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1Department of Geomatics, Forest Research Institute, 3 Braci Lesnej St., Sekocin Stary 05-090, Poland
2Department of Forest Management Planning, Dendrometry and Forest Economics, Institute of Forest Sciences, Warsaw University of

Life Sciences (SGGW), 159 Nowoursynowska St., Warsaw 02-776, Poland
3Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada

*Corresponding author Tel: +48227150325; Fax: +48227200397; E-mail:k.sterenczak@ibles.waw.pl

Received 23 April 2020

Airborne laser scanning (ALS) is one of the most innovative remote sensing tools with a recognized important
utility for characterizing forest stands. Currently, the most common ALS-based method applied in the estimation
of forest stand characteristics is the area-based approach (ABA). The aim of this study was to analyse how
three ABA methods affect growing stock volume (GSV) estimates at the sample plot and forest stand levels. We
examined (1) an ABA with point cloud metrics, (2) an ABA with canopy height model (CHM) metrics and (3) an ABA
with aggregated individual tree CHM-based metrics. What is more, three different modelling techniques: multiple
linear regression, boosted regression trees and random forest, were applied to all ABA methods, which yielded
a total of nine combinations to report. An important element of this work is also the empirical verification of the
methods for estimating the GSV error for individual forest stand. All nine combinations of the ABA methods and
different modelling techniques yielded very similar predictions of GSV for both sample plots and forest stands.
The root mean squared error (RMSE) of estimated GSV ranged from 75 to 85 m3 ha−1 (RMSE% = 20.5–23.4 per
cent) and from 57 to 64 m3 ha−1 (RMSE% = 16.4–18.3 per cent) for plots and stands, respectively. As a result of
the research, it can be concluded that GSV modelling with the use of different ALS processing approaches and
statistical methods leads to very similar results. Therefore, the choice of a GSV prediction method may be more
determined by the availability of data and competences than by the requirement to use a particular method.

Introduction
Volume estimation of individual forest stands
Growing stock volume (GSV) has always been a crucial attribute
for sustainable forest management. GSV used to be determined
for relatively large forest units such as blocks or age classes. How-
ever, the knowledge regarding individual stands’ GSV has become
a vital issue in some yield regulation concepts, e.g. Judeich’s
stand method which is dated back to 1870 (Fernow, 2020). In
contemporary forest management such information is used at a
tactical planning stage—in order to design spatiotemporal activ-
ities, as well as at operational stage—to exactly indicate where
and when the designed activities should be executed (Bettinger
et al., 2009). Moreover, characteristics, such as biomass carbon
sequestration, tree species composition and stands condition, are
more or less direct GSV’s derivatives.

Until 1950–1990 (depending on country), the GSV of an indi-
vidual stand was determined by means of the following meth-
ods: complete enumeration (diameter at breast height (DBH)
measurement of all trees), average tree, average acre or visual

assessment. The application of these methods had been inhib-
ited because of introduction of the representative method, ini-
tially without much theoretical grounds (until 1920s). Nonethe-
less, the efficiency trade off between accuracy and financial
contribution still could not be achieved. For instance, in the years
1980–2003, Bitterlich’s angle-count method was being widely
applied in Polish forestry. Standard error of GSV in individual
stands was not estimated. Considering an average scenario of
a stand sampled with five Bitterlich plots, it was expected that
the error of GSV estimation was within the interval of ±35–40 per
cent. That error exceeded the commonly established threshold of
20 per cent for forest-related purposes. Incorporation of airborne
laser scanning (ALS) data enables stand-level GSV determination
(Næsset, 2002; Eid et al., 2004; Gobakken and Næsset, 2008;
Tonolli et al., 2011; Corona et al., 2014; Hill et al., 2014; Kauranne
et al., 2017). During the last years of development of ALS-based
stock inventories lot of efforts has been put into improving both
data-processing approaches and stand-level estimation accu-
racies (Goerndt et al., 2011; Mandallaz, 2013; McRoberts et al.,
2013; Breidenbach et al., 2016).
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ALS-based GSV prediction
ALS has great potential for supporting sustainable forest man-
agement (Wulder et al., 2008). This technology, as one of the
light detection and ranging (LiDAR) applications, has a scanner
on a platform attached to the aircraft during the flight. The LiDAR
scanner works by using light in the form of a laser beam to
measure the distance of the scanner to an object. As a result of
combining the obtained information with data from the aircraft’s
navigation systems, a three-dimensional point cloud (PC) is cre-
ated, which contains detailed information about 3D forest struc-
ture and particularly forest height. ALS is among the most innova-
tive remote sensing tools with a recognized important utility for
environmental studies, including forest stand and tree parameter
extraction (Nelson et al., 1988; Magnussen and Boudewyn, 1998;
Lefsky et al., 1999, 2002; Næsset and Økland, 2002; Andersen
et al., 2006; Straub and Koch, 2011; Wulder et al., 2012; White
et al., 2016). Among the forest inventory parameters estimated
from ALS data, GSV is one of the most common ones.

GSV is often assessed using the so-called area-based approach
(ABA; Næsset, 2002; White et al., 2013; Kauranne et al., 2017). In
some Scandinavian countries, Canada and the US, this method is
operationally used to obtain forest inventory data for managed
forests (Næsset et al., 2004b; White et al., 2013; Næsset, 2014;
Tompalski et al., 2014). ABA uses the empirical relationship
between GSV measured on ground sample plots and ALS-derived
forest attributes for the same plots. The fitted relationship can
be applied to make an inference about the GSV of pixels, stands,
strata or even an entire forest.

An alternative to the ABA is individual tree detection (ITD)-
based method, which aims to detect and delineate single trees
within a defined area and calculates their volume and other
attributes of interest (Straub and Koch, 2011). All ITD approaches
are based on single tree detection algorithms (Hyyppä and Ink-
inen, 1999; Maltamo et al., 2004). Based on the results of the
segmentation—polygons representing single crowns—the areas
of crown segments and their height are used to predict single tree
volumes (Popescu et al., 2003; Holmgren et al., 2012; Stereńczak
and Miścicki, 2012; Miścicki and Stereńczak, 2013).

In the literature, many different ABA approaches have been
described which mostly differ with respect to their ALS data
derivatives being used to develop empirical relationships with
selected stand characteristics. PC metrics derived from the distri-
bution of height and intensity values of single points are the most
commonly used derivatives introduced by Nelson et al. (1988).
This approach has been widely adopted (Næsset, 2002; Næsset
et al., 2004; Eid et al., 2004; Hollaus et al., 2007; Tonolli et al.,
2011; Latifi et al., 2012), and we will refer to it as ABA with point
cloud (ABA-PC). An alternative is to use metrics derived from a
canopy height model (CHM) stored as a raster file. This method
was introduced by Corona and Fattorini (2008) and used in some
other studies (Lindberg and Hollaus, 2012; Corona et al., 2014; Hill
et al., 2014). This approach is also compatible with CHM calcu-
lated from photogrammetric image-based point clouds that are
recently perceived as an alternative data source to ALS data in the
modelling of forest resources (White et al., 2016; Hawryło et al.,
2017). Metrics derived from CHM data are limited to characteriz-
ing canopy surface features but hardly contain information from
sub-canopy elements such as shrubs or understory. We will refer

to this approach as ‘ABA with canopy height model (ABA-CHM)’
in the following.

A third method combines the ABA with ITD algorithms. Here,
characteristics of single trees derived with the ITD approach are
summarized for a given area. At the first stage, single trees are
identified with ITD algorithms applied to ALS data, subsequently,
statistics of the detected tree segments are summarized for a
given area e.g. the sum of maximum heights, mean area of
segments, number of segments (Popescu et al., 2003; Holmgren
et al., 2012; Stereńczak and Miścicki, 2012). We will refer to this
approach as ABA with aggregated individual tree CHM based
metrics (ABA-ITD).

Using any of the introduced ABA methods, it is possible to
estimate forest stand features via a three-step process (Næsset,
2002; Miścicki and Stereńczak, 2013). During the first step, sample
plots are used to develop empirical relationships between metrics
derived from the ALS data covering the sample plots and the
GSV estimates from the field measurements (Næsset, 2002). In
the second step, the developed relationship (statistical model)
is used for the estimation of stand features for the entire area
covered with ALS data. Typically, at this level, the basic unit for the
prediction is a grid-cell with an area corresponding to the area of
the sample plots. In the last step, it is possible to estimate results
for individual stands by aggregating the predicted GSV values of
all grid-cells within a given forest stand.

Statistical methods for GSV prediction with the use
of ALS metrics
The last two decades have seen a large number of studies pre-
senting the use of ALS for GSV predictions. Methods have varied
regarding the number and size of sample plots, ALS metrics
used as predictors, and the applied statistical approaches. The
main statistical approach for developing empirical relationships
between ALS data metrics and the GSV measured on the ground
has been linear or non-linear regressions (Næsset, 2002, 2004a,
2004b; Stereńczak and Miścicki, 2012; Sheridan et al., 2015).
More recently, random forest (RF) has become popular (Yu et al.,
2011; Hyyppä et al., 2012; Latifi et al., 2012, 2015; White et al.,
2014). The most similar neighbour technique is another popular
machine learning alternative (Maltamo et al., 2010; Holmgren
et al., 2012; Vastaranta et al., 2012). Latifi et al. (2015) compared
five different parametric and non-parametric methods, RF, sup-
port vector machines, Gaussian processes, stepwise linear regres-
sion and boosted generalized linear model, and concluded that
the RF performed best. Although comparisons of statistical mod-
elling approaches have been conducted several times, there is a
shortage of studies that have examined different statistical mod-
elling strategies simultaneously with different ABA approaches
for GSV predictions. One exception is the study of Lindberg and
Hollaus (2012) who compared ABA-PC and ABA-CHM methods in
a semi-boreal, spruce dominated forest. In this paper, the best-
fitted model of stem volume was the one obtained using a log–
log regression model that included the variables derived from
0.5 m CHM raster cells.

ALS-based GSV prediction accuracy
Table 1 summarizes earlier studies using ALS data for predicting
GSV. The accuracy of ALS assisted GSV models with no serious
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Table 1 Comparison of minimum RMSE% for GSV prediction accuracy at the sample plot level in selected papers

bias impact reported for ABA-PC varied from 16.7 to 39.8 per
cent for root mean squared error (RMSE) (Næsset, 2004a, Hol-
laus et al., 2007; Tonolli et al., 2011; Vastaranta et al., 2011;
Woods et al., 2011; Lindberg and Hollaus, 2012; White et al.,
2014). According to Bouvier et al. (2015) slightly worse results
are obtained for deciduous forests in comparison to coniferous
stands. These authors report errors equal to 20.6 to 31.4 per cent
for coniferous and deciduous stands, respectively. This tendency
of obtaining better GSV estimated in coniferous stands is also
generally mirrored in Table 1 where studies working in mixed
stands often reported slightly higher errors. For ABA-CHM, the
reported accuracy varied from 31 to 38 per cent (RMSE) for
spruce-dominated forest stands (Lindberg and Hollaus, 2012; Hill
et al., 2014). Root mean square errors reported for ABA-ITD varied
from 10.6 to 20.4 per cent for spruce-dominated forest stands (Yu
et al., 2010; Holmgren et al., 2012; Hyyppä et al., 2012). Hyyppä
et al. (2012) studied the use of integrated ITD and ABA-PC metrics
to improve the GSV estimation of stands. In the same study, the
authors compared the use of ITD and ABA-PC metrics separately,
and found ITD metrics to perform better. Yu et al. (2010) also
reported slightly better results for ABA-ITD than ABA-PC (RMSE
18.55 and 20.90 per cent, respectively).

Study aims
Because of the many methods applied for GSV predictions using
ALS data, it is not obvious how to decide which ABA strategy will
be the most rewarding in European forests. Consequently, the
core objective of this study is to analyse plot-level and stand-
level GSV performances for three different ABA methods, applying

metrics derived directly from the-PC, ITD) and the CHM, and three
different modelling techniques: multiple linear regression with
ordinary least squares (reg), Boosted Regression Trees (BRT) and
RF. We developed models for GSV predictions based on reference
data from 500 m2 field plots and evaluated results using cross-
validation methods at plot level and additional validation data
for 56 forest stands. Finally, an evaluation of four variance esti-
mators used to assess confidence intervals (CIs) for predictions
at the stand-level was carried out.

Materials and methods
Study area
The study was conducted within the Milicz Forest District. This
area is located in the Lower Silesia Province in the southwest-
ern part of Poland (Figure 1). The area of interest is covered by
7574 ha of forest (42 per cent of the total study area). The
dominant tree species in the region are Scots pine (Pinus sylvestris
L.)—75 per cent of forest stands, pedunculate oak (Quercus robur
L.)—11 per cent and European beech (Fagus sylvatica L.)—6 per
cent. Other common species are Norway spruce (Picea abies L.)
and silver birch (Betula pendula Roth). The investigation region is
lowland, and the mean elevation is 125 m above sea level.

Field data
Sample plot inventory

A total of 900 circular sample plots were measured during
the summer of 2015. The sample plots were distributed
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Figure 1 Locations of the sample plots in the Milicz Forest District.

systematically on a regular 350 m grid (Figure 1). The density
of the sample plot network corresponds to that used in the
inventory for the preparation of the forest management plan in
Poland (Bruchwald et al., 2017). Plot sampling intensity is nearly
one plot per 10 ha of stands over 20 years old. On each sample
plot of 500 m2 area, all trees with a DBH greater than 7 cm were
calipered, and their heights were measured using an ultrasonic
hypsometer (Haglöf Vertex IV). The volume of each tree was
calculated based on a general volume formula (Equation (1))
used by the Polish State Forests (Bruchwald et al., 2000):

V = BA ∗ H ∗ F (1)

where: V is a merchantable volume of a single live standing tree,
BA is a basal area derived from DBH measurements, H is the
height of a single tree and F is a stem form factor derived from
species related allometric equations.

The GSV of an individual ground sample plot was calculated as
the sum of the volumes of all the trees within the plot and scaled
to an area of 1 hectare. The descriptive statistics of the sample
plot data is provided in Table 2.

Based on polar coordinates, the locations of the trees
trunks and their tops relatively to the sample plot centre were
determined. Plot centre coordinates were positioned using L1/2
global positioning system (GPS) and globalnaja nawigacionnaja

sputnikovaya sistema (GLONASS) global navigation satellite
system (GNSS) receivers. For that purpose, two receivers were
used: Stonex S9 and Topcon Hiper Pro. Their external antennas
were at least 2.5 m above ground level. Raw GNSS observations
were acquired for at least 25 min. To achieve sub-metre precision
of plot coordinates data from the three nearest ASG-EUPOS
network base stations were used in the post-processing.

Control forest stand inventory

In addition to the data obtained from the 900 ground sample
plots, GSV of 56 forest stands were inventoried in summer and
autumn 2015. The forest stands were selected according to
age and tree species composition (Table 3). Stand areas ranged
between 0.6 and 2.9 ha (mean = 1.2 ha).

In each stand, all trees with a DBH greater than 7 cm were
callipered. A minimum of 20 heights for each species-age layer in
every control stand was measured in order to estimate the local
DBH-height relationship using Näslund’s formula (Näslund, 1929;
Bruchwald and Rymer-Dudzińska, 1981). Heights were measured
using an ultrasonic hypsometer (Haglöf Vertex IV). The volume of
each tree was obtained with the same formulas (Bruchwald et al.,
2000) as those used for trees in the sample plots. The total GSV
of each stand was calculated as the sum of all individual trees’
volumes and scaled to an area of 1 hectare.
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Table 2 Descriptive statistics of the GSV values and species proportion based on data from the sample plots (Stereńczak
et al., 2018). The dominant species have been chosen based on the majority percentage share of trees volume on each
sample plot

Table 3 Descriptive statistics of the GSV values and species proportions based on data from the control forest stands. The
dominant species were chosen based on the majority percentage share of trees volume on each forest stand

ALS data
The ALS data were acquired in August 2015 using a Riegl
LMSQ680i laser scanning system operating at a pulse rate of
360 kHz. The flight altitude was ∼550 m above ground level,
and the field of view was 60 degrees. The average density
of laser echoes over the entire study area was 10 pts m−2. A
digital terrain model (DTM) with a spatial resolution of 0.5 m was
generated in Terrasolid software by triangulation from points
classified as ground. The DTM was used to normalize the ALS PC
heights to above ground level. From the normalized PC, a CHM
was generated with the same spatial resolution as the DTM using
the maximum return height in each given cell and the pit-free
algorithm proposed in Erfanifard et al. (2018) to fill CHM pits.
Tree crowns segmentation was performed using an algorithm
described in previous work (Stereńczak et al., 2020). The method
is based on the processing of the CHM model with a combination
of Gaussian filtering with a pouring algorithm (Soille, 1999) and
an additional self-calibration procedure for trees from different
height ranges.

ALS-derived metrics assessment
To calculate ALS-derived metrics, the CHM, normalized PC and
single tree segments were clipped to the spatial extent of the

sample plots (Supplementary Figure 2). ALS metrics character-
izing every sample plot regarding the following three main ABAs
were calculated:

• ABA-PC—area-based approach with point cloud metrics,
• ABA-CHM—area-based approach with CHM metrics, and
• ABA-ITD—area-based approach with aggregated individual

tree CHM based metrics.

Among the metrics obtained directly from an ALS PC or a CHM,
we can distinguish variables related to height, density and other
variables connected with a single tree. In the ABA-PC approach,
the following PC metrics types were extracted: mean heights,
height percentiles and return ratios, including canopy densities
and fractions computed as a proportion of the first or last echoes
(Næsset et al., 2004; Gobakken and Næsset, 2008; Gobakken
et al., 2012). For ABA-CHM, because of the nature of the data,
namely the CHM, which is the raster representing the highest
reflections of the PC, only variables related to the heights of the
canopy surface within a sample plot were acquired.

For ABA-ITD, metrics related to a single segment were also
used. All segments with a centroid inside a sample plot and a
maximum height from CHM pixels inside the segment of above
7 metres were used (Stereńczak and Miścicki, 2012). Then single
plot metrics, such as minimum, maximum, sum, average and
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Table 4 All combinations of methods with their acronyms used in this paper

Abbreviations Meaning

ABA An area-based approach
ABA-CHMBRT CHM based ABA with boosted regression trees modelling approach
ABA-CHMreg CHM based ABA with multiple linear regression with ordinary least square modelling approach
ABA-CHMRF CHM based ABA with Random Forest modelling approach
ABA-ITDBRT ITD based ABA with boosted regression trees modelling approach
ABA-ITDreg ITD based ABA with multiple linear regression with ordinary least square modelling approach
ABA-ITDRF ITD based ABA with Random Forest modelling approach
ABA-PCBRT Point cloud-based ABA with boosted regression trees modelling approach
ABA-PCreg Point cloud-based ABA with multiple linear regression with ordinary least square modelling approach
ABA-PCRF Point cloud-based ABA with Random Forest modelling approach
BRT boosted regression trees modelling approach
CHM Canopy height model
ITD Individual tree detection
PC Point cloud
reg Multiple linear regression with ordinary least square modelling approach
RF Random forest modelling approach

standard deviation of the minimum or maximum height value
of the CHM pixels inside the segment were calculated from all
segments within the sample plot. In this study, they are referred
to as ITD metrics. All metrics were calculated in the R (www.r-
project.org) environment using code based on the ‘rgdal’ library
version 1.2-8 (Bivand et al., 2017).

The above-mentioned metrics were also calculated for all
forested square cells in a regular grid (wall-to-wall square grid)
covering the entire study area. The area of a single grid cell
(500 m2) was equal to the area of a sample plot. The wall-to-wall
square grid was intersected with forest stand boundaries before
metrics calculation to allow stand-level summaries of GSV. For
grid cells that have been intersected with stand boundaries, area-
related statistics (e.g. the sum of tree segments heights) have
been recalculated to maintain their relative value corresponding
to the reduced area.

Model development
To estimate the GSV, we compared three regression models:
multiple linear regression with ordinary least squares (reg), BRT
and RF, in combination with three ABA methods: ABA-PC, ABA-
CHM and ABA-ITD, at the sample plot as well as at the forest
stand level (Figure 2). A complete list of combinations of methods
with their acronyms used in this paper is provided in Table 4.
Variables linked to a specific ABA method were used exclusively
for that method and were not considered elsewhere.

Multiple linear regression
One of the most commonly used parametric modelling approach
for ABA estimation of forest stand features is multiple linear
regression with ordinary least squares (OLS) (White et al., 2017).
In the study, we used this method as a representative of para-
metric methods.

Different numbers of variables were used for each of the three
ABAs. To reduce a high initial number of potential predictors, a

preliminary exclusion routine for all variables was applied. In the
first step, the coefficients of variation (CVs) of each predictor were
calculated and a correlation matrix was created in order to iden-
tify predictors correlated with plot volume and collinearity among
predictors. Based on a trial and error process to remove variables
that are either weakly differentiated or weakly correlated with
GSV, the threshold for CV was set at 20 per cent and for the
correlation coefficient to 0.5. Variables with CV and correlation
coefficient smaller than the given limits were removed in the first
step. We also employed other methods to select variables, such
as stepwise regression. We decided to apply Forward Selection,
which starts with no candidates in the model and at each step
select the candidate variable which gives the most statistically
significant improvement of the fit. This method is often used to
pre-search for potential variables when a large group of variables
exists, and multicollinearity is a problem. Afterwards, an expert-
based evaluation of selected candidate predictors was carried
out in order to select the most suitable set of predictors of plot
level volume. Our interpretation of explanatory variables to use in
OLS regression was based on the individual tree volume equation
((1)). There are abundant predictors which can represent the
height (H) in Equation (1), but LiDAR-derived attributes that can
substitute for the BA and stem form factor (F) are not as obvious.
We expected crown features such as canopy density and vertical
crown structure to be related to BA and F and serve as stand-
ins for linear regression. In conclusion, choosing the best set of
variables for the multiple linear regression model was supported
by in-depth exploration and authors’ expert knowledge.

Following the selection of predictors, a multiple regression
modelling method was applied using the R ‘stats’ library version
3.6.1 (R Core Team, 2019). To validate the results, we decided
to perform iterative splits in training (70 per cent) and validation
data (30 per cent) with 900 iterations. It means that each time a
random subset representing 70 per cent of the sample was used
for training, and the remaining 30 per cent was used to validate
the model. Predictions on a sample plot level and for each cell in
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Figure 2 Simplified schema of the modelling procedure.

the wall-to-wall grid were performed at each iteration. After the
full process, averaging the predicted values was applied to obtain
the final results.

Non-parametric methods—BRT and RF
BRT and RF are machine learning techniques used in regression
and classification problems. These methods are based on the
construction of decision trees and create a prediction model in
ensemble form. In both non-parametric techniques, all available
variables were used to fit models. To build BRT models, we used
the R ‘gbm’ package version 2.1.3 (Ridgeway et al., 2017) with
internal cross-validation (Elith et al., 2008). In order to adapt the
algorithm to our data and goals, the following values of tree basic
parameters (Elith et al., 2008) were selected: bag.fraction = 0.75,
tree.complexity = 7 and learning.rate = 0.4. These values were
selected by a parameter tuning via a grid search. To compute
the relative influence of each variable in BRT models the ‘gbm’
package with the default approach described in Friedman (2001)
was used. For RF models, we used the ‘randomForest’ package
version 4.6–12 in the R environment (Liaw and Wiener, 2002).
In that library, Breiman’s RF algorithm was implemented, in
which each tree is trained with a different bootstrap sample of
the complete dataset (Breiman, 2001; Liaw and Wiener, 2002).

For our purposes, the number of randomly selected predictors
(mtry) was set to its default value of 1/3 of all predictors for each
method. The number of trees was constant and equal to 500. To
measure variable importance in RF models we used the ‘mean
decrease in accuracy’ algorithm developed in the same package
and then divided by the sum of all variable importance to create
relative values. The most important variables for final models
were selected on the basis of scree plot analysis. To validate the
results of each model, we used the same procedure and the
same holdout observations as for multiple linear regression, also
in an iterative manner.

Forest stand-level GSV
For a forest stand (Figure 3A), the mean value of GSV (Figure 3D)
was calculated as a weighted mean of all single grid cell predic-
tions of GSV within the boundaries of the forest stand (Vi) for ABA
methods (Figure 3B and C). The area of a cell (pi) inside the forest
stand of interest was used as a weight, and the mean GSV over
the whole stand was computed according to Equation (2):

ˆGSV
[
m3ha−1

]
=

∑n
i=1 pi · V̂i∑n

i=1 pi
(2)

636

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/94/5/630/6219253 by guest on 11 April 2024



Modelling growing stock volume of forest stands

Figure 3 The visual presentation of the two-step GSV estimation procedure at the forest stand level. Figures A and B present forest stands (black lines)
and wall-to-wall square grid on CHM background. Figure C depicts the results of model predictions for each wall-to-wall square grid cell. Finally, figure
D contains information for the entire forest stand obtained from the averaged grid cell prediction results.

Sample plot and forest stand-level accuracy assessment
Various data were used to assess the accuracies and precisions
of all the methods applied in this study. The first stage involved
a comparison at the sample plot level. Next, accuracy at a forest
stand level was determined. For that purpose, 56 control forest
stands were used with their GSV estimated based on the field
survey. To evaluate results at each level, we used the follow-
ing statistics: RMSE and RMSE%, mean absolute error (MAE and
MAE%), Bias (BIAS and BIAS%) and the coefficient of determina-
tion (R2 and adjR2). Regarding R2, the value was calculated for BRT
and RF in the same manner as for multiple linear regression. We,
therefore, called them pseudo-R2 to prevent misunderstanding.
In case of the multiple linear regression model also adjR2 was
calculated to adjust for the number of terms in the model. The
equations for the statistics are presented in Table 5. Finally, Stu-
dent’s t test was used to ascertain the significance of differences
between the predicted and observed GSV both at the sample plot
and forest stand level. This test can determine if the means of two
datasets, in our case the predicted and observed, are significantly
different from each other. In the t test, the test statistics follow
Student’s t-distribution when the population standard deviation
is unknown.

Forest stand-level error
Prediction modelling strategy by multiple regression uses a CI
based on the model describing the dependence of the GSV vari-
able on the value of the auxiliary variables X (Breidenbach et al.,

2016; Magnussen, 2017) of the form (Equation (3)):

GSVi = f (Xi, β) + εi, ε ∼ N
(
0, σ 2

ε

)
, (3)

where: i = {1, . . . ,n} are observation indexes (in our research
n = 900 is the number of sample plots), X = [1 x1 . . . xp] is an
n × (p + 1) design matrix, p is the number of auxiliary variables, β
is a vector of model parameters to be estimated, εi is a random
residual and σ 2

ε is a residual variance.
The CI for mean GSV is given by Equation (4):

CI
(

GSVm

)
= GSVm ± tα,n−(p+1)Sm (4)

where GSVm is the mean estimate at the forest stand level, m is
the number of the forest stand, tα,n−(p+1)is the upper α point of
Student’s t distribution with n − (p + 1) degrees of freedom and
Sm is the estimate of the standard deviation of the regression-
synthetic estimator for the selected forest stand. In this study the
CI for GSVm was determined in four ways using different forms of
Sm presented in Equations (5–8).

The first form is the variance of the regression-synthetic esti-
mator ˆGSVm = XT

mβ̂ defined by Rao (2003):

V̂ar1

( ˆGSVm

)
= xT

0Σ̂x0 = 1
N2

m

∑Nm

i=1

∑Nm

j=1
ˆcov

(
μ̂i, μ̂j

)
, (5)
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Table 5 Statistics used in the accuracy assessment and model fit at the sample plot level and stand level

Sample plot level Forest stand level

pseudo − R2 = 1 −
∑n

i=1

(
Vi−V̂i

)2

∑n
i=1

(
Vi−VI

)2 pseudo − R2 = 1 −
∑N

j=1 pj·
(

Vj−V̂j

)2

∑N
j=1 pj·

(
Vj−VII

)2

adjR2 = 1 −
(

1−R2
)(

n−1
)

n−m−1

(
∗

)
adjR2 = 1 −

(
1−R2

)(
N−1

)
N−m−1

(
∗

)

RMSE =

√ ∑n
i=1

(
Vi−V̂i

)2

n RMSE =

√√√√ ∑N
j=1

(
pj ·

(
Vj−V̂j

)2)
∑n

j=1 pj

RMSE% = RMSE
VI/II

· 100%

MAE =
∑n

i=1|Vi−V̂i|
n MAE =

∑N
j=1

(
pj ·

∣∣∣Vj−V̂j

∣∣∣)∑N
j=1 pj

MAE% = MAE
VI/II

· 100%

BIAS =
∑n

i=1

(
Vi−V̂i

)
n BIAS =

∑N
j=1

(
pj ·

(
Vj−V̂j

))
∑N

j=1 pj

BIAS% = BIAS
VI/II

· 100%

(∗) Only for multiple regression where: ‘/’—means ‘or’ (with respect to the level—sample plot or stand), V̂i/j—predicted GSV value for a sample
plot/stand, Vi/j—ground reference GSV value for a sample plot/stand, VI/II—arithmetic mean of the ground reference GSV values for the sample
plots/stands, n—number of sample plots, m—number of predictors in the model, N—number of stands, and pj—an area of stand j.

where m = {1, . . . , M} and M is the total number of forest stands,
i = j = {1, . . . , Nm} are grid indexes, Nm is the number of grid cells
inside selected forest stand, xT

0 = [1 x1 . . . xp] is a means vector
of the auxiliary variables for grid cells in a forest stand and Σ̂ is
the estimated covariance matrix of the parameter estimates of
the multiple regression models.

The variance estimate V̂ar1(
ˆGSVm) depends only on the

explanatory variables and the parameter covariance matrix.
Ignoring the residual error variance in Equation (5) may not be
advisable (McRoberts et al., 2014). The residual variance can be
added to the variance of the synthetic estimator (Prasad and
Rao, 1990) as in Equation (6). This way we get the second form
of Sm.

V̂ar2

( ˆGSVm

)
= V̂ar1

( ˆGSVm

)
+ σ̂ 2

ε

Nm
. (6)

In formula presented in Equation (6), we have assumed a
homogeneous error variance. Allowing for heteroscedasticity we
get the third form of Sm (Equation (7)):

V̂ar3

( ˆGSVm

)
= V̂ar1

( ˆGSVm

)
+ 1

N2
m

∑Nm

i=1
σ̂ 2

i , (7)

where σ̂ 2
i = σ̂ 2

ε wi is estimated from the model residual variance
using appropriate weights. In our research, regularly spaced 500
m2 ground sample plots were used to calibrate the multiple
regression model. For example, if the grid cell surface was 100
m2, then the weight wi should be 0.2.

In the case of heteroscedasticity and autocorrelation at the
forest stand level, the estimator of variance and our fourth form

of Sm becomes (Equation (8)):

V̂ar4

( ˆGSVm

)
= V̂ar1

( ˆGSVm

)
+ 1

N2
m

∑Nm

i=1

∑Nm

j=1
σ̂iσ̂j�̂ij, (8)

where σ̂i and σ̂j are standard deviations for i and j grid cells, and �̂ij
is the estimated correlation between two grid cells residuals i and
j because of spatial autocorrelation. Assuming stationary and
isotropic Gaussian process, we adopted the following correlation

function: �̂ij = exp
[

−
( sij

�̂

)2]
, where �̂ is the estimated range

and sij is the Euclidean distance between two grids (Pinheiro and
Bates, 2002).

In the case of non-parametric BRT and RF methods ‘bootstrap-
t’ CI was used (Hesterberg et al., 2003). The bootstrap-t method
uses the bootstrap to estimate the standard error of estimate and
is recommended if the bootstrap distribution is approximately
Gaussian with small bias (Chernick and LaBudde, 2011). Each
forest stand (m = {1, . . . , M}) consists of a specified number of
grid cells (i = {1, . . . , Nm}). To obtain bootstrap mean xB

m, the BRT
and RF prediction procedures were repeated 900-times and we
obtained 900 grid means xB

k (k = {1, . . . , 900}).
We assumed that the distribution of grid means is approxi-

mately Gaussian on the basis of the central limit theorem. The
100(1 − α)% bootstrap-t CI for mean GSV is defined as follows in
Equation (9):

CIbootstrap−t

(
xB

m

)
= xB

m ± tα,k−1SB
m, (9)

where xB
m is the mean of the bootstrap sampling distribution,

tα,k−1 is the 100(1-α) percentile of a Student’s t-distribution
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with k-1 degrees of freedom, k is the number of bootstrap
samples and SB

mis the bootstrap estimate of the standard

deviation. The variance of the bootstrap-t estimator ˆGSV
B

m = xB
m

is the bootstrap estimate of the variance (Equation (10)):

V̂ar
B
1

( ˆGSV
B

m

)
= (

SB
m
)2, (10)

The variance estimator with the residual homogeneous error
variance added has the form (Equation (11)):

V̂ar
B
2

( ˆGSV
B

m

)
= V̂ar

B
1

( ˆGSV
B

m

)
+ σ̂ 2

ε

Nm
. (11)

Allowing for heteroscedasticity we get (Equation (12)):

V̂ar
B
3

( ˆGSV
B

m

)
= V̂ar

B
1

( ˆGSV
B

m

)
+ 1

N2
m

∑Nm

i=1
σ̂ 2

i . (12)

Taking into account autocorrelation, the equation looks as
follows (Equation (13)):

V̂ar
B
4

( ˆGSV
B

m

)
= V̂ar

B
1

( ˆGSV
B

m

)
+ 1

N2
m

∑Nm

i=1

∑Nm

i=1
σ̂iσ̂j�̂ij. (13)

Results
Predictors and models
The metrics selected in the final multiple linear regression model
for each of the three ABA methods are presented in Table 6.

Depending on the ABA method, different linear models were
used (Equations (14–16)):

ABA−PC : ˆGSV = b0 +b1 · (qdrcM · pFRAMe
)+b2 ·prcntgAlMe2 +b3 ·dLEAbH9, (14)

ABA − CHM : ˆGSV = b0 + b1 · hCHM + b2 · hp45 + b3 ·
(

hCHM · hp45
)

, (15)

ABA−ITD : ˆGSV = b0+b1 ·hmax
2+b2 ·

√∑
hmax+b3 ·

(
hmax

2 ·
√∑

P

)
+b4 ·

√∑
P

(16)

where: ˆGSV—predicted GSV; b0, . . . ,b4—model parameters.
Abbreviations of variables are presented in Table 6.

To compare the relative contribution of each independent vari-
able in the prediction of the dependent variable, the standardized
regression coefficient (beta coefficient; ß) was used (Schroeder
et al., 1986). They have been standardized so that the variances
of dependent and independent variables are equal to 1 and that
is why they can be compared. Results are presented in Table 7.

The ABA-PCreg model was built on the base of four point-cloud
features (Table 6). Three were related to canopy density and their
vertical structure and one was related to the height of the trees.
In the final model (Equation (14)) an interaction of a height-
related variable and canopy density metric (qdrcM · pFRAMe)

was used. This interaction has the biggest contribution in the
prediction (Table 7) and was intended to refer to the traditional
way of determining GSV, i.e. BA ∗ H.

Additionally, the use of a quadratic rather than arithmetic
mean in the case of height variables may be more appropriate
because it gives greater weight to high points which more likely
represent a tree crown than lower points in the same cloud.

Two features were used in the ABA-CHMreg method (Equation
(15)). The first predictor (hCHM) is directly related to the height of
the trees. The second (hp45-CHM) is associated simultaneously with
the horizontal and vertical structure of the stand (canopy density
and stand structure). In addition, the product of both features
was also used, which makes it possible to take into account that
in stands with higher trees a change in coverage by one unit
causes a greater change in GSV than in stands with smaller trees.

In the case of ABA-ITDreg, three features were used (Equation
(16)): hmax directly relates to the height of the trees,

∑
P relates

to crown cover (refers to BA) and
∑

hmax relates to the density
of the trees and their height. The sum of the trees’ height fulfilled
the function of correcting the estimated GSV value. Its value does
not change much with the growth of a given stand, because the
higher the trees are, the smaller their number per unit of area.
The interaction between hmax

2
and

√∑
P was used so that it was

possible to correctly estimate GSV for stands with a full variety
of height and canopy cover and this predictor has the biggest
contribution in the prediction (Table 7).

A similar set of features, which explained the greatest variabil-
ity in GSV, was obtained using the BRT and RF methods (Table 8).
In the case of the ABA-PC method, the most important were the
features related to average tree heights and stand structure (tree
height percentiles and mode). For the ABA-CHM method, only
two features were considered the most important and they are
the same variables as selected for the multiple linear regression
model. The final ABA-ITD model is also dominated by features
directly related to the heights of the trees (hmax), crown base
height (hmin) and canopy cover (P).

Sample plot level accuracy
Results from the accuracy assessment of the GSV predictions with
the three ABA approaches and prediction models are shown in
Table 9. Regarding Student’s t test, the differences between the
predicted and observed GSV values were not statistically signifi-
cant (P > 0.05) for any of the nine combinations of ABA methods
and models. The best results in terms of RMSE were achieved
for the ABA-PC and ABA-CHM methods. The worst results were
shown for ABA-ITD, but it is still close to the results obtained from
the two other methods. Considering the global performance of
the three ABA approaches, the lowest amount of estimated BIAS
was for the ABA-CHM methods (from −0.01 to −0.16 per cent),
whereas the largest bias estimates came with ABA-PC (up to—
0.49 per cent). Similarly, given only the performance of the three
statistical modelling methods, multiple linear regression-based
models have the lowest BIAS (from −0.01 to −0.09 per cent),
whereas RF-based models have the largest (from −0.16 to −0.49
per cent). Overall, the BIAS estimates never exceeded −0.49 per
cent for any of the nine variants.
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Table 6 Variables selected for the multiple regression models. Symbols are described in the table

Method Variable Meaning Equation/Reference

ABA-PC qdrcM the quadratic mean of height values of all returns over a
sample plot

√
h2

1+h2
2+···+h2

n
n

pFRAMe ratio: number of 1st returns above the mean point height
of a plot, divided by the number of all 1st returns over a
sample plot

n1ˆmean
n1

prcntgAlMe ratio: number of all returns above the mean point height
of a plot, divided by the number of all returns over a
sample plot

nˆmean
n

dLEAbH9 ratio: the number of last returns above the 9th height
stratum divided by the number of all last returns, where
the height stratum consists of returns found in a
specified height interval

Næsset and Gobakken (2005)
and Gobakken et al. (2012)

ABA-CHM hCHM mean of height values from CHM cells over a sample plot h1+h2+···+hn
n

hp45-CHM 45th percentile from the height values of all CHM cells
over a sample plot (i denotes percentile rank)

xi + prange
fi

((
i·n/100

)
−n

100 − F−1

)

ABA-ITD
∑

hmax the sum of the maximum height values of all individual
segments

∑n
i=1hmaxi

∑
P the sum of the areas of all individual segments

∑n
i=1Pn

hmax the average maximum height of all individual segments hmax1 +hmax2 +···+hmaxn
n

n—number of all returns (echoes) or number of CHM pixels or number of individual segments over the sample plot (respectively to the method),
hn—height value of a single return or CHM pixel value (corresponding to the method), n1∧mean—number of 1st returns above the mean point height
of a plot, n1—number of 1st returns over a sample plot, n∧mean—number of all returns above the mean point height of a plot, xi—lower bound of
the interval in which ith percentile was found, prange—range of the interval of the ith percentile, fi—frequency of the interval of the ith percentile,
fi—cumulative frequency of the interval preceding the interval where the ith percentile was found.

Table 7 The beta coefficients (ß) for regression models

Approach Predictors β coefficient

ABA-PC qdrcM · pFRAMe 0.95
prcntgAlMe2 −0.43
dLEAbH9 0.14

ABA-CHM hCHM 0.90
hp45−CHM −0.36
hCHM · hp45−CHM 0.31

ABA-ITD hmax
2 −0.44√∑
hmax 0.20

hmax
2 · √∑

P 1.22√∑
P −0.10

When we plotted the predicted plot-level GSV values against
the observed values, a very similar pattern emerged for all nine
combinations of ABA methods and models (Figure 4). Underesti-
mation existed for high GSV reference values, so predicted values
were smaller than observed ones. For forest stands with GSV
less than 150 m3ha−1, the predicted values were overestimated.
Such tendencies can be observed regardless of the method.
Overall, the ABA-PC, ABA-CHM and ABA-ITD methods paired with
any of the three regression models produced good predictions

of GSV, with almost identical ranges (Figure 4). ABA-PCreg has
the most similar probability distribution of a GSV to field-based
GSV (Figure 5). Residual magnitude increases with GSV (unequal
variance), which is typical in forestry-related allometric modelling
(Figure 4).

Stand-level accuracy and estimation error
The full results for the control forest stand level are presented
in Table 9 and Figure 6. Based on Student’s t test, significant
differences were found between the observed and predicted
GSV values only for the ABA-PCRF method. All the ABA methods
generated a small overestimation at the forest stand level. The
largest systematic errors occurred for ABA-PCRF (6 per cent), and
the smallest was for ABA-CHMreg (1 per cent; Figure 6). The forest
stand-level RMSE% were, as a rule, lower than the plot-level
RMSE%. This result, because of averaging of grids values within
particular stands, is in compliance with both the central limit
theorem and practical forest inventory research (Fassnacht et al.,
2018; Stereńczak et al., 2018; Lisańczuk et al., 2020).

The percentage of control stands with reference GSV inside the
CI for mean GSV heavily depended on the method to estimate
variance V̂ar1, V̂ar3, V̂ar3 and V̂ar4 (Table 10). The CI for GSV esti-
mates was widest for V̂ar4, which was illustrated for ABA-PCreg
(Figure 7).
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Figure 4 Observed vs predicted GSV at the sample plot level.

Based on the above analysis (Table 10), it can be concluded
that only the CI calculated on the basis V̂ar4

( ˆGSVm

)
reflects the

actual error of estimating the GSV on a forest stand. In all cases,
this CI covered between 91 per cent and 95 per cent of GSV for
the forest stand level and is closest to the 95 per cent CI for the
error.

Based on results for all forest stands in the Milicz Forest District
and using Equation (8), it can be noticed that the variance and,
consequently, the error decreases with the increase in the forest
stand area in an inversely proportional manner. The error is also
dependent on GSV value. The lower the GSV value, the larger the
percentage estimation error (Figure 8).

642

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/94/5/630/6219253 by guest on 11 April 2024



Modelling growing stock volume of forest stands

Figure 5 Probability density function graphs for the nine ABA approaches in comparison to reference data at the sample plot level (the mean,
standard deviation, minimum, and maximum values from the reference data are shown in the left top corner, and the relevant statistics for particular
alternatives are provided in the right corner of the histogram). The density default function from R stats package was used to compute kernel density
estimates.

Discussion
Comparison of prediction methods and ABA approaches
Regarding the difference in the GSV estimation, it was difficult
to choose the best prediction method. RF and BRT predictions
may diverge slightly from one replication to another (Latifi et al.,
2012). Therefore we carried out the predictions numerous times.
The mean value over all replications was treated as the final
prediction of GSV for an individual sample plot or forest stand.

In practical use, performing multiple predictions is not prob-
lematic, so it might seem that RF and BRT can be better than
linear regression. Both machine learning methods may be easier
to implement and can provide good performance even if non-
linearity between auxiliary and predicted variables occurs in the
dataset (Boulesteix et al., 2012). Their disadvantage is that RF
is unable to discover trends that would force him to predicting
values outside the known range, the results are harder to explain
and accuracy can be low in case on small training datasets
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Figure 6 Observed vs predicted GSV (nine variants) at the control forest stand level—56 units.

(Guyon and Elisseeff, 2003; Svetnik et al., 2003; Zhao et al.,
2009; Straub et al., 2010; Hengl et al., 2018). The classical linear
regression requires more experience and insights about relation-
ships between a variable of interest and useful predictors from
the analyst (Miścicki and Stereńczak, 2013; White et al., 2013).

Moreover, depending on e.g. the structure of stands and species
composition, a different set of explanatory ALS-based features
may be needed. We found that the range of estimated values
(regardless of the ABA approaches used) was more comprehen-
sive when using linear regression as compared with BRT and RF.
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Figure 7 GSV values estimated by ABA-PCreg model for 56 control forest stands, in order of increasing predicted GSV, CIs calculated on the basis of

four methods of estimating variance (V̂ari

( ˆGSVm
)

, i = {1,2,3,4}) and GSV for the plot level.

Figure 8 The scatter of the error depending on the forest stand area and GSV value for all forest stands in the Milicz Forest District.

This may have an impact on GSV estimates for young and over-
mature forest stands, where overestimation and undervaluation
occur, respectively.

In our study, there were no large differences in performance
between parametric and non-parametric prediction methods at

the sample and forest stand level. In Yu et al. (2011) and Lat-
ifi et al. (2012), where different volume modelling approaches
(parametric and non-parametric) were tested, the differences in
term of RMSE% was rather negligible reaching from 0.4 to 2.9 per
cent between parametric and non-parametric approaches. We
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noted similar or smaller differences at the sample plot level and
stand-level estimation, where absolute differences in RMSE%,
between regression and non-parametric methods (BRT and RF)
in each of the ABA approach, vary from 0.13 to 0.74 per cent and
0.35 to 1.17 per cent, respectively.

In our case, using a different source of metrics for model
development did not produce any significant differences between
observed and predicted GSV. Slightly lower accuracies were
achieved for the ABA-ITD method. A small overestimation
occurred with the ABA-PC method, which might be related to
LiDAR returns caused by understorey. Small understorey trees
do not add to the GSV reference values because of the tree DBH
measurement threshold (7 cm) but may still cause a signature in
the PC metrics and will hence inflate the GSV prediction. In ABA-
PCreg, a feature related to the vertical structure of forest stands
takes to account the tree-crown coverage in the understorey.
In this model, trees, which were not recorded because of the
measurement threshold of 7 cm, would increase a GSV estimate
via the vertical structure feature. In the ABA-CHM and ABA-ITD
approaches the understorey is hardly affecting the extracted
features due to the focus on the upper canopy layer. The GSV
for stands with an extensive understorey will, therefore, be
underestimated. However, stands of this structure were not
common within our study area. Applying ABA-ITD and ABA-
CHM, we encountered the smallest systematic errors, at the
forest stand level, but the differences between the two other
approaches are small. As advantages of CHM based methods,
we could depict the (1) relatively low number of initial predictor
variables and (2) the simplicity in terms of data storage and data
processing. Although the ITD methods are computationally more
expensive and require more data storage space, it is possible
to estimate a few more forest features such as the number of
trees for a given forest stand or the standing volume of a single
tree. Nevertheless, it should be noted that crown segmentation
methods are not perfect and suffer from detection errors which
particularly occur in multi-layer and deciduous stands. This is
related to the more complex crowns of deciduous species (Eysn
et al., 2015).

In our opinion, ABA-PC seems to be one of the most advan-
tageous implementation methods. The features of which the
model is built come directly from the original PC and no additional
processing such as segmentation or CHM creation is required.
However, having the appropriate data and specialists available,
all of the methods presented in this paper can nowadays be
implemented without major challenges.

GSV estimation of individual forest stands
The problem of GSV overestimation on the stand level requires
an additional discussion. We observed relatively low bias, ranging
from −1 to −6 per cent in all prediction methods and ABA
approaches. Nevertheless, the overestimation on stand level was
quite high.

Probably the most significant influence on the discrepancy of
these results was the error (or errors) related to the complete
enumeration method used for the control stand’s GSV estima-
tion. It is considered the most accurate method, but it is not
flawless. The first source of error could be the height curve. In
control forest stands, surveyors did not measure the height of

all trees. Based on Rymer-Dudzińska (1978) in a pine-dominated
forest stands, with an average tree height of 24 m, the coefficient
of variation in tree height is 6.3 per cent (with the influence of
DBH excluded). For example, when the height of 60 trees in a
forest stand is measured, the error in estimating the average
height, which affects the accuracy of GSV, will be about ±1.6
per cent, but it does not have the character of systematic error.
Height residuals are probably symmetric around zero, but when
transformed to volume, these residuals are no longer symmetric
around zero because the transformation from height to tree
volume is non-linear (Magnussen et al., 2020). The second source
of error could be DBH measurement. This error could have been
systematic. Because of the stem eccentricity, a random direction
of calipering should be provided. This is ensured by directing the
calliper towards the centre of the plot. In the complete enumer-
ation method, where all trees in a forest stand are measured, it
is challenging to provide direct connection to the error occurred.
However, the influence of this factor on the GSV measurement
would most likely be negligible. The third source of error could
be the omission of trees, which is a systematic error. Trees were
marked after measurement, so it is more common to omit a tree
than double the measurement of the same tree. It was probably
the leading cause of the error and explained why the GSV of the
control stands was lower than the GSV estimated using methods
tested in this study. The error related to stem form factor can be
omitted, assuming that it had the same effect when calculating
the GSV on the sample plot level and the control stand level.

In the presented study, the CI for mean GSV of a given forest
stand was estimated using four different forms of the variance
(Var1, Var2, Var3 and Var4). We knew from previous studies (Brei-
denbach et al., 2016; Magnussen, 2017) that the share of cases
where the reference GSV value is within the CI for the estimated
GSV value is close to the theoretical value only when using Var4.
In this study, depending on the prediction method and ABA
approaches, this share was equal (95 per cent) or slightly lower
(up to 91 per cent) than the theoretical value. Probably the sys-
tematic error of GSV measurement in control stands contributed
to a slight decrease in the share of stands in which the GSV
measured on the ground was within the CI for the estimated GSV
value.

Role of GSV estimation in the forest management
planning
This study showed that ABA approaches are relatively accurate
in GSV estimation on the forest stand level. The error of this
estimate can be also provided. Köhl et al. (2006) have noted that
as significant information in the forest inventory. The accuracy
of GSV estimation achieved on forest stand level is meeting the
expectations of forest management planning. In the Milicz Forest
District, assuming that a forest stand is similar to the average
forest stand in Poland, with 4 ha area and GSV = 300 m3 ha−1,
the error in estimating GSV was ∼15–17 per cent, which is lower
than required ±20 per cent in Poland. Also, forest resource data
quality criteria published by the Finnish Forest Centre stipulate
that in 80 per cent of all forest stands, the prediction of a total
volume should not deviate from the actual value by more than
±20 per cent (Kauranne et al., 2017). In the Milicz Forest District,
our results would fulfil that expectation.
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Table 9 Results of the predicted GSV (red—the best value in each column, green—the worst)

Table 10 Coverage of the CIs for all methods

Approach Statistical modelling method Share of control stands [%]

V̂ar1 V̂ar2 V̂ar3 V̂ar4

ABA-PC reg 23 41 84 93
BRT 43 48 88 93
RF 2 36 82 95

ABA-CHM reg 30 43 86 93
BRT 29 43 84 95
RF 2 27 80 93

ABA-ITD reg 63 64 86 93
BRT 38 45 82 93
RF 5 27 79 91

Foresters can use such more precise results in operational
planning as well as in long-term forest management planning.
For example in Poland, the GSV of each stand is updated annu-
ally to The State Forests Information System. The GSV value
is calculated based on (1) forest inventories applied to Polish
forests every 10 years, (2) the volume of harvested trees and (3)
the estimated volume increment. It means that the initial GSV
values are essential for the correctness of GSV estimation in the
years between forest inventories. Accurate GSV determination
for mature stands, including those with a complex structure
(e.g. during forest renewal), may contribute to better tree felling
operations. Forest management planners use the GSV of forest
stands to determine the order of final cutting (Marušák, 2007;

Bettinger et al., 2009; Kaspar et al., 2015; Zaborski and Banaś,
2020). Moreover, planning future changes in forest units, includ-
ing stands under protection (Johnson et al., 2007), may be easier
with the knowledge of the precise GSV of forest stands.

Conclusions
Considering aspects related to the accuracy and precision of
sample plot GSV modelling, our results (Table 9) did not allow
us to identify a single best performing method among the nine
tested alternatives. Therefore, the choice of a GSV prediction
method may be more determined by the availability of data
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and competences than by the requirement to use a particular
method.

The statistical tests confirmed our findings, as no single
pair of any combination of tested methods yielded statistically
significant differences at the sample plots level. At the forest
stand level, we identified no differences in the magnitudes
of the obtained random errors between the methods. All of
the nine methods yielded a slight overestimation of GSV (up
to 6 per cent), which still seems to be within a reasonable
tolerance threshold, considering a certain amount of minor
measurement errors during the inventory of the control forest
stands. Concerning the examined variance estimators used to
assess the CIs for predictions, only the estimator of variance
including heteroscedasticity and autocorrelation at the forest
stand level reflects the actual error of estimating the GSV.
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