. Most antibacterial metabolites were,
however, found from marine microalgae by using cell lysates
or extracts (Desbois, Mearns-Spragg and Smith 2009; Michalak
and Chojnacka 2015) and thus the evaluation of their true eco-
logical function is difficult. A compound class that has been
highly investigated in this context is the oxylipin family from
diatoms that are predominantly released upon cellular disrup-
tion but also within defined events during regular growth in
cultures and the field (Vidoudez and Pohnert 2008; Vidoudez
et al. 2011a, b). Especially the polyunsaturated aldehydes pro-
duced by many diatoms have antibacterial activity (Adolph et al.
2004; Ribalet et al. 2008; Balestra et al. 2011), comparable to sim-
ilar metabolites found in higher plants (Blée 2002). These data
suggest a possible defence mechanism of diatoms against mi-
croorganism including algicidal bacteria but the connection has
not been shown in field studies till to date.
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Bacteria–bacteria interactions are widely studied for mem-
bers of the Roseobacter clade, which produce antibacterial sub-
stances potentially providing a competitive advantage e.g. dur-
ing surface colonisation of macroalgae (Manefield et al. 2002;
Rao, Webb and Kjelleberg 2006; Nissimov, Rosenberg and Munn
2009; Goecke et al. 2010; Berger et al. 2011; Cude et al. 2012; Cude
and Buchan 2013; Dang and Lovell 2016). Principles within bac-
terial competition are reviewed by Hibbing et al. (2010). Long et al.
(2003) linked production of antibiotic compounds by a particle-
associated Alteromonas sp. to a multitude of functions as the
metabolites shape not only the species composition of the bac-
terial community in amodel particle systembut they also inhibit
growth of one cyanobacterium and three diatoms.

The complexity of the observed interactions and the close
association of the involved organisms suggest that some al-
gicides, especially those with known antibiotic activity, might
also affect the microbial community and consequently also al-
gal symbionts, resulting in the amplification of algicidal effects.
On the other hand, alga-associated bacteria might also provide
protection from algicidal bacteria either by the production of an-
tibiotics or by metabolization of algicides. Since marine micro-
bial communities are part of tightly connected networks, com-
mon investigations of bilateral interactions are most likely only
scratching the surface of the hidden regulation of network dy-
namics (see also Amin et al. 2015).

Methods for the investigation of algicidal activity

The sections above make it clear that a truly ecologically rele-
vant investigation of algicidal principles is highly challenging. In
order to distinguish between algicidal activity mediated by con-
tact interactions and by diffusible metabolites, bioassays can be
performed by either infecting algae directly with bacteria or by
treating themwith bacterial exudates in cell-free spentmedium
(Fig. 3a and b). In order to circumvent overlaying effects of re-
maining medium, bacteria can be grown on agar plates and re-
suspended. However, care has to be taken since algicidal activ-
ity is often overlooked if it is under the control of signalling
chemicals. In these cases, induction of the production of algi-
cidal metabolites or QS-based upregulation of algicidal activity
has to be performed before the generation of extract or cultures
for bioassays (Fig. 3d and e). Non-contact co-culturing is an ap-
proach that covers both the above-mentioned mechanisms of
regulation (Fig. 3c). It is also a reliable method to determine
if an observed activity is dependent on cell–cell contact (Kim
et al. 2009b; Paul, Mausz and Pohnert 2013). If algicidal activity
in more complex communities is investigated, a potential ad-
ditional overlaying effect of algal metabolites has to be consid-
ered. Conspecifics or other species in the experiment might be
affected by allelochemicals released during bacteria-induced ly-
sis. Furthermore, the concept of strictly separating direct and in-
direct modes of action is challenged by the existence of a mixed
mode mechanism that includes both the requirement for direct
contact and the excretion of a chitinase (Li et al. 2016).

Quantitative aspects
The above-mentioned methods are suitable for the identifica-
tion of compounds with algicidal activity, and many studies are
limited to this aspect. If the compounds, however, have a true
ecological function can only be judged after their quantification
in nature or in laboratory settings that provide close to natural
conditions. Only if the active concentrations of isolated algicides
fall in the range of the concentrations determined analytically,
a true ecological function can be postulated. However, many of

the below-mentioned metabolites are active in the micromolar
range, thus in concentrations that rarely occur in nature, or, as
it might be argued based on hydrodynamic considerations, that
can only be reached in close contact situations where metabo-
lites accumulate in the diffusion limited zone (the phycosphere)
around cells of the algae (Breckels et al. 2011). Especially this
phycosphere concept has attracted much attention since in fact
most interactions of algae and their associated microbial con-
sortia are occurring in direct proximity to the algal cells (Rol-
land et al. 2016). Lysis of Alexandrium sp., for example, is caused
by bacteria from its phycosphere that is highly diverse in nat-
ural communities (Hasegawa et al. 2007; Wang et al. 2010). It is
however extremely difficult to determine the actual concentra-
tions of metabolites in the immediate vicinity of algal cells and
mostly modelling approaches allow their estimation (Breckels
et al. 2010). A first direct monitoring of the pigment fucoxanthin
in the vicinity of macroalgal cells using Raman microscopy re-
vealed that bacteria in the immediate vicinity of the algae will
be exposed to millimolar concentrations of active metabolites,
even if concentrations of the compound in the water are close
to the detection limit (Grosser et al. 2012). Truly ecologically rel-
evant investigations would thus have to consider not only bulk
concentrations, but also the influence of gradients and the di-
mensions of the receiving organisms. Given the high concen-
trations that might accumulate within the phycosphere, some
metabolites withmoderate activitymight play an important role
locally. In addition, complexity is even increased since metabo-
lites might change their function in a concentration-dependent
manner, as it has been shown for indole-3-acetic acid. The bac-
terially produced phytohormone can promote both algal growth
and algal death in a concentration-dependent manner thereby
dynamically influencing performance of the microalga E. huxleyi
(Segev et al. 2016).

Linking lab and field data

In the first view, the setup of most lab experiments with
dense cultures contradicts the average situation in the plankton,
where the typical abundance of the entire microbiome is com-
parably low (roughly 105–106 cells/mL and up to 107 cells/mL dur-
ing a bloom). However, such cell densities are only average val-
ues and sincemicroscale patcheswith locally increased biomass
play an important role in plankton ecology, such hotspots might
boost bacterial abundance even in the natural environment
(Doubell, Prairie and Yamazaki 2014). A hitherto poorly ad-
dressed problem in the connection of field and laboratory work
lies in the often purely correlative interpretation. Prevalence of
algicidal bacteria is often high during a declining phytoplankton
bloom phase but it is not clear if this is indeed linked to the lytic
activity of bacteria (Skerratt et al. 2002). During declining blooms,
the predisposition of algicidal bacteria for the efficient use of
released nutrients resulting from cell lysis might already cause
sufficient advantage leading to their dominance (Biddanda and
Benner 1997; Azam and Malfatti 2007). Lab experiments often
lead to the claim that algicidal bacteria can control phytoplank-
ton blooms; however, this assumption is till to date not fully sup-
ported by field data. Chemical analysis of algicides in the field or
transcriptomicmonitoring of genes relevant for algicide produc-
tion might help in the future to solve this issue.

Another still unresolved problem is the role of how to evalu-
ate the influence of signalling chemistry in naturally occurring
plankton communities. Such specific interactions often have
been observed for mutualistic interactions, but even if there is
evidence from lab data that algicidal bacteria use (secondary)
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Figure 3.Methods for the elucidation of algicidalmechanisms and their regulation. (a) Cultivationwith direct contact allows identification of algicidal bacteria indepen-
dent of their mechanism of activity. (b) If cell-free spent medium (i.e. filtrate) is active, the mechanism involves excreted algicides. (c) To test whether cross-kingdom
signalling is necessary for algicide production, non-contact co-culturing with semipermeable membranes facilitating passage of algicide but not of cells can be used.
(d) Cross-kingdom signalling can be monitored after a period of cultivation with direct contact followed by testing the spent medium (i.e. filtrate) of bacteria-killed

algae for algicidal activity. The latter approach has the disadvantage not to distinguish between bacterial algicides and toxic algal waste products. (e) To provide initial
evidence for a QS-type mechanism algicide, production is stimulated in below quorum density cultures by addition of filtrate from a high-density culture. Algicidal
activity of the low-density culture can be tested afterwards with one of the methods described (a-d). Care has to be taken regarding the material of filters (b, d, e) and
membranes (c) in order to minimise loss of algicide by adhesion or inhibition of algicide passage through the membranes.

metabolites from their prey as cues field data are still not avail-
able (Seymour, Ahmed and Stocker 2009; Seyedsayamdost et al.
2011b; Li et al. 2016) (see section Regulation).

In field studies, it also remains difficult to distinguish if the
dominance of an algicidal bacterium is truly due to its algici-
dal activity or rather due to its successful competition for nutri-
ents or simple opportunistic effects. Often it remains unsolved
if the occurrence of an algicidal bacterium is not rather coincid-
ing with the decline of a bloom. The assignment of the emitter
and target organism of a natural product in the field is as well
very difficult. In fact, even the presence of algicidal compounds
in the field has to our knowledge not consistently been demon-
strated. A possible way to solve this lack of knowledge could in-
volve transcriptomics data that record the upregulation of genes
required for algicide production or a chemical analysis of the re-
spective metabolites in the field. If the molecular targets of the

algicides are known, transcriptomics or proteomics of the tar-
get algae could also indicate its effectiveness during the inter-
action. Such protocols are however still not routinely available
for field samples even if progress in method development has
been made (McCarren et al. 2010; Moustafa et al. 2010; Keeling
et al. 2014; Wang et al. 2014, 2015; Amin et al. 2015; Balzano et al.
2015; Cooper and Smith 2015; Guo et al. 2016a).

Active components

The algicides produced by bacteria are very diverse in struc-
ture and mode of action. The metabolites span a wide range
of polarity from polar amino acid derivatives to less polar fatty
acids and their size spans several orders of magnitude. Algi-
cides comprise small metabolites withmolecular weights below
500 g mol−1, intermediate molecular weight compounds like
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Figure 4. Structures of algicidal alkaloids.

peptides and even functional enzymes several kDa in size. This
diversity is a major challenge for the structure elucidation of al-
gicides. There are no universal extraction or separation meth-
ods that can be recommended. Algicide purification and struc-
ture elucidation has rather to start with optimised extraction
procedures for the respective compound classes. In many cases,
preliminary experiments that characterise the compound class
of interest are required before extraction and purification are
pursued. These can include heat or pH stress that denatures
enzymes. Also, different extractions, e.g. liquid/liquid or solid-
phase extraction can be undertaken to enrich algicides from the
medium. Bioassay-guided fractionations with separation tech-
niques that are optimised for the algicide classes are often the
basis for the full characterisation (Prince and Pohnert 2010).

The structural diversity is also reflected in the multifaceted
mode of action of algicides. Small metabolites generally have a
defined target, e.g. the inhibition of an enzyme or the interaction
with membranes, and therefore inactivate or disturb vital cellu-
lar functions of the host leading to cell death. On the other hand,
enzymes catalyse biochemical transformations that lead to the
degradation of the target organism. Mixed modes of action are
also observed. The following sectionswill give an overviewof the
variety of algicidal metabolites and enzymes. We classified the
active principles according to their biosynthetic origin or, when
biosynthetic evidence is not obvious, based on common struc-
tural features. We exclude the numerous studies where claims
of algicidal metabolites were made without any ecological ratio-
nale. Especially in the field of aquaculture and industrial appli-
cations, several structures from bacteria that do not occur in the
plankton were brought forward that might act against microal-
gae. These metabolites can represent useful tools for biomass
processing but are not ecologically relevant. We also do not list
activities assigned to not fully characterised fractions or to pri-
mary metabolites administered in unrealistically high concen-
trations. However, as outlined above, the ecologically relevant
concentrations are often not available for interacting plankton
species and we thus can often not judge if algicidal metabolites
are truly ecologically relevant. Algicides exclusively produced by
cyanobacteria are excluded since they can rather be categorised
as allelopathic. However, interesting parallels between bacterial

and cyanobacterial algicides are highlighted. The following sec-
tions list identified principles but we do not validate the poten-
tial ecological role of the identified compounds.

Alkaloids

Alkaloids comprise a very diverse class of algicidal compounds
(Fig. 4). The scaffolds include indoles, quinolones and oth-
ers. The mechanism of algicidal activity of these nitrogen-
containing metabolites with different biosynthetic origin is
equally diverse.

Many algicides are derived from tryptophan and therefore
belong to the class of indole alkaloids. Indole itself, isolated from
a periphyton biofilm, inhibits the growth of cyanobacteria. This
inhibition seems to be caused by impaired thylakoid membrane
integrity, interrupted electron transport in photosystem II and
reduction of the effective quantum yield (Wu et al. 2011). An-
other representative of the indole alkaloids is isatin, which was
isolated from a marine Pseudomonas sp. as well as from a fresh-
water Shewanella sp. (Gammaproteobacteria) (Sakata, Yoshikawa
and Nishitarumizu 2011; Li et al. 2014b). The growth of the di-
atom Chaetoceros ceratosporum is inhibited by isatin but not by in-
dole (Sakata, Yoshikawa and Nishitarumizu 2011). Furthermore,
isatin inhibits cyanobacterial growth (Li et al. 2014b). Cyanobac-
teria are also negatively affected by 3-methylindole produced
by a freshwater Aeromonas species (Guo et al. 2016b). Produc-
tion of 3-methylindole is regulated by QS (see section quorum
sensing). Another anti-cyanobacterial indole derivative is trans-
3-indoleacrylic acid produced by a Rhodococcus species (Acti-
nobacteria) isolated from soil. Interestingly, a synergistic ef-
fect of trans-3-indoleacrylic acid and the co-isolated algicide L-
pyroglutamic acid was observed (Wang et al. 2013). The indole
moiety is also a structural element of other, more complex algi-
cides like the indole-thiazole bacillamide. Bacillamide was iso-
lated from amarine Bacillus species and is toxic against dinoflag-
ellates and raphidophytes without affecting the tested diatoms,
green algae or cyanobacteria (Jeong et al. 2003).

An important group of algicidal indole alkaloids are the tri-
cyclic β-carbolines. Kodani and co-workers isolated harmane
from an algicidal freshwater Pseudomonas species. Harmane as
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Figure 5. Algicidal amino acid-derived metabolites.

well as the structurally related norharmane inhibited the growth
of various cyanobacteria, but not of two green algae species
tested (Kodani et al. 2002). This specificity makes them potential
control agents for harmful algal blooms. Harmine and norhar-
mane, isolated from the freshwater Bacillus flexus, showed algi-
cidal activity against cyanobacteria but not against green algae
(Alamri and Mohamed 2013). A marine Brachybacterium species
(Actinobacteria) is the source of 1-acetyl-β-carboline that inhib-
ited growth of naked dinoflagellates and raphidophytes as well
as of thecate dinoflagellates (Kim, Son and Jeong 2015). It is note-
worthy that β-carbolines are also allelopathic toxins since they
can be produced by cyanobacteria as well. The cyanobacterium
Nodularia harveyana from brackish water produces norharmane
and norharmalane with toxicity against several other cyanobac-
teria (Volk 2005, 2006). Comparing threshold activities of norhar-
mane and norharmalane revealed that saturation of the dou-
ble bond at position 3–4 leads to a decrease of cytotoxicity.
Furthermore, comparison of these β-carbolines with harmane
revealed lower minimal toxic quantities against some of the
species tested due to the additional methyl group. The hypoth-
esis that increased hydrophobicity might facilitate penetration
through the plasma membrane is strengthened by the fact that
in many cases the hydrophobic alkaloid base shows higher tox-
icity than the more hydrophilic hydrochloride (Volk 2006).

An example for a quinoline alkaloid algicide is 2-n-pentyl-
4-quinolinol, which is produced by a marine Pseudoalteromonas
species and a marine Alteromonas species. The antimicrobial ac-
tivity of this compound also spans diatoms and cyanobacteria
affecting not only growth, but alsomobility and adhesive proper-
ties (Long et al. 2003; Wigglesworlth-Cooksey, Cooksey and Long
2007; Sakata et al. 2008). The structurally related compound 2-
heptyl-4-quinolone was isolated from themarine P. piscicida and
negatively affected growth rates of a coccolithophore, but not
of a chlorophyte or diatom (Harvey et al. 2016). Another marine
bacterium from the genus Alteromonas produces two algicidal

pyrones (see section Others) as well as the quinolone alkaloids
2-undecen-1′-yl-4-quinolone and 2-undecyl-4-quinolone. Both
compounds were more toxic to dinoflagellates and raphido-
phytes than to the green algae or haptophytes tested (Cho 2012).
Compared to 2-undecyl-4-quinolone, the unsaturated double
bond in 2-undecen-1′-yl-4-quinolone leads to an increased tox-
icity and the authors suggest more toxic oxidised hydroxyl
compounds as a reason.

An example for an alkaloid algicide based on peptide precur-
sors is the tripyrrole prodigiosin that has been detected in the
marine Gammaproteobacterium Hahella chejuensis (Jeong et al.
2005; Kim et al. 2006; Zhang et al. 2016). Prodigiosin inhibits the
growth of some dinoflagellates, a raphidophyte and a hapto-
phyte. Another red pigment that was assigned to the prodigiosin
family is produced by amarine Gammaproteobacterium. In con-
trast to many other algicides, this pigment reduces production
of reactive oxygen species with a negative effect to the raphido-
phyte Chattonella marina, for which ROS production is essential
(Nakashima et al. 2006a).

Amino acid derivatives, peptides and proteins

Numerous algicidal metabolites are structurally related to
amino acids, although biosynthetic origin has not been studied
in most cases (Fig. 5). A marine Vibrio sp. produces β-cyano-L-
alanine inhibiting growth of several cyanobacteria, but not of
green algae, diatoms or a dinoflagellate tested (Yoshikawa et al.
2000). A differentmode of action has been observed in the fresh-
water Stenotrophomonas maltophilia (Gammaproteobacteria) that
actively reduces the availability of nutrients that are essential
for the target algae. The bacterium produces a hydroxamate-
type siderophore that negatively affects cyanobacterial growth
by limiting iron availability (Liu et al. 2014). It turns out that
interactions via siderophore production and the accompanied
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carbon-for-iron exchange are a common type of algal–bacterial
interactions (Kurth et al. 2016).

Peptides and proteins can also have algicidal activity. A ma-
rine Vibrio shiloi strain, for example, produces a linear proline-
rich dodecapeptide termed toxin P that inhibits photosynthe-
sis in zooxanthellae isolated from corals only in the presence
of ammonium ions (Banin et al. 2001). The authors conclude
that the peptide might facilitate uptake of ammonia, which in
turn uncouples photosynthesis. Photosynthesis also seems to be
the target of argimicin A, a pentapeptide isolated from a fresh-
water Sphingomonas sp. (Alphaproteobacteria) (Imamura et al.
2000; Hibayashi and Imamura 2003). Argimicin A and the struc-
turally related argimicins B and C inhibit growth of cyanobacte-
ria without affecting green algae (Hibayashi and Imamura 2003;
Yamaguchi et al. 2003). This is in accordance with the hypoth-
esis that argimicin A inhibits photo energy transfer from phy-
cobilisome, an accessory pigment complex of photosystem II in
cyanobacteria (Hibayashi and Imamura 2003). So far uncharac-
terised is a potentially cyclic algicidal peptide produced by an
Alteromonas sp. with diatom-lytic activity (Wang et al. 2016a).

Diketopiperazines are also a major class of bactericidal com-
pounds. Apart from the indole alkaloid isatin (see section Alka-
loids), the freshwater Shewanella sp. isolated by Li et al. (2014b)
is also a source for hexahydropyrrolo[1,2-a]pyrazine-1,4-dione,
an algicidal compound from the group of the diketopiperazines.
Structurally this compound can be described as a cyclic dipep-
tide derived from glycine and proline (cyclo[Gly-Pro]). In contrast
to isatin, which inhibits growth of the cyanobacteria Microcystis
aeruginosa and Synechococcus sp., the diketopiperazine was only
algicidal to M. aeruginosa, affecting cell wall integrity and intra-
cellular structuring (Li et al. 2014b). Cyclo[Gly-Pro] was also iso-
lated from a freshwater Stenotrophomonas sp. together with the
algicide hydroquinone. Hydroquinone is also toxic to M. aerug-
inosa as well as Synechococcus sp. (Lin et al. 2016). This utilisa-
tion of structurally different algicides with at least overlapping
host range is striking and might be a strategy to minimise re-
sistance. Affected target organisms of the algicidal cyclo[Gly-
Pro] were further studied by Li and co-workers after its iso-
lation from a freshwater Bacillus species. Only four out of six
cyanobacterial species tested were affected by this diketopiper-
azine (Li, Geng and Yang 2015). The co-isolated structurally re-
lated compound cyclo[Pro-Val] showed the same profile of algi-
cidal activity as cyclo[Gly-Pro]. Recently, cyclo[Gly-Pro] has also
been isolated from a marine Bacillus species and mechanis-
tic studies showed that it inhibits photosynthetic activity and
causes oxidative stress in the haptophyte Phaeocystis globosa (Tan
et al. 2016). Other anti-cyanobacterial diketopiperazines include
cyclo[Gly-Phe] isolated from a freshwater Aeromonas sp. (Guo
et al. 2016b) as well as cyclo[Pro-Leu] and cyclo[4-OH-Pro-Leu]
isolated from a freshwater Flavobacterium Chryseobacterium sp.
(Guo et al. 2015). Despite their structural similarity, the latter
two have distinct characteristics and act synergistically. Both
algicides cause oxidative stress but cyclo[Pro-Leu] mainly in-
hibits antioxidases, while cyclo[4-OH-Pro-Leu] interrupts photo-
synthetic electron flux.

Amino-acid derivatives are among the most frequently iden-
tified algicides. Many studies use complex media based on pep-
tone and yeast extract for bacterial cultivation. However, such
media are not well suited for the purpose due to high back-
ground levels of amino-acid-derivedmetabolites. The surplus of
amino-acid derivatives in the medium can mask low-abundant
algicides due to insufficient chromatographic separation lead-
ing to false identifications. In addition, amino-acid derivatives
might correctly be identified as algicidal but are not a product

of the bacterium under study but rather a medium component.
Consequently, special efforts have to be made to prove bacterial
origin whenever complex media are used for cultivation.

Enzymes

The release of enzymes is closely associated with an algicidal
lifestyle of bacteria (Smith et al. 1992; Martinez et al. 1996; Paul
and Pohnert 2011; Lei et al. 2015; Li et al. 2016). Many algici-
dal enzymes belong to the hydrolases and might serve a dual
function being algicidal as well as facilitating utilisation of host
polymers by extracellular degradation. The hydrolases primar-
ily target polymers of algal cell walls, which are easily acces-
sible and vital for algal cellular integrity. An example is a ma-
rine Pseudoalteromonas species that produces two proteases that
are algicidal to a diatom. One of the proteases is a serine pro-
tease and the other that has a 6-fold lower algicidal activity be-
longs to the metal proteases (Lee et al. 2000, 2002; Kohno et al.
2007). The activity is specific since another serine protease pro-
duced by the bacterium as well as several commercially avail-
able proteases did not exhibit algicidal activity. Substrate speci-
ficity and affinity to the target may be determining factors for
the algicidal activity of proteases. ThemarineK. algicida also pro-
duces lytic proteases that can target diatoms. While four tested
diatom species were lysed by the bacteria, one showed resis-
tance in infection experiments. Closer inspection revealed an
induced protease production by the algae that might be linked
to a defence mechanism counteracting the enzymes from bac-
teria. In the resistant diatom, proteases are substantially upreg-
ulated in the presence of the lytic bacteria triggered by an as of
yet unknown mechanism (Paul and Pohnert 2011, 2013). Apart
from lytic activity, bacterial proteases can also affect cell motil-
ity. Excreted proteins from three Flavobacteria reduce motility
of a dinoflagellate, and inhibition experiments indicated that
these proteins are proteases (Mayali et al. 2008). However, the au-
thors doubt thatmotility is the primary target of the protease but
rather interpret the activity as a secondary effect of general tox-
icity. Algicidity has also been associated with the production of
β-glucosidases by a marine P. haloplanktis strain with specific
toxicity to the dinoflagellate Prorocentrum spp. without affect-
ing other dinoflagellates (Kim et al. 2009a). Naturally associated
bacteria in the phycosphere of the dinoflagellate A. tamarense
also release carbohydrate-degrading enzymes directly causing
the lysis of the alga (Wang et al. 2010). The potential target of
β-glucosidases and other glycosidases is the cell wall. Activ-
ity of amylases, cellulases and xylanases in the marine bac-
terium Flammeovirga yaeyamensis (Bacteroidetes) has been linked
to the degradation of algal cell walls as well (Chen, Bai and
Chang 2013). Similarly, several cellulolytic marine bacteria iso-
lated from mollusc gut negatively affect algal cell wall integrity
(Munoz et al. 2014). A complex toxic mechanism has been elu-
cidated for freshwater C. prasina. As discussed in the section
Regulation, this mechanism involves chemotaxis to diatoms,
attachment to the cells via flagella and subsequent enzymatic
degradation of the cell wall assisted by chitinases (Li et al. 2016).
An indirect algicidal mechanism is used by Rheinheimera sp.
(Gammaproteobacteria) and the Flavobacterium Aquimarina sp.
which produce L-amino acid oxidases (Chen, Lin and Sheu 2010;
Chen, Sheu and Sheu 2011). The hydrogen peroxide production
that happens concomitantly with the amino acid oxidation is
responsible for the algicidal effect on green algae as well as on
cyanobacteria.
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Figure 6. Algicidal polyketide.

Figure 7. Algicidal terpenes.

Polyketides

Despite the great variety of polyketides known, only one algici-
dal polyketides has been identified to date (Fig. 6). A polyether
algicide was isolated from a mangrove sediment St. malaysiensis
(Zheng et al. 2013). This polyether NIG355 is a stereoisomer of
the known polyketide nigericin (Harvey et al. 2007). The isolated
polyether inhibited growth of a haptophyte and a dinoflagellate
but was less active against a green alga (Zheng et al. 2013). Al-
though the authors did not comment on the mode of action,
it can be hypothesised that it functions as an ionophore like
nigericin does (Kevin, Meujo and Hamann 2009).

Terpenes

An algicidal terpene has been isolated from a freshwater
Deinococcus sp. (Li et al. 2015). The algicide was identified as the
red pigment deinoxanthin, which is acting on specific target
organisms (Fig. 7). Only 5 out of 23 tested species of microal-
gae were susceptible and these belonged to different taxonomic
groups, namely dinoflagellates, diatoms and haptophytes. The
mechanism of action is not yet fully understood but the authors
suggest the chromophore to facilitate ROS formation. This is in
agreement with a measurable increase in ROS and subsequent
loss of cellular integrity upon deinoxanthin treatment. Damage
by ROS also seems to be involved in the anti-cyanobacterial ac-
tivity of a triterpenoid saponin produced by a Streptomyces sp.
isolated from soil (Luo et al. 2013). Another anti-cyanobacterial
terpene derivative is a 3-oxo-ionone, which was isolated from
a periphyton biofilm tentatively assigned by comparison with
GC/MS libraries (Wu et al. 2011). Similar to the co-isolated indole,
the terpene also affects photosynthesis.

Figure 8. Algicidal fatty acid derivatives.

Fatty acids and their derivatives

This small group of algicides covers simple fatty acids as well
as more complex derivatives (Fig. 8). Although fatty acid deriva-
tives are well known in algal allelopathic interactions (Legrand
et al. 2003), they are rarely reported as bacterial algicides. A ma-
rine Vibrio sp. produces palmitoleic acid that inhibits growth of
dinoflagellates (Li et al. 2014a) and to a minor extend of diatoms
and a raphidophyte. Upon treatment with palmitoleic acid, im-
paired integrity of cell wall and membranes were visible prior
to total cell lysis. A more complex algicide build from a fatty
acid and an amino acid is N-9-hexadecenoylalanine methyl es-
ter. This algicide was isolated from the two marine species Lok-
tanella koreensis and Roseovarius lutimaris (Alphaproteobacteria),
and inhibited growth of a diatom (Ziesche et al. 2015). Further-
more, N-acyl-homoserine-lactones produced by several marine
bacteria from the Roseobacter clade have been identified as algi-
cides (Ziesche et al. 2015).

Others

The two 2-pyrones 3-hexyl-4-hydroxyl-6-pentyl-2H-pyran-2-
one and 3-hexyl-4-hydroxyl-6-heptyl-2H-pyran-2-one were
isolated from a marine Alteromonas sp. (Cho 2012) (Fig. 9).
Similar to the quinolones produced by this organism (see sec-
tion Alkaloids), these pyrones are toxic to dinoflagellates and
raphidophytes but less toxic to the green algae or haptophytes
tested. The more lipophilic 3-hexyl-4-hydroxyl-6-heptyl-2H-
pyran-2-one possesses higher algicidal activity a trend also
described for other algicides, such as harmane. Benzoic acid
isolated from a marine Thalassospira sp. (Alphaproteobacteria)
is algicidal against the harmful dinoflagellate Karenia mikimotoi
(Lu et al. 2016). As a potential mechanism of action, acidification
of the cell leading to enzyme inhibition is discussed. Further-
more, a marine actinobacterial Brevibacterium sp. produces
(2-isobutoxyphenyl)amine with toxicity to a dinoflagellate via
degradation ofmembranes (An et al. 2015). A larger group of algi-
cides produced by marine P. gallaeciensis are the roseobacticides
(Seyedsayamdost et al. 2011a,b, 2014). The production of these
algicides is triggered by algal breakdown products (see section
Regulation). Potent algicidal activity of the roseobacticides with
loss of cellular integrity and chloroplasts has been shown for a
haptophyte; a cryptophyte and a diatom were also affected.
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Figure 9. Algicidal metabolites of diverse biosynthetic origin. These metabolites cannot be unambiguously assigned to one of the compound classes in Figs 3 to 7.

Structures of algicides—general considerations

In conclusion, algicides are very versatile and possess a wide
range of molecular targets. There is until now no way to pre-
dict activities since structurally similar algicides can address
distinct targets while structurally diverse compounds result in
similar phenotypic effects. Three algicidal modes of action have
been shown for several algicides from different natural prod-
uct classes and represent common algicidal principles: (i) the
destruction of cell membranes and cell walls as structural fea-
tures leading to loss of cellular integrity and lysis; (ii) the produc-
tion of ROS leading to disturbance in redox homeostasis, radi-
cal reactions and consequently to loss of cellular functions; (iii)
the impairment of photosynthesis depriving the cells of energy.
These modes of action are not independent of each other since
lipid peroxidation due to ROS disturbsmembranes and ROSmay
damage photosynthetic pigments. Blocked photosynthesis, on
the other hand, also facilitates the generation of ROS. Conse-
quently, separating the true primary target from secondary ef-
fects is very challenging. Furthermore, there might be a bias
since parameters such as ROS or photosynthetic activity are eas-
ily accessible with standard toolkits. The lack of other targets
might be caused by a lack of suitable methods for their detec-
tion. Many studies thus remain in a descriptive state and do
not report the primary targets of the algicides but merely sec-
ondary effects caused by cellular stress or dysregulation. Future
research should go into detail with the identification of algicidal
mechanisms using, for example, structure-activity tests, assays
to identify molecular targets using standard biochemical meth-
ods or recent tools, such as activity-based protein profiling.

Ecological role of algicidal bacteria—the microbial loop

Based on the above considerations, we now want to summarise
the general role of algicidal bacteria within the marine envi-
ronment. Mostly in spring when nutrient levels are high, spe-
cific microalgae can become dominant in the surface ocean.
Such algal blooms develop mainly under the influence of nu-
trient availability (nitrogen, phosphorus, silicate and iron) but
microbial as well as grazing activity can also promote bloom
termination. Phytoplankton blooms are highly productive, re-
leasing up to 20% of the primary production as DOC into the
ocean. Phytoplankton-derived organic matter is highly diverse
and the complexity is even increased by bacterial metabolism
(Kujawinski 2011). DOC bioavailability is tightly linked with bac-
terial growth and community composition (Wear et al. 2015).
Bloom-associated bacteria can be assigned to the three ma-
jor heterotrophic lineages Flavobacteria, Alphaproteobacteria
(including Roseobacter spp.) and Gammaproteobacteria (Buchan
et al. 2014), and distinct populations of bacteria are observed dur-
ing the process of decomposition of the algal bloom (Teeling et al.
2012). A recent spatial-temporal study examining interactions of

phytoplankton blooms and bacterioplankton community com-
position revealed that members of Bacteroidetes and Alphapro-
teobacteria dominated the bacterial community composition
without being correlated to bloom-related variables. Less abun-
dant bacterial phyla, on the other hand, were strongly associ-
ated with phytoplankton biomass or diatom:dinoflagellate ra-
tio and showed high niche specificities (Bunse et al. 2016). DOM
as sum parameter of all dissolved organic matter is thus not
appropriately reflecting the influence of resource availability
for bacteria. Uptake experiments using the specific substrates
glucose, amino acids and ATP revealed preferences of Alpha-
and Gammaproteobacteria as well as Bacteroidetes resulting in
variable performance depending on the DOM fraction present.
In contrast, Roseobacter as a dominant group that includes
algicidal members were overrepresented on all substrates
(Alonso-Sáez and Gasol 2007). In general, the microbial loop is
dominated by bacteria utilising organic matter released by exu-
dation, lysis and hydrolysis of phytoplankton (Azam et al. 1983;
Bidle and Falkowski 2004). The entity of DOM generated by these
processes is one of the largest pools of organic carbon glob-
ally. It might be recycled within the microbial loop or move to
higher (grazing) or lower trophic levels (viruses) (Wilhelm and
Suttle 2012). However, dominant processes also lead to its escape
from the food web in form of inorganic gaseous carbon (CO2,
dimethylsulfide, etc.) or that it contributes to the ocean storage
of non-degradable DOC in the deep sea known as the biologi-
cal pump (Jiao et al. 2010; Buchan et al. 2014). Algicidal bacteria
can actively modulate the carbon shuttling described above by
arresting or inhibiting phytoplankton growth. More commonly,
high lysis rates of phytoplankton populations triggered by algici-
dal bacteria will increase the abundance of DOM and POM (par-
ticulate organicmatter) in the ocean (Mayali and Azam 2004; Roy
and Chattopadhyay 2007). However, algicidal activity can also be
very specific. Lysis of only one species or taxon can cause species
shifts in the oceans’ plankton without significantly affecting the
overall photosynthetic activity (Kang et al. 2011). After lysis, re-
sistant phytoplankton species and those creating temporary or
resting stages might be responsible for the post-blooming shift
in short-time phytoplankton diversity and also for longer last-
ing changes of dominance in the plankton (von Dassow and
Montresor 2011). Especially specific bloom-terminating events
by bacterial activity might substantially affect plankton compo-
sition (Sohn et al. 2004; Mayali, Franks and Azam 2008; Meyer
et al. 2014). It can be argued that the frequency of such events
might be substantial since especially high productive situa-
tions, as observed in algal blooms can nurture bacteria with al-
gicidal effects (Bowen, Stolzenbach and Chisholm 1993). Solid
data on the prevalence of algicidal effects in the field are how-
ever not available today—especially since methodological limi-
tations of surveillance capacities as well as of analytical possi-
bilities might lead to the bias towards contact or within-bloom
interactions.
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Conclusions and open questions

It becomes clear that algicidal bacteria and their lifestyles are
highly diverse. This is also the case for the underlying regula-
tive principles of alga–bacterium interactions. Multiple differ-
ent mechanisms causing algicide activity and specificity have
been identified in the last years, but often the true molecular
targets or modes of action are not entirely understood. Some
algicides seem to be rather species or taxa specific while oth-
ers have a broader target spectrum, but no common patterns
emerge, which again reflects the diversity. Mainly motivated by
potential industrial applications many algicidal principles from
small molecular weight secondarymetabolites to enzymes have
been identified. In most cases, however, the ecological function
and concentrations of the algicides in the natural environment
remain elusive. These active principleswill nowpave theway to-
wards more elaborate studies involving in situ analytics as well
as knock-out strategies to evaluate their true function in the in-
teractions. It is fascinating to see that novel approaches in field
work are already contributing to a better understanding of the
role of algicidal bacteria within plankton communities. Espe-
cially the multiple regulations of alga–bacteria interactions con-
tribute to our emerging understanding of interaction dynamics.
Often novel insights also reveal additional layers of complexity.
These become evident in micro- and mesocosm experiments,
and it will be a major challenge to transfer the knowledge to
field studies. Emerging possibilities in chemical analysis as well
as transcriptomics will surely help to address the task. Even
then, some more fundamental questions are still open, includ-
ing the mechanisms of host specificity, or the identification of
the true molecular targets of most algicides. In this context, the
establishment of standard panels ofmicroalgae for testing could
be the task of an urgently needed initiative for standardisation.
This is especially important since the emerging applications of
algicidal bacteria in ecosystem engineering and biotechnology
call for a reliable characterization of their activities before large-
scale manipulations are envisaged.
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