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Tree species composition maps derived from hyperspectral data have been found to be accurate but it is still
unclear whether an optimal time window exists to acquire the images. Trees in temperate forests are subject
to phenological changes that are species-specific and can have an impact on species recognition. Our study
examined the performance of a multitemporal hyperspectral dataset to classify tree species in the Polish part of
the Białowieża Forest. We classified seven tree species including spruce (Picea abies (L.) H.Karst), pine (Pinus
sylvestris L.), alder (Alnus glutinosa Gaertn.), oak (Quercus robur L.), birch (Betula pendula Roth), hornbeam
(Carpinus betulus L.) and linden (Tilia cordata Mill.), using Support Vector Machines. We compared the results
for three data acquisitions—early and late summer (2–4 July and 24–27 August), and autumn (1–2 October) as
well as a classification based on an image stack containing all three acquisitions. Furthermore, the sizes (height
and crown diameter) of misclassified and correctly classified trees of the same species were compared. The
early summer acquisition reached the highest accuracies with an Overall Accuracy (OA) of 83–94 per cent and
Kappa (κ) of 0.80–0.92. The classification based on the stacked multitemporal dataset resulted in slightly higher
accuracies (84–94 per cent OA and 0.81–0.92 κ). For some species, e.g. birch and oak, tree size differed notably for
correctly and incorrectly classified trees. We conclude that implementing multitemporal hyperspectral data can
improve the classification result as compared with a single acquisition. However, the obtained accuracy of the
multitemporal image stack was in our case comparable to the best single-date classification and investing more
time in identifying regionally optimal acquisition windows may be worthwhile as long hyperspectral acquisitions
are still sparse.

Introduction
Information on forest tree species composition is relevant for
forest management and nature conservation (Fassnacht et al.,
2016). Hyperspectral data are an efficient remotely sensed data
source to map tree species (e.g. Ghosh et al., 2014; Trier et al.,
2018). Most earlier studies using hyperspectral data to classify
tree species focused on a single acquisition, typically acquired
during the regional peak of the vegetation season (the period
after spring green-up, Kern et al., 2020, but before leaves started
ageing). However, in temperate forests, seasonal changes influ-
ence both tree spectra and data quality (e.g. due to different
amounts of shadow and varying illumination conditions). Trees’
phenology, including spring leaf-out, flowering and senescence
are species-specific processes that can influence species recogni-
tion. Hence, seasonal impacts should be considered when plan-
ning flight campaigns. However, the question whether an opti-
mal time window to acquire hyperspectral data exists is still
unclear and may also differ regionally. Trees’ reflective proper-
ties change during the growing season. This is mostly visible in

changes related to leaves and their colour: these changes are
predominantly driven by the leaf pigment composition which
varies during the year following temperature and photoperiod
changes (Delpierre et al., 2016; Keskitalo et al., 2005). In the
temperate zone of the Northern hemisphere, trees’ annual cycle
consists of winter dormancy, spring budburst and leaf out or
needle elongation, florescence, fruit and cone maturation and,
for deciduous trees autumn tinting and leaf abscission, for conif-
erous—preparation for dormancy (Delpierre et al., 2016).

In autumn, leaves start the complex process of senescence,
which consists of biochemical, physiological and metabolic
changes (Kim et al., 2016). It starts with leaf tinting caused by
the degradation of chlorophyll (Delpierre et al., 2016). Differences
in the timing of leaf senescence and drop out may be large
for tree species. Most of the temperate lowland tree species
start senescence in the second part of October, e.g. linden (Tilia
cordata Mill.), oak (Quercus robur L.), birch (Betula pendula Roth)
or hornbeam (Carpinus betulus L.), while alder (Alnus glutinosa
(L.) Gaertn.) only colours in the second part of November and
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December (Panchen et al., 2015). Leaf senescence is related to
the leaves’ age; however, environmental factors or stresses may
advance the process (Kim et al., 2016).

Some earlier studies examined the influence of phenology on
tree species recognition. Wolter et al. (1995) and Mickelson et al.
(1998) applied Landsat time series from different seasons and
compared the results of classifications for single-date images
with the results for stacked multitemporal ones. Wolter et al.
(1995) obtained a classification accuracy of 80.1 per cent for
the layered multitemporal image, whereas it was not possible to
classify dominant species of the research area using single date
images. In the work of Mickelson et al. (1998), spring and autumn
data were found potentially more useful to classify forest types
than the summer ones, however, combining the three datasets
resulted in the best accuracy (OA: 78.9 per cent). Both studies
compared images from different years. The authors consider
different acquisition years as a disadvantage and assume that
intra-annual data could give better results (Wolter et al., 1995).
Intra-annual datasets were analysed in Key et al. (2001) and Hill
et al. (2010) who used multispectral airborne data to distinguish
several temperate deciduous species. Key et al. (2001) acquired
CIR and RGB images nine times in 1997 (from May to October) and
Hill et al. (2010)—five times in 2003 (from March to October). Both
studies found the image from October (with accuracy exceeding
70 per cent) as the best due to the peak of autumn colours. Hill
et al., (2010) prove in their work that combining multitemporal
datasets increases the ability to map temperate deciduous tree
species (combining three images gave 84 per cent accuracy,
around 10 per cent higher than the best single one). In contrary,
Key et al., (2001) did not report improved performances when
combining images (selecting one single classification during the
optimal period gave better results than combined datasets) but
claimed that if it is impossible to acquire data at the optimal
time of the year, applying multitemporal images may be a
solution.

Most studies comparing tree species classifications from data
collected during several time points in a year used multispectral
data (Hill et al., 2010; Key et al., 2001). Comparisons based
on multiple hyperspectral datasets are rare. Nevertheless, some
recent studies address this topic (e.g. Richter et al., 2016; Tagli-
abue et al., 2016; Voss and Sugumaran, 2008). All but one of
these studies used data acquired in different years. Richter et al.
(2016) and Voss and Sugumaran (2008) applied two hyperspec-
tral datasets acquired in summer and autumn with a 2 years gap.
When comparing datasets, Richter et al. (2016) obtained slightly
better results for the summer dataset, but Voss and Sugumaran
(2008) did not find notable differences (overall accuracy (OA)
equalled 56 per cent in autumn and 57 per cent in summer).
Meaningful improvement was observed when the classification
was accomplished using the two stacked datasets (Richter et al.,
2016). Forzieri et al. (2012) applied datasets acquired in winter
and autumn with a 1-year time gap. They performed a land
cover classification including seven classes of tree species. Octo-
ber data were found slightly more useful than the winter ones
(87 per cent compared to 83 per cent). A study by Tagliabue
et al. (2016) was the only one to use an intra-annual dataset,
acquired in spring and autumn. They classified five tree species:
hornbeam, linden, pine, sessile and pedunculate oak. The classi-
fication performed on spring data gave a higher accuracy (59.5

per cent) than autumn (48 per cent), but clearly, the highest
results were obtained for the combined dataset: 74.4 per cent
(Tagliabue et al., 2016). Generally, summer data were found to
give slightly better results than the autumn ones, when hyper-
spectral data were applied (e.g. Richter et al., 2016; Tagliabue
et al., 2016), but spring or autumn data were found more efficient
when multispectral data were used (Hill et al., 2010; Key et al.,
2001).

In addition to the influence of phenology, other properties
may affect the ability of a classification workflow to classify
individual trees to the correct species. In the current state-of-
the-art, very few studies investigated the properties of misclas-
sified trees. One of the few exceptions is the study of Leckie
et al. (2005) who examined the classification performance in
old-growth stands, taking into account shadowed, unhealthy
and odd trees. In all of these groups, higher error rates were
observed as compared with the other classes of trees (Leckie
et al., 2005). Korpela et al. (2014) assumed that misclassification
of individual trees may be traced back to erroneously calibrated
reflectance or directional reflectance anisotropy. However, they
found that up to 70 per cent of reflectance variance in the near-
infrared is caused directly by the tree crown structures of the
individual trees. It can furthermore be assumed that smaller
trees are generally harder to classify as their species-specific
spectral signal may be altered by neighbouring tree crowns or
by the background signal from understorey vegetation and soil.
This problem is likely to be more pronounced at a coarser spatial
grain. Hence, in this study, we examined whether tree height
and crown area differ between correctly and incorrectly classified
tree individuals. Tree height determines if a tree is visible in the
upper canopy captured by the remote sensing images. Crown
area determines what fraction of a pixel is occupied by the
tree. Some earlier studies investigated the possible influence of
tree traits on the classification success (e.g. Ghosh et al., 2014,
Jones et al., 2010). Height features were not found helpful in
species recognition (Ghosh et al., 2014), however, smaller tree
crowns may actually be partly hidden below the taller ones,
which can result in misclassification of those. Similarly, crown
features are known to be species-dependent (Ørka et al., 2009)
and the relation between the size of the average tree and the
applied pixel size was found to influence the classification result
(Fassnacht et al., 2016). The best accuracies were obtained when
the size of a pixel was close to the size of the average crown
(Ghosh et al., 2014), which can differ in differently managed
forests (Modzelewska et al., 2020). Despite the large numbers
of studies focusing on tree species classification and mapping, a
numerical assessment of the size of misclassified trees has to our
knowledge—not been conducted, yet. However, such analyses
are key for an improved understanding of which factors have to
be addressed in the future for further improving our workflows to
classify tree species.

Furthermore, the majority of tree species classification studies
working with multitemporal data, both multi- or hyper-spectral
data, compared data from different years, which was considered
disadvantageous. Some authors underline the need for intra-
annual dataset comparisons. To the best of our knowledge, only
three studies (Hill et al., 2010, Key et al., 2001, Tagliabue et al.,
2016) investigated intra-annual images with only one of them
using intra-annual hyperspectral datasets.
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Thus, the aims of this study are: (1) to examine which of the
investigated hyperspectral images acquired across 1 year (2015)
in three different stages of trees’ phenological cycle (July, August,
October) is optimal for tree species classification; (2) to exam-
ine whether multitemporal hyperspectral datasets improve the
classification performance; (3) to examine whether tree height
and crown area differ between correctly and incorrectly classified
trees.

Materials and methods
Study area
The study area is the Białowieża Forest (BF), in Poland (Figure 1A).
The BF is located in Poland and Belarus in the temperate climate
zone, with Atlantic and continental influences. Around one-third
of the BF lays in Poland (Figure 1B). It is a vast and highly het-
erogeneous, partially protected forest area. The BF consists of
a mosaic of forest communities including coniferous and mixed
coniferous forests, wet deciduous forests, rich mesic deciduous
stands and early successional stands with birch (Betula spp.)
and aspen (Populus tremula L.) (Jędrzejewska and Jędrzejewski,
1998). According to Faliński (1986), the dominant tree species are
oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.), Norway
spruce (Picea abies (L.) H.Karst), Scots pine (Pinus sylvestris L.),
European hornbeam (Carpinus betulus L.), followed by Black alder
(Alnus glutinosa (L.) Gaertn.), small-leaved linden (Tilia cordata
Mill.), Norway maple (Acer platanoides L.), birch (Betula pendula
Roth and B. pubescens Ehrh.) and European ash (Fraxinus excelsior
L.); however, the latter’s share has drastically decreased in recent
years due to ash decline (Miścicki, 2016) and the share of Norway
maple was below 2 per cent according to recent inventory data
and we hence decided to not consider these two species.

Remote sensing data
Hyperspectral data applied in this study were acquired in three
flight campaigns held in 2015: the first, on 2–4 July (early sum-
mer), the second, on 24–27 August (late summer), the third,
on 1–2 October (autumn). All the remote sensing and refer-
ence data used in the study were acquired in the framework
of the LIFE+ ForBioSensing ‘Comprehensive monitoring of stand
dynamics in Białowieża Forest supported with remote sensing
techniques’ project (http://forbiosensing.eu/). From each cam-
paign (each consisting of 40 stripes), data of three flight stripes
were used as the basis for our study (covering 75.5 km2). We
restricted the experiment to this smaller area in order to save
processing time and built upon earlier tree species mapping stud-
ies which already examined the complete dataset but for mono-
temporal acquisitions (Modzelewska et al., 2020). The selected
stripes are representative for the whole area in terms of species
composition and abundant reference information is available
for these areas (Figure 1C). Images were acquired using HySpex
VNIR-1800 and SWIR-384 cameras designed by Norsk Electro
Optics company. At the selected flight height, the HySpex VNIR-
1800 takes images in 182 bands with 2.5 m of spatial resolu-
tion. Its spectral range covers 0.4–1.0 μm, while HySpex SWIR-
384 operates in the spectral range of 1.0–2.5 μm with 5 m
spatial resolution in 288 bands (https://www.hyspex.no/) (Norsk

Elektro Optikk (n.d.). Similar spatial resolution was previously
found sufficient to classify tree species (e.g. Ghosh et al., 2014)
and was also a compromise between data quality and acquisition
cost. The images from the two cameras were combined into 5 m
resolution images in 451 spectral bands by the data provider.
Pre-processing, including PARGE geometric correction based on
GPS/IMU data and atmospheric correction using the MODTRAN5
model, were executed by the data provider (MGGP Aero Sp. z.o.o.).

Airborne Laser Scanning data were acquired using a full-
waveform Riegl LMS-Q680i scanner on 2–5 July 2015. The data
were collected with a footprint size of a laser beam equal to
0.25 m and a maximum scan angle of ±30◦. The average density
of the resulting point cloud is 6 pts./m2. ALS data were used
to generate a digital terrain model (DTM) and a digital surface
model (DSM). On the base of a canopy height model (CHM)
derived by subtracting the DTM from the DSM a segmentation
of individual tree crowns was carried out (Kamińska et al., 2018;
Stereńczak, 2013; Stereńczak et al., 2017). The segmentation
method is based on the assumption that larger trees in the
upper layer of the stand have larger crowns. Therefore, for the
CHM model with a fixed resolution, taller trees were smoothed
with a larger kernel window and smaller trees with a smaller
kernel window. In total, three groups of trees were defined in
terms of their height for coniferous and deciduous species. After
the smoothing, a local maxima approach was used to identify
the tops of trees and a subsequent region growing approach
(starting from the identified treetops, neighbouring cells are
continuously examined according to user-defined rules to decide
for each pixel whether it belongs to the tree crown or not—
the crowns ‘grow’ until no further pixels fulfil the rules) led
to the final tree crown segments. After the crown delineation,
some typical errors were corrected with post-processing routines
in order to improve the segmentation results. The process
is described in detail in previous studies (Stereńczak et al.,
2017, Stereńczak et al., 2020). Evaluation of the results shows
that the method works well for dominant trees in the sample
(Stereńczak et al., 2017). In the case of the classifications based
on hyperspectral data conducted here, only dominant trees were
considered, since the images cannot provide spectral information
of below canopy vegetation. We hence consider the results of
the segmentation approach sufficient for the purposes of this
study.

The tree segments were only used for extracting the training
data and for characterizing the misclassified trees. The classifica-
tion map was derived at the pixel level.

Data Reduction and Feature Selection
In order to reduce the high dimensionality of the hyperspectral
data, a Minimum Noise Fraction (Green et al., 1988) rotation
was applied after mosaicking the three hyperspectral stripes
(stripes were mosaiced in ENVI with use of its Georeferenced
Mosaicking Tool). Based on a visual interpretation of the MNF
bands and the ranked eigenvalues, a total of 15 features were
deemed coherent and informative for use in the final classifi-
cation. The typical approach is to first choose MNF bands with
eigenvalues higher than 1 as bands with lower ones are usually
noisy (Vincheh and Arfania, 2017). Rechecking all bands with
eigenvalues higher than 1, we found that the information in
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Figure 1 Study area. The location of BF in Poland (A), stripes selected for investigation (B) and RGB composite of hyperspectral data with reference
data plotted (C).

some bands was dominated by stripping or illumination effects
and those bands were excluded. The final set of selected bands
contained the following MNF bands: 1, 3, 5, 6–17 (the same bands
for each season).

Reference data
The reference data were acquired during a field campaign con-
ducted between July and September 2015 (simultaneously with

the flight missions). The inventory plots surveyed in the field cam-
paign covered the research area in a regular grid of 500 m. In each
500 m2 inventory plot the positions of all trees were recorded and
several tree metrics and characteristics were collected (i.a. dbh,
height, crown height, species). A visual assessment of whether
the tree can possibly be seen from above was also conducted.
Based on the locations of the trees assessed as possibly visible
in remote sensing images, we visually chose a set of sample
pixels for the classification. To ensure the correct identification
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Figure 2 The ranges of analysed tree traits values (crown area, tree height) for each of the tree species presented in box-whisker plots.

of the location of the trees in the hyperspectral images, we
additionally used an orthophoto-map (0.5 m spatial resolution).
Seven dominant tree species in the BF were considered (the
number of samples in parenthesis): birch (Betula pendula Roth,
90), oak (Quercus robur L., 63), hornbeam (Carpinus betulus L.,
50), linden (Tilia cordata Mill., 94), alder (Alnus glutinosa Gaertn.,
91), pine (Pinus sylvestris L., 101) and spruce (Picea abies (L.) H.
Karst, 118). These species account for an estimated 98 per cent
of all trees in the study area. The number of samples for each
tree species corresponds to its overall frequency in the study area
(more common species were sampled more frequently).

Classification strategy
The classification was conducted using Support Vector Machines
(SVM). A grid search to determine optimal parameters for the SVM
was accomplished separately for each of the time periods and
the stacked image. We applied a fivefold-cross-validation with
25 repetitions. The classification was conducted in R-project (R
Development Core Team, 2015) using the ‘caret’ package.

The SVM classifier (Vapnik, 1998) is a supervised, non-
parametric statistical learning technique, which aims at finding
an optimal hyperplane for solving a class separation problem
(Mountrakis et al., 2011; Pal and Mather, 2005). The optimal
hyperplane is the one that maximizes the distance between the
closest training samples and the separating hyperplane (Melgani
and Bruzzone, 2004). If a linear separability of the two classes
is not possible, the data are mapped into a higher dimensional
feature space via a kernel function (kernel-trick), leading to non-
linearity in the original feature space (Fassnacht et al., 2014).
A radial basis function kernel with parameters: C (representing
a trade-off between complexity and the proportion of non-
separable samples, thus controlling for over and underfitting in
the model) and σ (controlling the shape of the hyperplane) were
used in this study. The applied SVM algorithm is implemented in
R via the library ‘e1071’ (Meyer, 2012). We optimized the C and
σ parameters via the mentioned grid search for each classified
image.

Accuracy assessment
The accuracy of the classifications was assessed using an error
matrix and the following indices: OA, Kappa coefficient (κ),

producer’s accuracy (PA) and user’s accuracy (UA) (Cohen,
1960; Story and Congalton, 1986). To avoid overfitting of the
classification model, independent validation was conducted
by dividing the available reference data into two sets: one for
training the classification model (70 per cent), and the other
for testing the performance (30 per cent). The procedure was
repeated 100 times and mean classification accuracy indices
were obtained. Additionally, the McNemar test was used to
determine whether the difference between the two classification
results was statistically significant (level of significance α = 0.05).

Examination of the misclassified trees
During the iterative classification process, we extracted and
investigated trees that were not classified correctly. A tree was
classified as ‘incorrect’ if it was misclassified more than five times
in the 100 repetitions (5 per cent). For this task, we investigated
segments representing individual trees. Groups of segments
representing misclassified and correctly classified trees were
compared in terms of their size expressed in two tree traits:

1. tree height (based on CHM data)—defined as the highest CHM
pixel value inside the tree segment,

2. crown area derived from CHM (based on single tree detec-
tion)—defined as the horizontal area of the crown segment.

Figure 2 summarizes the range of values for the analysed
tree traits differentiated according to the examined tree
species.

The Mann–Whitney U test was used to determine significant
differences between ‘correctly classified’ and ‘incorrectly classi-
fied’ trees. It was conducted for the examined tree traits (height
and crown area) for each season and species.

Results
Classification results
The resulting tree species maps are shown in Figure 3. All classifi-
cations produced high accuracies (OA ≥ 78 per cent and κ > 0.74)
(Figure 4).

The highest levels of accuracies were obtained for the early
summer acquisition (83–94 per cent OA and 0.80–0.92 κ).
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Figure 3 Classification results—tree species maps obtained for particular seasons (subset presented to enable comparison among seasons).

Autumn produced the lowest accuracies (78–89 per cent OA and
0.74–0.87 κ). The multitemporal dataset classification resulted
in slightly higher accuracies than the early summer ones (84–94
per cent OA and 0.81–0.92 κ). The McNemar test results indicate

significant differences between early summer and autumn
classification results (P-value = 0.01). However, there were no
significant differences between the summer and the other two
acquisitions.
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Figure 4 Overall and Kappa accuracies compared among different terms
applied. Box and whisker plots present the range of accuracies obtained
from the iterative classification with 100 iterations.

Classification accuracy varied between species. Alder is classi-
fied with the highest accuracy (≥83 per cent for both PA and UA
among all seasons), followed by birch (≥78 per cent PA and ≥ 86
per cent UA), spruce (≥86 per cent PA and ≥ 77 per cent UA) and
pine (≥83 per cent PA and ≥ 86 per cent UA). Oak, linden and
hornbeam are classified with lower accuracies (PA ≥ 65 per cent,
≥ 68 per cent, ≥ 45 per cent and UA ≥ 68 per cent, ≥ 68 per cent,
≥ 41 per cent, respectively). Differences between late summer
and early summer or late summer and autumn accuracies are
both rather small (2–3 per cent). A notable difference is the one
between early summer and autumn (∼5 per cent). Particularly
for linden, hornbeam and pine (5–10 per cent of difference for
PA/UA), we observed stronger differences. Coniferous species,
alder and birch are generally classified with higher accuracy.
The results obtained for the stacked multitemporal dataset are
higher than the late summer or autumn ones but do not exceed
accuracies obtained with early summer data (Figure 5). How-
ever, comparing classification results for particular species, the
McNemar test did not indicate significant differences between
each pair of acquisition results (P-value>0.05 for each compared
pair).

Misclassified tree individuals—results
The investigated tree traits show differences between correctly
and incorrectly classified trees for mostly three species: spruce
(in early summer), oak (in late summer and autumn) and in all
seasons for birch (Figures 6 and 7).

The crown areas of correctly classified trees generally span a
large value range, especially for birch, linden and oak (Figure 6).
Misclassified birches, oaks and to a lesser degree spruce show
a tendency towards smaller crown areas as compared to the
correctly classified trees. These differences are significant for
birch during all seasons, for oaks during late summer and autumn
and for spruce in early summer (Figure 6). In all cases, the median
crown area of the misclassified trees was at least 10 m2 below the
median of correctly classified trees for these three species.

Focusing on tree height, in late summer and autumn, the
heights of misclassified trees vary more (for example, in oaks,

the interquartile range is at least 5 m wider). Shorter trees are
misclassified frequently. This can be observed for birches, oaks,
pines and spruces (the difference of median values is up to 10 m).
In alders and lindens, we do not observe differences in height
between the groups of correctly and incorrectly classified ones.
Interestingly, hornbeams are rather misclassified when they are
higher. Statistically significant differences were found for birch in
all seasons, where trees lower than 20 m are classified incorrectly
and the difference of medians of correctly and incorrectly classi-
fied trees is about 10 m. Similarly, in oaks, the height difference
between correctly and incorrectly classified trees is about 6 m
and was found to be significant in late summer and autumn.
Compared to the results for birch, the variation in height of
incorrectly classified oaks is wider (Figure 7).

Discussion
Here, we used three hyperspectral images acquired in different
stages of the growing season (July, August, October) across 1
year (2015) to classify tree species in a heterogeneous tem-
perate forest. We tested for differences in classification accu-
racy between the individual images and whether stacking the
three images improves the classification result. Besides this, we
examined whether tree size, expressed as height and crown area
influences the ability of the classification workflow to classify a
tree correctly.

Our results identified the beginning of July as the best period
to acquire hyperspectral data in order to classify tree species
(highest OA of the three examined time points). One reason
for the higher accuracy obtained in July might be that all the
species have already leafed-out and all but linden have passed
the flowering stage (March–May), but have not started ageing yet
(Delpierre et al., 2016; Tomanek and Witkowska-Żuk, 2008). The
second best results were obtained for August while the worst
results were found for the autumn image. This is somewhat
surprising as we expected that leaf tinting may have a positive
effect on the separability of species. However, former studies
comparing the usefulness of hyperspectral data from different
seasons for classifying tree species, also reported data from June
(Tagliabue et al., 2016), July (Voss and Sugumaran, 2008) or
August (Richter et al., 2016) as better than datasets acquired
in autumn. One reason for the lower accuracies in autumn
may relate to the sun-sensor geometry. Lower sun elevation
in autumn causes longer shadows and reduces the number
of sunlit pixels, which results in an overall lower quality of the
images acquired in October. The negative influence of shadows
for classifying woody species has recently been reported for
very high-resolution UAV data (Lopatin et al. 2019) and may
also affect the data examined here. Furthermore, some of the
trees might have already leafed-off in our particular dataset.
The year 2015 was a very dry year in Poland (Boczoń et al.,
2018; Łabędzki and Bąk, 2015) which may have led stressed
trees to shed their leaves earlier than their typical leaf-shedding
time in late October (Kim et al., 2016). Another reason for
the reduced accuracy of the autumn image may lay in the
variability of the leaf-tinting processes which can vary notable
even within a single species and across small spatial scales
due to differences in site conditions or genetic variations of
the tree species. The influence of environmental variables on
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Figure 5 Producer’s and user’s accuracies for particular species (number of individuals per class in brackets).
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Figure 6 Crown area of correctly and incorrectly classified trees (∗—statistically significant differences based on Mann–Whitney U test).

the timing of leaf senescence processes as observed with remote
sensing data has been reported before (e.g. Wolter et al. 1995).

In comparison to the individual classification results, the
classification using all three images together resulted in higher
accuracies than the autumn or late summer ones and a
similar, slightly higher accuracy than obtained with the best
single dataset—early summer. Key et al. (2001) made similar
observations in their study based on airborne multispectral
data (RGB + NIR). In their case, the multitemporal dataset also
did not outperform the best single dataset. Contrarily, studies
based on multispectral Landsat satellite data reported notably
improved results for multitemporal datasets (e.g. Mickelson et al.
1998, Wolter et al., 1995). These deviating results may partly be

explained with the differences in spatial grain and spectral cov-
erage of the applied datasets. Changes in illumination conditions
are likely to increase the (intra-class) spectral variability in high-
resolution multitemporal airborne datasets like the ones used
in Key et al. (2001). These may cancel out the potential benefit
of increased spectral information provided by the multitemporal
imagery which clearly benefited the Landsat-based studies.

When having a closer look at the traits of the misclassified
trees, we observed clear trends for some of the species. For
birch, the classification produced different accuracies for trees of
different heights and crown areas (Figures 6 and 7). Shorter trees
with smaller crowns were more frequently misclassified than
larger trees. As birch is a species with a generally narrow crown
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Figure 7 Trees height of correctly and incorrectly classified trees (∗—statistically significant differences based on Mann–Whitney U test).

when compared to the other broad-leaved species, birches with
smaller crowns probably ‘disappear’ among other trees’ crowns
and may also suffer more than other species from problems
related to mixed pixels. The median crown area of misclassified
birch trees was found to be below 25 m2, which is less than a
single hyperspectral pixel which supports the assumption that
mixed pixels might have been a problem. Interestingly, birch
has also been a challenging species to classify in boreal forests
where birch is typically the only commonly occurring broadleaved
species (e.g. Dalponte et al. 2013). The authors explained the low
accuracies for birch with the sparse number of samples available
for birch in their study, but the problem of mixed pixels may have
also contributed to the problem.

In early summer, the number of misclassified oak trees is
notably lower than in the other seasons. Particularly oaks with
smaller crowns are misclassified more frequently in late summer
and autumn. One reason for that might be the time of linden’s
flowering, which is in July (Tomanek and Witkowska-Żuk, 2008).
In our study area, oaks grow in stands with lindens and horn-
beams and are most frequently misclassified with those species.
Flowering lindens in July might have increased the spectral con-
trast between the species and thereby helped to correctly classify
even small-crowned or lower oak trees.

Spruce trees’ height and crown metrics significantly influence
the classification results, particularly in early summer. Similarly,
as discussed for birch, spruces also tend to have very narrow
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crowns that do not occupy a lot of space in a pixel. Hence, mixed
pixels might have also been a major problem here. The reason
why this tendency was more pronounced in early summer than in
the other months remains unclear at this point and would require
a more detailed investigation.

Alder, pine, linden and hornbeam trees do not show significant
differences when we compare crown area and tree heights of
correctly and incorrectly classified trees. One reason for that
might be that alder and pine trees are generally classified with
higher accuracies due to their tendency to grow in rather pure
stands in the study area (frequently 90–100 per cent of alder or
pine). In such situations, mixed pixel problems due to other co-
occurring species do not exist. Focusing on pure stands generally
improves classification accuracies as shown by some studies
presenting very high accuracies for woody species classifications
using multi- and hyperspectral datasets (e.g. Adelabu et al. 2013,
Fassnacht et al. 2014). We suppose that for linden and hornbeam
the exactly opposite situation applies. The intermixture in stands
with linden, hornbeam and oak is generally high, which leads
to generally increased misclassification rates in these stands
(Modzelewska et al., 2020). If the rate of misclassification is gen-
erally high even trees with bigger crowns are being misclassified
frequently and hence the differences between the two classes
are less pronounced. In summary—crown metrics explain the
misclassification of individual trees for species that have smaller
crowns (e.g. spruce and birch) and species that tend to grow in
stands with higher intermixture rates (e.g. oaks). Misclassified
trees of species that tend to grow in rather uniform, mono-
specific stands like alder or pine (Modzelewska et al., 2020) show
no clear relation to tree size. Linden and hornbeam do not fit
this categorization, but both species generally occur with lower
frequencies in the study area and suffer from generally lower
classification rates which may be one reason for not finding
clear differences in the crown and height values of the correctly
and incorrectly classified individuals. Hornbeam trees are shade-
tolerant and typically grow in mixed stands dominated by oaks.
They are lower than co-occurring species (Sikkema et al., 2016),
so parts of their crowns can be hidden under other crowns. Linden
is a typical shade-tolerant species that grow in close proximity to
other trees. It usually occurs in dense forests with other decid-
uous species (Eaton et al., 2016). In consequence, their crowns
are often mixed with other species’ crowns, leading to a mixed
spectral signal.

Hence, the factors influencing tree species classification
results are related not only to phenology but also to the particular
species’ traits. The latter can affect the classification even more
than phenology. Our results show that it is worth investigating
the locally optimal season (that appears to be early summer
for central Europe, but certainly may differ for other parts of
the Earth). Implementing multitemporal dataset is also a good
solution, but the result did not outperform the best single dataset
in our study, so we would suggest using the best single one, when
possible. Furthermore, taking into account tree traits can be the
key to avoid some of the misclassification; however, this topic
needs to be investigated more deeply in the future.

Conclusions
Concerning the three examined image acquisition dates, we
found the image from July and the multitemporal stacked

dataset as performing better than images from August or
October. We assume that because each individual hyperspectral
dataset encompasses a huge amount of spectral information,
the added value of multitemporal datasets of hyperspectral
images is not as large as in the case of multispectral images.

Concerning the examined tree traits, we found significant dif-
ferences in tree height and the crown area between correctly and
incorrectly classified trees for birch (in all seasons), oak (in late
summer and autumn) and spruce (in early summer). When one
of the tree traits significantly influenced the species classification,
the other investigated trait was also significant.

Future studies may benefit from actively considering such
findings by for example integrating the crown area actively in
the classification workflow, either as an additional predictor vari-
able in an object-based approach or by conducting separate
classifications for smaller and larger tree individuals. Another
aspect worthwhile to be investigated in future studies is the
neighbourhood conditions of misclassified trees. As discussed
above, it is likely that the species composition of the directly
neighbouring trees have a direct effect on the likelihood of a given
tree to be classified correctly. However, corresponding analyses
are still missing. One reason for this may be that such investiga-
tions would require a full inventory of the location and species
across larger spatially continuous areas which are not available
in many existing datasets. Auxiliary information collected by
unmanned aerial vehicles or the application of synthetic datasets
may be alternatives to approach this research question in future
studies.
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Białowieża Forest World Heritage site

data. IEEE Trans Geosci Remote Sens 51(5), 2632–2645. doi:
10.1109/TGRS.2012.2216272
Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot, S., Rutishauser,
T., et al. 2016 Temperate and boreal forest tree phenology: from organ-
scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25.
doi: 10.1007/s13595-015-0477-6.
Eaton, E., Caudullo, G. and de Rigo, D. 2016 Tilia cordata, Tilia platyphyllos
and other limes in Europe: distribution, habitat, usage and threats. In
European Atlas of Forest Tree Species. J., San-Miguel-Ayanz, D., de Rigo, G.,
Caudullo, T., Houston Durrant, A., Mauri (eds.). Publ. Off. EU, Luxembourg
City, pp. 184–185.
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Kamińska, A., Lisiewicz, M., Stereńczak, K., Kraszewski, B. and Sadkowski,
R. 2018 Species-related single dead tree detection using multi-temporal
ALS data and CIR imagery. Remote Sens. Environ. 219, 31–43. doi:
10.1016/J.RSE.2018.10.005.
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Łabędzki, L. and Bąk, B. 2015 Drought in Poland in 2015 and an assess-
ment of impacts in permanent grassland. Wiadomości Melior. i Łąkarskie
3, 102–106.
Leckie, D.G., Tinis, S., Nelson, T., Burnett, C., Gougeon, F.A., Cloney, E., et al.
2005 Issues in species classification of trees in old growth conifer stands.
Can. J. Remote Sens. 31, 175–190. doi: 10.5589/m05-004.
Melgani, F. and Bruzzone, L. 2004 Estimation of biophysical parameters
from optical remote-sensing images with high-order residues. IEEE Int.
Geosci. Remote Sens. Symp. doi: 10.1109/IGARSS.2004.1368700.
Meyer, D. 2012 Support vector machines. the Interface to LIBSVM in
package. Vienna University of Technology, Vienna, p. e1071.
Mickelson, J.G., Civco, D.L. and Silander, J.a. 1998 Delineating forest
canopy species in the Northeastern United States using multi-temporal
TM imagery. Photogramm. Eng. Remote Sens. 64, 891–904.
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