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Assessing forest cover change is a key issue for any national forest inventory. This was tested in two study areas in
Switzerland on the basis of stereo airborne digital sensor (ADS) images and advanced digital surface model (DSM)
generation techniques based on image point clouds. In the present study, an adaptive multi-scale approach to
detect forest coverchange with high spatial and temporal resolution was applied to two studyareas in Switzerland.
The challenge of this approach is to minimize DSM height uncertainties that may affect the accuracy of the forest
cover change results. The approach consisted of two steps. In the first step, a ‘change index’ parameter indicated
the overall change status at a coarser scale. The tendency towards change was indicated by derivative analysis of
the normalized histograms of the difference between the two canopy height models (DCHMs) in different years.
In the second step, detection of forest cover change at a refined scale was based on an automatic threshold
and a moving window technique. Promising results were obtained and reveal that real forest cover changes can
be distinguished from non-changes with a high degree of accuracy in managed mixed forests. Results had a
lower accuracy for forests located on steep alpine terrain. A major benefit of the proposed method is that the mag-
nitude of forest cover change of any specific region can be made available within a short time as often required by
forest managers or policy-makers, especially after unexpected natural disturbances.

Introduction

Assessing forest cover change is an important task because it is
a fundamental input for a broad range of applications, such as
planning afforestation or development in order to preserve forest
ecosystem balance. Thus, one of the major tasks of national forest
inventories (NFIs) is to estimate forest resources and assess
changes in order to support sustainable management.

Nowadays, most NFIs are sample-based terrestrial inventories
with an efficient integration of different information sources in-
cluding remote sensing. Remote sensing in particular provides
the data required for the most meaningful and commonly reported
NFI parameters, such as growing stock, forest area and forest land
use change (Lawrence et al., 2010). Moreover, remote sensing data
have contributed to the optimization of field work and the reduc-
tion of estimation error for these inventory parameters (McRoberts
and Tomppo, 2007; Maltamo et al., 2014).

In contrast, assessing changes in forest parameters using NFI
plot data is a highly complex and challenging task since it
depends on the sampling design and time span between each in-
ventory cycle. For example, the sampling design of the Swiss NFI
is a continuous survey where one-ninth of all plots are assessed
eachyear. Although the plots visited in any 1 yearare evenly distrib-
uted over the country and change can be estimated at an annual
scale, the estimation error is very high and is larger for smaller
areas with fewer plots. Thus, estimating changes over a short-time
period based on NFI plot data remains a challenging task.

Multispectral and high spatial resolution remote sensing data
offer the possibility of extending the spatially and temporarily
limited NFI plot information to a continuous landscape-level
representation, such as wall-to-wall products. Moreover, due to
the recent improvement in the quality of multispatial and multi-
temporal remote sensing data, together with advanced image
processing algorithms, several studies have shown that it is now
feasible to detect forest cover changes in a timely and cost-
effective manner. Initially, assessing forest cover change was
done through visual interpretation of aerial (Spurr, 1960; Paine
and Kiser, 2003) or satellite imagery (Bauer et al., 1994). In
recent years, numerous approaches to detect forest cover
change based on different scales and sensors have been devel-
oped. Fraser et al. (2005), for example, assessed forest cover
change over large areas based on low spatial resolution SPOT
VEGETATION and NOAA AVHRR imagery. Song et al. (2014) used a
time series from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS). Hayes and Cohen (2007) used a combination of
MODIS and Landsat imagery. Medium spatial resolution sensors
have also been used. Examples include imagery from SPOT used
by Desclée et al. (2006), Landsat used by Baumann et al. (2012),
a combination of ASTER, SPOT-4 and Landsat-5 used by Wulder
et al. (2008) and Hansen et al. (2013) who used Landsat time
series to generate a global map of forest cover change. Change
detection analysis was carried out by Elhadi and Zomrawi (2009)
based on high-resolution Ikonos and Quickbird imagery and
based on aerial imagery by Baker et al. (1995) and Waser et al.
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(2008). However, increasing spatial resolution is also considered
to be one of the sources of uncertainty in change detection
because of the effects of geo-referencing, higher spectral variabil-
ity and acquisition characteristics (Hussain et al., 2013). A review of
methods for assessing uncertainty and accuracy of land cover
change can be found in Olofsson et al. (2014).

According to Dai and Khorram (1999), change detection using
multispectral images can be based on either post-classification
comparison or direct change detection algorithms. These state-
of-the-art remote sensing change detection methods have been
extensively reviewed, and the relative strengths and weakness
of these approaches are well reported in the literature (Singh,
1989; Mas, 1999; Coppin et al., 2004; Lu et al., 2004; Wulder et al.,
2008).

Nowadays, with the availability of accurate 3D data, changes in
forest parameters can be assessed by detecting changes in the
surface elevation of the canopy cover using digital surface models
(DSMs) from different dates. DSMs derived from airborne laser
scanning (ALS) have been used to estimate canopy attribute
changes (Wulder et al., 2007) or to assess changes in above-
ground biomass (Skowronski et al., 2014). DSMs derived from
image-matching-based point clouds have also been used to
assess changes in forest cover (Waser et al., 2008; Tian et al., 2013).

As stated by Straub et al. (2013), current technical advances in
the field of digital photogrammetry demonstrate the great poten-
tial of automatic image matching to derive dense surface models
for forest canopies. This renewed interest in using digital image
matching has occurred because of the improved radiometry of
digital images (e.g. 16-bit data), the simultaneous use of multiple
images (Zhang and Gruen, 2006) and new algorithmic solutions,
such as semi-global matching (Hirschmüller, 2008), as well as
improvements in commercial matching software (Haala, 2009).

In contrast to ALS, digital aerial stereo images are updated more
regularly by national or regional mapping agencies in several coun-
tries. Thus, new possibilities for assessing forest cover changes are
provided by frequently updated DSMs over entire countries (Ginzler
and Hobi, 2015). This is the case in Switzerland, where the Federal
Office of Topography (swisstopo) has updated the country-wide
digital stereo imagery every 3 years since 2008. As a result, asses-
sing forest cover change with high spatial and temporal resolution
might be feasible for one-third of the country every year. Nonethe-
less, there is currently little experience in assessing forest cover
changes under these specific conditions. An extended assessment
of forest cover change from small areas of a few square kilometres
(Waser et al., 2008; Tian et al., 2013) to larger areas or entire coun-
tries will become more feasible in the near future.

According to White et al. (2013), general factors affecting the
quality and completeness of DSMs may include the resolution
and overlap of images, occlusions and excessive image displace-
ment in areas of tall trees as off-nadir angle increases. For multi-
temporal images, differences in image orientation as well as sun
elevation angles also have an impact on the quality of generated
DSMs. For example, the difference between the azimuths of the
sensor and the sun usually leads to a shadow in non-occluded
areas, consequently having a significant impact on the generated
DSMs. If one of these two generated DSMs contains any artefacts
introducedbysuch factors, simplesubtractionwouldresult inacom-
bination of real and virtual changes. Therefore, the greatest remain-
ing challenge of the proposed method was to separate virtual
changes from real changes in a robust and effective manner.

The objective of the present study was to assess forest cover
change in two study areas in Switzerland on the basis of stereo air-
borne digital sensor80 (ADS80) images. To achieve optimal results,
a novel adaptive multi-scale approach was developed to capture
real changes. Changes were detected from scales ranging from
coarser to refined based on a hierarchical strategy. Because there
is a 3-year difference between the images, the forest cover
change under examination was the ‘lost’ (or ‘eliminated’) part.
The results open new possibilities to complement the tasks of
the Swiss NFI, including the detection of area-wide forest cover
change and areas with no change, which are both essential for
planning and management purposes in managed forests in flat-
lands. The potential and the limits of the proposed method were
also discussed, in particular, regarding the challenging topography
in mountainous areas.

Materials and methods

Study area

Assessing changes in the forest cover was tested in two study areas with
contrasting topography, forest structure, condition and management.
Each had an approximate size of 17.5×11.5 km (Figure 1). Study area 1 is
located in the Central Swiss Plateau (88 16′ E, 478 22′ N) with an elevation
ranging from 350 to 800 m above sea level (a.s.l.). 43 per cent of the area
is agricultural, whereas 32 per cent is mostly managed mixed deciduous
and coniferous forests, 23 percent settlements and 2 percent unproductive
areas. The entire area belongs to one of the most productive areas in Switz-
erland in terms of wood production. The most dominant tree species are
beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), oak (Quercus sp),
white fir (Abies alba Mill.) and Norway spruce (Picea abies L.).

Study area 2 is located in the Central Alps of the Valais (7834′ E, 46818′

N) with an elevation ranging from 500 to 2900 m a.s.l. and an upper tree
line at �2200–2300 m a.s.l., 45 per cent of the area is forested, 27 per
cent agricultural, 12 per cent settlements and 16 per cent unproductive
areas. The forests are managed and have a high protection function.
The most dominant tree species are Scots pine (Pinus sylvestris L.), larch
(Larix deciduas Mill.) and Norway spruce (Picea abies L.) in addition to a
few deciduous tree species and softwood species along the Rhone river
in the valley.

Remote sensing data
Since 2008, swisstopo has acquired stereo image data from the Airborne
Digital Sensors ADS40-SH52 and ADS80-SH82 (Sandau et al., 2000) for
the entire country on a 3-year cycle. Consequently, one-third of Switzerland
is updated every year with ADS imagery with a spatial resolution of 25 or
50 cm. All images of study area 1 have a spatial resolution of 25 cm. In
study area 2, 70 per cent images have a spatial resolution of 25 cm and
the rest 50 cm. Stereo image pairs taken from ADS80 sensors are used as
input data for country-wide DSM generation (Bühler et al., 2012).

To minimize any impact on the corresponding DSMs (such as the notable
differences that can be clearlyseen between DSMs derived from leaf-on and
leaf-off images), the selection of appropriate imagery from 2010 and 2013
was restricted to the date of image acquisition (preferably from the leaf-on
season). In the present study, images were acquired during the vegetation
seasons (from June to September).

The data including the absolute orientation of the images were provided
by swisstopo. The residuals of the absolute orientation are reported to be
+/21 pixel (swisstopo, 2015). The sensor collects multispectral images
(blue, green, red and near infra-red) at two viewing angles (nadir and 168
backward) simultaneously, and the radiometric resolution of the images
is 12-bit. Tables 1 and 2 show the image data information acquired in
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2010 and 2013, respectively. A more detailed description of these image
data can be found in Waser et al. (2011).

In the first step, two DSMs with a spatial resolution of 1 m were cal-
culated from the false-colour infra-red (FCIR) images with the colour
composite near infra-red, red and green bands using the ‘Next Generation
Automatic Terrain Extraction’ (NGATE) (Zhang et al., 2007). This algorithm
was provided by the commercially available photogrammetric software
SocetSet (BAE Systems). To manage high texture and small-scale elevation
changes (e.g. open forests) and homogenous areas with little texture
(e.g. meadows), two different matching strategies were used, both based
on image correlation and edge matching (Ginzler and Hobi, 2015). In
the second step, two canopy height models (CHM) were calculated by

subtracting the digital terrain model (DTM) from the DSMs. The DTM ‘swis-
sALTI3D’ is the product of the national light detection and ranging cam-
paign and was provided by swisstopo (Artuso et al., 2003). The 1-m DSMs
and DTM served as a basis for all investigations of this study.

Automatic forest cover change detection based on
multi-scale analysis

A two-step procedure, from a coarser-scale to a refined-scale, was imple-
mented to automatically detect forest cover change. Figure 2 shows the
workflow of detecting the ‘change’. In the first step, a difference between

Table 1 Image data information acquired in 2010 for the two study areas

Study area 1 Study area 2

Sensor type ADS80-SH82 ADS80-SH82
Number of stripes with ground sample distance of 25 cm 8 7
Number of stripes with ground sample distance of 50 cm 5
Acquisition date(s) June 05, June 24, July 07 May 23, May 24, August 09, August 22
Orientation accuracy +1 GSD +1 GSD

Figure 1 Location of the two study areas (highlighted boxes).

Table 2 Image data information acquired in 2013 for the two study areas

Study area 1 Study area 2

Sensor type ADS80-SH82 ADS80-SH82
Number of stripes with ground sample distance of 25 cm 8 17
Number of stripes with ground sample distance of 50 cm 4
Acquisition date(s) June 13, June 17 July 31, August 01, August 10, August 15,

September 03, September 04
Orientation accuracy +1 GSD +1 GSD
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the two canopy height models (DCHMs) was computed by subtracting the
CHM_2010 from the CHM_2013. In this first step, the changes in the DCHMs
were looked for at the coarser-scale (50×50 m), which corresponds to the
plot size of the Swiss NFI. This step also included the assignment of the
sample index and the derivative analysis of the normalized DCHM histo-
gram. In the second step, a pixel-wise fine-scale detection was performed
with an automatic threshold by zooming into the blocks with changes that
were detected at the coarser-scale (Figure 3). Detailed information is given
in the following sections.

Assigning the sample index
According to the definition of the Swiss NFI, the height of a tree should be
at least 3 m. If a tree was lost/eliminated, the ‘sign change’ would be
given when the difference shown in the DCHMs was at least 3 m. Therefore,
for each 50×50 m block, the pixels that had the ‘sign changes’ were
counted. The total number of pixels with the ‘sign changes’ was named
as ‘num_change’. For all the pixels with the ‘sign changes’, their DCHM
values were taken into account and sum them up to a number, namely,
‘sum_change’. Thus, an average value (‘avg_change’) among these pixels
with the ‘sign changes’ could be defined:

avg change = sum change/num change. (1)

Next, the proportion of the pixels with the ‘sign changes’ in each block was
required. ‘Window size’ was defined as the total number of pixels in the
block. The proportion (‘change_ratio’) was calculated thus:

change ratio = num change/window size. (2)

If an average value (of all the differences in this block) for all the pixels in
the block was calculated, a ‘change index’ was obtained:

change index = sum change/window size = change ratio ×avg change.

(3)

If the ‘change index’ was larger than an empirical threshold thindex, a
sample index ‘1’ was assigned to this block. Otherwise, the sample index
‘0’ was assigned.

Derivative analysis of the normalized DCHM histogram

In order to determine the tendency towards change that occurred within a
50×50 m block, a general histogram was produced as follows. First, the dif-
ferences indicated by the DCHMs were classified into 5-m-range classes,
such as (,5), (5 to ,10), (10 to ,15 m) and so on. Then, a frequency histo-
gram was built. Finally, the total number of pixels was normalized by the
total pixels (2500) in this block, as described in the formula:

n =
∑k+1

i=k

mi/(window size) k = 0, 1, 2 . . .7 (4)

where mi was the total number of pixels in a specific block ([k k + 1)×5 m)
and n was a normalized histogram.

If the envelope curve of the histogram decreased monotonically, the dif-
ferences were interpreted as noise or salt-and-pepper effect and implied
that no change had occurred. Otherwise, the curve would show jumps at
some classes. The derivative of the envelope curve of the histogram was

Figure 2 Workflow of the forest cover change approach.
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used to determine whether its tendency followed a monotonic decrease. In
the present study, for an obtained histogram, the first derivative of its enve-
lope curve was calculated. If the obtained derivatives in any place were
greater than 0, a relevant big change had occurred.

If no ‘big change’ in a class width of 5 m was indicated, the class
width was reduced to 2 m, and the entire process redone. In this case, if
the derivative was .0, a ‘small change’ was detected in this block. If the
block had either a ‘small change’ or a ‘big change’, the block would be
catalogued as an area that had undergone change at the coarser-scale.

Refined-scale detection and automatic threshold selection
With the coarser-scale detection, coarse change areas could be identified.
Nevertheless, inside those areas, it was still necessary to carry out the
refined-scale detection at the pixel level to determine the forest cover
change precisely. In order to avoid salt-and-pepper effects in the DCHM
data, for each pixel (highlighted point in Figure 4) in the 50×50 m block
where a coarse change had been indicated, the mean value of the DCHMs
using a moving window was calculated. The used size was empirically
tested by applying an 11×11 m window which corresponds to a typical rela-
tively large tree crown size. Comparing this mean value with the automatic
selected threshold (explained below), each pixel could be distinguished as
‘change’ or ‘non-change’.

For the refined-scale detection, the key issue was to set a threshold.
Regarding DSM data uncertainty, the selection of thresholds should be
reasonable and robust. The proposed method to select the threshold auto-
matically is described as follows:

(1) In thewhole studyarea, one thousand 50×50 m blocks were randomly
selected in the CHM_2010 grid map.

(2) For every pixel in a block, a window (11×11 m) centred by this pixel was
generated. Hereafter, each pixel in this window (‘window pixel’) was
examined by the following tree definition. If the window_pixel with
the value given by the CHM_2010 was not ,3 m, a ‘tree index’ would
be assigned to the window_pixel, and its CHM value was recorded as

Figure 3 Automatic threshold algorithm.

Figure 4 An 11×11 m moving window centred by each pixel, within a
50×50 m image block.
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‘value_tree_2010’. For the same window_pixel, the value given in
the CHM_2013 was recorded as ‘value_tree_2013’. The difference
(‘delta_height’) between ‘value_tree_2013’ and ‘value_tree_2010’
was calculated for the window_pixel thus:

delta height = abs(value tree 2013 - value tree 2010). (5)

For the entire window, the number of window_pixels with ‘tree index’ in
CHM_2010 was counted (‘sum_tree_pixel’). Correspondingly, their ‘delta_-
height’ values were added up (‘sum_delta_height’). The parameter used to
measure the degree of change in tree heights from 2010 to 2013 inside this
window was calculated by:

bp = sum delta height
sum tree pixel

. (6)

Obviously, every pixel in the block would have an indicator, ‘bp’, namely
‘change_variation’, to express the change. This indicator measured the
degree of change by considering possible inconsistency using the image-
matching method to generate DSMs at different dates. The window with
sum_tree_pixel ¼0 was ruled out. Naturally, the specified pixel in the
block was ruled out as well.

(3) For each block, all the pixels in the block and their corresponding ‘bp’
values were obtained. Again, a histogram of the ‘bp’ values in 1-m
classes was produced. The derivative of the envelope curve of the
histogram was calculated. The position corresponding to the first
peak of the derivative curve (meaning that a significant ‘change’
had happened) was defined as the threshold ‘thblock’. Figure 5
shows an example of bp histograms for two blocks, where there
were changes in Block 1 and no changes in Block 2. It was worth men-
tioning that a block was ruled out if the derivative curve was smooth
and had no peaks.

Accuracy assessment
As reference data, 50×50 m squares were visually checked and interpreted
as to whether a change or non-change in the forest cover occurred in the
corresponding images between 2010 and 2013. Only NFI plots that were
coded as forest were used as reference data (Figure 6). A total of 263
plots in study area 1 and 838 plots in study area 2 were marked as forests

in the NFI. Overall, forest cover change was detected in 16 per cent of the
reference squares in study area 1 and 2 per cent in study area 2.

Results

Automatic detection of forest cover change

Following the workflow illustrated in Figure 2, the automatic
change detection was performed on the study area as presented
in Figure 1. Here, the threshold for ‘change index’ was empirically
determined as thindex ¼1.3. In addition, the automatic threshold
thauto generated from 1000 randomly selected blocks was calcu-
lated to be 10.26 m for study area 1 and 8.5 m for study area
2. The final result is shown in Figure 7, where the detected
changes are highlighted. In Figure 8, two zoomed-in areas in
both study areas are shown, where the circles indicate where sig-
nificant changes had occurred. In order to test forest cover

Figure 5 bp histogram and automatic threshold selection. From top to bottom, each row denotes one block image. (a) FCIR taken in 2010, (b) FCIR taken in
2013, (c) bp histogram and its corresponding thblock.

Figure 6 Manual interpretation areas for change/non-change decision on
the sample plot area defined as forest in Swiss NFI. ( a 50×50 m
sample plot area defined as ‘forest’, a 50×50 m sample plot area
defined as ‘non-forest’).
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change accuracy with different thresholds in study area 1, two
experiments where thauto was set manually to 5 and 15 m were
conducted.

DSMs quality analysis

Figure 9 illustrates forest coverchange and non-change in three pro-
files. The profiles in Figures 9a (forest area) and 9b (non-forest area)
show no forest cover changes. As a comparison, Figure 9c illustrates
the profile of an area with forest cover changes. It should be noted
that in forest areas, there are more artefacts in the DSMs generated
from the stereo imagery than in other non-forest area.

Figure 10a and b shows the FCIR images acquired in 2010 and
2013 for the same area, with the corresponding CHMs (Figure 10d
and e) and the DCHM values of larger than thauto (highlighted areas
in Figure 10c). The result implied that the forest cover has changed.
However, visual inspections revealed that forest cover had not

changed in this area. Obviously, the uncertainty of the generated
data sets introduced errors into the forest cover change result.

Accuracy assessment

In summary, the overall accuracy was 93 per cent for study area 1
with the proposed method, 85 per cent when thauto was set to 5 m
and 93 per cent when thauto was set to 15 m. The overall accuracy
for study area 2 was higher, with 98 per cent. The accuracy assess-
ments for the proposed method in study areas 1 and 2 and those of
two different assigned threshold experiments in study area 1 are
shown in Table 3.

Examples of forest cover change in study area 2

The producer’s accuracyand user’s accuracyof forest coverchange
detection in study area 2 were relatively low. In fact, real changes

Figure 7 Change detection result. (a) Study area 1, (b) study area 2 (forest cover changes highlighted on FCIR acquired in 2010).

A novel method to assess short-term forest cover changes

435

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/88/4/429/651021 by guest on 19 April 2024



were successfully detected by the proposed method. However,
these changes were not taken into account since the reference
data were based on the interpreted squares following the Swiss
NFI sample plots. Figure 11 shows the final forest cover as a
result of the steep terrain in this alpine region. Figure 12 illustrates
the erroneous forest cover change detection due to large shadows
in the 2010 images.

Discussion and conclusion
In the present study, a novel adaptive multi-scale approach was
developed, which enables the detection of forest cover change

and the ability to distinguish between real changes and non-
changes with high overall accuracy. The results indicate that the
method is promising and provides a high degree of accuracy in
managed mixed forests, with lower accuracies in mountainous
forests. These results suggest that the proposed method can
provide essential and valuable information on the magnitude of
change/non-change in forest cover as needed for proper forest
management. The proposed approach makes it possible to map
forest cover changes at a 1 m spatial resolution which can be
used operationally at a regional and national scale as complemen-
tary data to Swiss NFI surveys.

A significant challenge for this approach was to minimize uncer-
tainties regarding height information in the CHMs, which impact

Figure 8 Detection of forest cover change in zoom-in areas. (a) Study area 1, (b) study area 2. From top to bottom: (1) FCIR taken in 2010, circles indicate
significant changes, (2) FCIR acquired in 2013, (3) areas with forest cover change (highlighted) on FCIR acquired in 2010.
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results by detecting erroneous changes. Using a threshold based
on some prior knowledge enabled the identification of areas with
erroneous height changes using a ‘change index’. Derivative ana-
lysis of the normalized DCHM histograms, which tracked the ten-
dency to change in each block, facilitated more accurate location
of real changes. In this step, areas with erroneous changes were
removed, resulting in substantially improved change detection ac-
curacy. The proposed automatic threshold selection for the
refined-scale change detection made the method more robust in
comparison with using a predefined threshold.

The proposed indicator ‘change_variation’ bp measured the
amount of change around each pixel by taking DCHM variations
in a moving window into account. The bp histogram of each
coarser block characterizes the change trend. Thus, the correct lo-
calization of change is indicated by the location of the first peak of
the envelope curve of the bp histogram.

Both producer’s accuracy (83 per cent) and user’s accuracy
(76 per cent) for study area 1 were good. The method detected

11 sample plots that were defined as ‘non-change’ in the reference
data set. This was mainly accounted for by the difference between
the calculated DSMs affected by shadows in the forests.

Although study area 2 is a mountainous area, where naturally
caused forest cover change hazard events were expected, only a
few such forest cover changes were detected between 2010 and
2013. Therefore, therewere onlya small numberof plot areas refer-
enced as changes. For the proposed method, both producer’s
(53 per cent) and user’s accuracies (42 per cent) were substantially
lower. At this point, it should be noted that visual image interpret-
ation revealed that forest cover changes were detected mostly
outside of the NFI plot data. Thus, future work should enlarge ref-
erence data sets, for example, by testing it in areas with a denser
distribution of NFI plots.

In both study areas, producer’s accuracies were higher than
user’s accuracies. This was the result of detecting more non-
change areas referenced as change areas in comparison with
change areas referenced as non-change areas. There are multiple

Figure 9 DSM analysis of different land covers. Image pairs in each row: on the left acquired in 2010; on the right, in 2013. The dotted line indicates the
profile position. In each graph, the lines show the profiles in the 2010 and 2013 imagery separately. From top to bottom: (a) forest cover area without
change, (b) non-forest area without change and (c) forest cover area with change.
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reasons for this. The first reason is related to the generation of
DSMs and DCHMs, which was affected by different sun elevations
between image acquisitions, which produced shadows in 2010
images and no shadows in 2013 images or vice versa. Since the
used images were acquired by swisstopo in the framework of na-
tional flight campaigns, controlling over the date and time of
image acquisition was impossible, and thus, some shadows had
to be accepted. Consequently, in future work, shadows will be iden-
tified using spectral information and can be, thus, treated separ-
ately in the change detection algorithm and excluded from the
analysis.

The second reason is related to the oblique problem between
the generated DSMs as a result of different flight angles of the
imagery acquired in 2010 and 2013. This is an important issue
regarding the lower accuracies in mountainous areas, i.e., study
area 2. Comparisons between Figures 9 and 10 indicate that
some differences, as a result of displacement, may occur between
the DSMs of different dates. Moreover, DSM quality is affected by
many factors. For example, if the flight path is not identical on
the two image acquisition dates, the objects in the images have

different distances to the nadir lines. In this particular case, the
relief displacement due to the height of the objects will exist in the
generated DSMs and cannot be ignored. For example, Poon et al.
(2005) and Hobi and Ginzler (2012) stated that the accuracy of a
DSM within the forest area is lower than that is for other land cover
types (e.g. flat terrain, herbs and grass, pastures, etc.). Another
area worth exploring is the testing of novel image-matching algo-
rithms to further improve the accuracy of the generated DSMs as
suggested in Mortensen et al. (2005); Choi and Kweon (2009) and
Tack et al. (2012).

To summarize, the present study has demonstrated that
because of the benefits of increasingly advanced techniques in
the generation of image-based point clouds, the proposed ap-
proach enables the assessment of forest cover changes with a
high degree of automation for large areas, even at the national
scale. Thus, the main contribution of this study to the field has
been to test the robustness of the method and its suitability in pro-
viding complementary information to the Swiss NFI. With the pro-
posed approach, real forest cover changes can be detected and
distinguished from virtual changes. The method was based on a

Figure 10 FCIR images, corresponding DSMs and DCHMs of the same area. (a) FCIR acquired in 2010, (b) FCIR acquired in 2013, (c) calculated DCHMs, with
DCHMs . thauto (highlighted) on FCIR 2010, (d) CHM in 2010 and (e) CHM in 2013.

Table 3 Accuracy assessment for study areas 1 and 2

Producer’s accuracy
(change)

User’s accuracy
(change)

Producer’s accuracy
(non-change)

User’s accuracy
(non-change)

kappa Overall
accuracy

Study area 1
Proposed method 0.83 0.76 0.95 0.97 0.75 0.93
Threshold (¼15 m) 0.62 0.90 0.99 0.93 0.69 0.93
Threshold (¼5 m) 0.86 0.51 0.85 0.97 0.55 0.85

Study area 2
Proposed method 0.53 0.42 0.99 0.99 0.46 0.98

Forestry

438

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/88/4/429/651021 by guest on 19 April 2024



multi-scale analysis from coarser to refined change detection,
which is well-suited for VHR data sets. It is flexible and fast since
it does not require any initial training. The study also demonstrates
that height information can be a reliable source for the gathering
of change information by minimizing false positive forest cover
changes. Moreover, up-to-date and accurate information on forest
cover changes after natural and anthropogenetic disturbances,
suchasfire,stormsoravalanches,canbeprovidedwithinashort time.
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