Trigonometric Variable-Form Taper
Equations for Australian Eucalypts
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ABSTRACT. This article introduces a new variable-form taper model that is stable in specification yet
flexible in its ability to fit data for species and trees with different stem forms. The base function is
constructed from trigonometric volume-ratio equations following the geometry of a tree stem. The
specification for the exponent includes variables for depicting changes in stem form along a stem and
variables for taking into account differences in stem form among trees of different sizes. This model
is fitted to data from 25 species of Australian eucalypts and is compared with Kozak’s taper model
to demonstrate its characteristics: stability in specification, flexibility in fitting data for species and
trees with varying stem forms and accurate predictions of taper and merchantable height. For. Sci.

46(3):397-4009.
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stem form.

APER EQUATIONS THAT CAN ACCURATELY PREDICT the

diameter at any point on a stem from diameter at

breast height and total tree height, two readily mea-
sured variablesthat characterize the basic dimensionsof tree
size, have long been the subject of research of many forest
scientists. The construction of such eguations has taken a
number of approaches asdemonstrated by the vast amount of
literaturein thisarea(e.g., Friesand Matern 1966, Goulding
and Murray 1975, Max and Burkhart 1976, Clutter 1980,
Amidon 1984, Biging 1984, Newnham 1988, 1992, Kozak
1988, 1997, Candy 1989, Thomas and Parresol 1991,
Flewelling and Raynes 1993, Bailey 1994, Gordon et al.
1995, Fang and Bailey 1999). The weaknesses shared by
many taper equations are (1) the existence of alarge degree
of local biasin diameter prediction over some portions of the
stem, particularly thelower and/or upper stem, despite alow
global bias, and (2) thefailuretotakeinto account differences
instem form between trees. A recent approach introduced by
Newnham (1988, 1992) and K ozak (1988, 1997) usesasingle
continuousfunction asthebasewith an exponent that changes
along the stem to describe the continuous change of stem
formfrom groundtotip. Such apower function eliminatesthe
necessity of devel oping segmented taper functionsfor differ-
ent portions of the stem in order to reduce local bias. The

exponent can also be specified to change with diameter at
breast height and tree height to account for the differencesin
stem form between trees. In comparison with other ap-
proaches such asthewhol e bole system of Demaerschalk and
Kozak (1977) and the segmented polynomial function of
Max and Burkhart (1976), this approach hasthe least degree
of local bias and greater precision in taper predictions
(Newnham 1988, 1992, K ozak 1988, Perez et al . 1990, K ozak
and Smith 1993, Muhairwe 1999).

Themethodsof modeling the exponent have beento select
asubset of variables which fits the data well enough from a
larger number of candidates that are assumed to exert an
influence on the exponent in multiple linear least squares
regression (Newnham 1988, 1992, K ozak 1988, 1997, Perez
et al. 1990, Bi and Turner 1994, Muhairwe 1999). These
candidate variables, often large in number, usually include
varioustransformationsof relative height, overbark diameter
at breast height, and total tree height. In the extreme cases,
dozens of combinations of these transformed variables were
reportedly included (Newnham 1992, Kozak 1997). These
variables are usually highly intercorrelated (Kozak 1997).
Such high multicollinearity leads to much inflated estimates
of the standard errors of parametersand al so causestheleast-
squares estimates of parametersto be unstable (Myers 1990,
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Fox 1991). Consequently, it is difficult to separate the indi-
vidual effects of the variables for discriminating redundant
ones in the model. A small change in the data can substan-
tially alter the least-squares coefficients (e.g., Kozak 1997)
and may result in a different subset of variables being se-
lected. In addition, the variable selection itself may not be
consistent inthe sensethat thereisno guaranteethat the same
subset will be selected asthe samplesizeinthedataincreases
(Nishii 1984, Breiman 1992). The lack of consistency in
variable selection compounded with high multicollinearity
among the candidate predictors have made the variable-form
taper models overwhelmingly data driven, and indeed very
variable. As species or data sets change, different models
often emerge (Newnham1988, 1992, Kozak 1988, 1997,
Perez et al. 1990, Bi and Turner 1994, Muhairwe 1999). This
variability has translated the variable-form taper models,
particularly those of Newham (1988, 1992), into a general
approach rather than a model with stable designed features
apart from the specification of a general power function.

Thisarticleintroducesanew variable-form taper model
that isstablein specification yet flexibleinitsability to fit
data for species and trees with different stem forms. The
base function is constructed from trigonometric volume-
ratio equations. The specification for the exponent is
based on Fourier transformation. It includes variables for
depicting changes in stem form along the stem and vari-
ables for taking into account differences in stem form
between trees of different sizes. This model is fitted,
without resorting to subset selection, to data from 25
speciesof Australian eucal yptswith arange of stemforms
and is compared with Kozak’s (1988) model to demon-
strate its accuracy and flexibility.

Notation

The following notation will be used throughout the re-
mainder of thisarticle. Other notation specific to aparticul ar
equation will be listed with the equation.

TH = total tree height in m;

H = height above ground, 0 <H < TH, in m;
h = H/TH, relative height;

b = 1.3/TH, relative breast height;

DBHOB = diameter at breast height over bark;

DBHUB = diameter at breast height under bark;

DUB = diameter under bark at relative height h;

d = DUB/DBHUB, relative diameter;

K = avariable exponent that is a function of h and
DBHOB and TH.
Insn%ghg

B = Insin% bg, the base function derived in this
article;
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By = 1C @,thebasefunctlon of Kozak (1988);

p = aspecies-specific relative height of the inflec-
tion point.

Data

Thedataset for thiswork included 5,739 treesfrom more
than 25 speciesof Eucalyptusand Corymbia. Thesamplesize
among the species ranged from more than 1000 to less than
20 trees. For major commercial species, the sample size was
more than 100. For a number of minor speciesincluding E.
scias, E. consideniana, E. maideni, E. rubida, E.
angophoroides, E. bosistoana, the sample size wasless than
20, so these species were grouped together and coded as
Eucalyptus spp. The diameter and height distributions of
these sample trees were summarized for al species using
Tukey’s (1977) boxplots (Figure 1). The geographical areas
and forest types where the samples were taken and the field
measurements of stem taper were described in detail by Bi
and Hamilton (1998).

Thescatterpl ot of relative diameter against relative height
was examined visually for each species to detect possible
anomalies in the data. After spending much time searching
and checking theoriginal datasheetsof someindividual trees
to verify and correct possible data errors one by one, a
systematic approach of detecting abnormal data points was
adopted to increase efficiency. Assuming identically distrib-
uted Gaussian errors, anonparametric taper curve wasfitted
for each species using local regression, loess (Cleveland
1993). A locally quadrati c fitting with asmoothing parameter
of 0.25wasusedfor all speciesafter someiterativefitting and
visual examination of thesmoothed taper curvesand thedata.
The residuals of the nonparametric curve were divided into
ten even intervals of relative height. The distribution of
residuals within each interval was examined, and two par-
ticular values were calculated for discriminating extreme
data points: the lower quartile minus twice the interquartile
range and the upper quartile plus twice the interquartile
range. Data points outside the range of these two values are
very extreme points because this range is even greater than
that used in the boxplots of Tukey (1977) to show extreme
datapointsin an univariate distribution. The number of these
extreme data points accounted for between 0.89% and 4.04%
of thetotal number of taper measurementsamong thespecies,
and about 2.05% for all species combined.

Field notes on taper measurements of these points were
extracted from the database for detailed examination. Apart
from asmall number of dataerrors, most of these datapoints
werefrom deformed stem sectionsdueto the presence of fire
scars, large knots or bulges, other physical damages, partial
death of the stem and coppice, or epicormic growth, etc.,
reflecting partly the frequent fire disturbancein theregrowth
forestswheremany of the samplesweretaken (Bi and Jurskis
1996). Since the taper equations were not intended for stem
sections with deformities, these data points were excluded
from further analysis.
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Figure 1. Boxplots of diameter overbark at breast height (DBHOB) and total height of sample trees of 25 species of Eucalyptus and
Corymbia, plus a sample labelled E. spp. being a mixture of eucalypt species each of sample size less than 20. Numbers on the righthand

side indicate the number of sample trees.
Model Derivation and Estimation

Considering atree bole with agiven relative stem profile
(Figure 2), the volume of a stem section from ground to any
specified top height or diameter limit can be expressed as a
volume ratio (i.e., a percentage of the total stem volume).
Volumeratio increases monotonically from Oto 1 asrelative
height increases from 0 to 1 and as relative diameter de-
creases from avalue greater than 1 to 0. The volumeratio to
any top height limit (R,)) can be expressed as a function of
relativeheight h, R =f,(h). Similarly, thevolumeratioto any
top end diameter limit (R;) can be expressed as afunction of
relativediameter d, R, =f,(d). Atany given point onthe stem
profile, avolume ratio can be obtained from either R, or R,
and the two values must be the same such that Ry = R;,, and
so f,(d) fi(h). The inverse of this relation-
ship, d = f,(f,(h)), provides ataper function for the stem
profile.

The model developed by Bi (1999) for predicting the
volumeratiotoany specifiedtop height limitfor these species
takes the following form:

Rh:

T[h3[§|n°‘4D—TF1

T Ogpa h2 ins
DS D— IZFS' DZ 5

10
o @
O

where R, is the ratio between stem volume from ground to
relative height h and the total stem volume, a, to a, are

coefficients specific to each species. Argumentsfor trigono-
metric functions are expressed in radians. The predicted
volumeratio at breast height, R, differsamong treesbecause
the relative breast height, b, changes with total tree height.
Thevolumeratioto any diameter limit can be predicted from
relative diameter using the following model form:

|

Equation (2) isrelated to Equation (1) through R, whichiis
the predicted volumeratio at relative breast height from Equa-
tion (1). Another exponential function similar to Equation (2),
but usingthebaseof thenatural logarithminplaceof R, hasbeen
shown to provide accurate predictions of volume-ratio to any
diameter limit for Pinustaeda (Van Deusen et d. 1981). For a
given stem profile, the values of R, and R, should be the same
for any given volume ratio such that

R =R 3

Rearranging Equation (3), d becomes the dependent vari-
able of the power function

OnR,0°
e @

d:%

wherelnrepresentsnatural logarithm. Taking K asavariable
exponent that changes with h and tree size, Equation (4)
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Figure 2. Diagram showing the derivation of the base function of
the trigonometric variable form taper model (see Notation and
text).

becomes ataper function that is consistent with Equation (1)
since they are mathematically related. However, this model
isnot the most parsimonious because R, and R, are predicted
already by four parameters in Equation (1). To improve
model parsimony, R, and R, are replaced by

bD

sin —hDand stZ 0

(2

respectively, such that

f

Tt
Elnsm(zh)D ]
%nsm( b)F ®)

In comparison with the variable-form taper models of
Newnham (1988) and Kozak (1988), the characteristics of
Equation (5) lieinthe base of thepower function, whichisthe
ratio between the logarithms of two trigonometric functions.
The denominator is a negative constant for agiven tree, and
the numerator lies between — oo and O as relative height h
variesfrom 0to 1. Theratio tendsto oo ashtendsto 0 and
equals 0 when h = 1. This monotonic base function also

differs among trees because the relative breast height, b,
varies with total tree height. In addition, this trigonometric
variable-form taper function is conditioned to pass through
underbark diameter at breast height since the base function
equals 1 when h = b (i.e., relative height equal to relative
breast height). Bi and Turner (1994) found that a sine func-
tion was a better base function than that used by Newnham
(1988, 1992) for describing average stem profiles using a
power function possibly because the trigonometric function
has inherent inflection points and is hence more flexible.

For simplicity, the taper model specified in Equation (5)
can be written as a general power function:

d=BX (6)

where B representsthe base, amonotonic function of relative
height h. Because no biological or statistical theory can be
relied on to identify the “true” model for K, an empirical
function purely for the purpose of prediction will have to
comefrom exploratory model building. A preliminary analy-
sisregressing Ind against InB without theintercept term (i.e.,
effectively taking K as a constant) resulted in residuals
showing cyclic patterns for every species. The common
approach of overcoming such patterned residuals has been
the use of polynomial functions of h in variable-form taper
functions (Newham 1988, 1992, Kozak 1988, 1997, Perez et
al. 1990, Muhairwe 1999), and moresoin other nonsegmented
taper functions which often involve many termsand in some
casesavery high power term (e.g., Bruceet al. 1968, Gordon
1983). However, the theory of Fourier analysis suggeststhat
any cyclic function can be decomposed into aweighted sum
of mutually orthogonal sine and cosine pairs (Mathews
1987). Often afew large Fourier weights are able to provide
acompact structural summary of the observed periodicity in
empirical data. Analysesusingtwo andthree pairsof sineand
cosine with different frequencies showed almost no cyclic
patternsintheresiduals. After further exploratory analysisof
various equation forms and consideration of model parsi-
mony, the variable exponent K was specified asafunction of
relative height h, DBHOB, and tree height TH for all species
asfollows:

B . [T, 0 B, A OT 0
K=a +a, stE hD+ ag COSD? hD+ ay, SmDET[hD/ h -
+ agDBHOB + gzhv DBHOB +a;hvTH

where a, to a, are parameters. The first three trigonometric
variableswere used for depicting changesin stemformalong
thestem, and thelast threevariableswere used for taking into
account differences in stem form between trees of different
sizes.

Substituting Equation (7) into Equation (6) and taking loga-
rithm on both sides, Ind becomes alinear function of variables
that are multiplications of the logarithm of base B and dll
variablesin Equation (7) as shown in Equation (8) below.

Ind = %al +a25ingghg+ a, COSEBZ

+ a, st "hD/ h+a;DBHOB + aghyDBHOB +a,hy/TH %In B (8
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Equation (8) wasfitted to datausing least squares regres-
sion to obtain parameter estimates for each species. Positive
autocorrelations and heteroskedasticity present in the data
were not taken into account in the least squares regression.
When both are present, the least squares estimates of regres-
sion coefficients remain unbiased and consistent, although
nolonger efficient (Myers1990). Predictionaccuracy islittle
affected by autocorrelation in the error term and
multicollinearity among predictor variables in the equation
(Kozak 1997). Even when the correlated error structure is
accounted for in fitting taper models, the improvement in
prediction accuracy was too small to be of practical impor-
tance (Williams and Reich 1997).

Predicting Underbark
Diameter at Breast Height

The dependent variable of the trigonometric taper func-
tionsisrelativediameter d(i.e., theratio of diameter underbark
at any height above ground to that at breast height). To
convert any predicted rel ativediameter to absol uteunderbark
stem diameter, DBHUB must first be estimated. To facilitate
the application of the taper equations, a set of equations was
developed for these species using the following equation
form

1
DBHUB = DBHORe® *BDBHOB+b, InDBHOB+b,InTH  (9)

where by — by are parameters. This equation form was
selected from several linear and nonlinear model forms by
comparing their prediction accuracy within the range of
observed data and consistency in extrapolation beyond this
range. The equation was linearized and parameters were
estimated using least squares regression.

Validation

Prediction Accuracy

To assess the prediction accuracy of the estimated taper
equations, the resampling approach taken by Bi (1999) was
adopted. For each species with N sample trees, Equation (8)
wasfitted N times. Each time, all datapointsof onetreewere
removed from the fitting process, and predicted values of
relative diameter were obtained for them using the coeffi-
cients estimated from the remaining data. The difference
between the observed and predicted values was taken as the
error of prediction, €. The mean squared error of prediction
(MSEP) was taken as a measure of prediction accuracy:

MSEP = E(e?) = E(e - E(g) +E(€))°

= Var(e) +(E(0)) (9
where Var(g) and E(g) were the variance and expectation of
prediction error, indicating the precision and the bias of
prediction respectively (Wackerly et al. 1996). The average
size of prediction error isindicated by E(|€]). For anormally
distributed € with zero mean and variance o2, E(|¢]) equals
A2 1 to (Flury 1990, Greene 1993). Theaccuracy of predic-

tion was evaluated over ten relative height intervalsfor each
species. Within each interval, E(€), E(|€]) and the 2.5th and
the 97.5th percentilesof prediction error were cal culated and
plotted to show the bias and precision of prediction.

For el ght specieswith morethan 200 sampletrees (Figure
1), the taper equations were further evaluated to see if they
adequately reflected the differencesin stem shape associated
with changes in tree size that was found with some species
(Forslund 1991, Allen 1993, Bi and Turner 1994, Muhairwe
1994). For each of these species, the data were divided into
eight size classes according to DBHOB and tree height in a
manner similar to that of Flewelling and Raynes (1993). A
nonparametric height-diameter curvewasfitted at first using
local regression, loess (Cleveland 1993), with alocally qua
dratic fitting and a smoothing parameter of 0.75. The height-
diameter curve divided the data points of each species into
two parts (Figure 3). Points above the curve had greater than
average height at a given diameter, while points below the
curve showed the contrary. Then the data were further di-
vided into four diameter classes by using the median, the
upper and lower quartilesshownin Figure 1. Thusthe data of
each specieswasdivided into eight size classesin the height-
diameter space (Figure 3). For each group, the accuracy of
prediction wasevaluated over tenrelative height interval sby
calculating E(g), E(|€] and the 2.5th and the 97.5th percen-
tiles of prediction error.

Model Comparison

Prediction accuracy of the trigonometric taper function
for each specieswas compared with that of thetaper model of
Kozak (1988):
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Figure 3. Height plotted against DBHOBfor E. delegatensis as an
example of the division of data into 8 size groups in the height-
diameter space for the eight species, each with more than 200
sample trees.
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INnDUB = a, +& InDBHOB + a,DBHOB
+InBg[bh? + b,In(h+0.001) + b;h°°
+bye" + by(DBHOB/ TH)]

(11)

Thismodel wasfitted using least squaresregression for
each species. Errors of prediction were obtained using the
same resampling approach as described above. However,
instead of taking p as the species-specific relative height
of inflection point in the base function By as defined by
Kozak (1988), the relative height of centroid was used,
which ranged from 0.206 to 0.258 among the 25 species
(Bi 1999). Variations in the value of p between 0.15 and
0.35 were shown to have little effect on the prediction
accuracy of the variable-exponent model (Perez et al.
1990, LeMay et al. 1993).

Prediction accuracy of the two models was com-
pared in terms of predictions of both relative diameter
and underbark stem diameter to see how each per-
formed when used for describing stem form and pre-
dicting underbark stem diameter. The dependent vari-
able of Kozak’s (1988) model is underbark diameter,
DUB, not relative diameter, d, as in the trigonometric
taper function. Therefore, the predicted values of DUB
from Kozak’s(1988) model weredivided by DBHUB to
obtain predicted relative diameter, and the predicted
valuesof relative diameter from thetrigonometric taper
functions were multiplied by DBHUB predicted from
Equation (9) to obtain predicted DUB. Values of the
mean squared error of prediction (MSEP) and bias in
the prediction of both relative and absolute underbark
diameter were compared between the two model sacross
species, species by relative height classes for all spe-
cies, and species by size groups and by relative height
classes for the eight species with large samples. Since
it was too lengthy to report, this detailed comparison
was summarized by two ratios for each species, Ry gp
= MSEP/MSEPg and Ryas =[E(e)]y /IECE)s where
MSEP is the mean squared error of prediction of
Kozak $(1988) model and MSEPy is that of the trigo-
nometric taper function, |E(as)|K |stheabsolutevalueof
local bias over 10 relative height intervals for Kozak’s
(1988) model and |E(e)|, is that of the trigonometric
taper function. The two ratios indicated the overall
predictive performance and the average magnitude of
local bias of the trigonometric taper function relative
to Kozak’ s(1988) model. For each of the 8 specieswith
large samples, an additional value of Ry, was ob-
tained from atotal of 80 values of local biasbecausethe
data were divided by 8 size groups and by 10 relative
height intervals.

Accuracy of Merchantable Height Estimation

Apart from taper prediction, taper functions are also
used for estimating the merchantabl e height of atreegiven
a specified top end diameter (Kozak and Smith 1993).
Since the trigonometric taper functions cannot be trans-
posed to give explicit mathematical solutions of relative
height for a given relative diameter, numerical solutions
have to be obtained through iterations. Using the trigono-
metric taper functions and DBHUB predicted from Equa-
tion (9), the predicted merchantable height for a range of
top limit underbark diameter from 6 cm to 30 cm with an
even interval of 2 cm was obtained through numerical
iterationsfor all treeswith predicted DBHUB greater than
the specified top diameter limit. For many species, a top
limit underbark diameter of 8 cm isthe current specifica-
tion in management. The observed merchantable height
was obtained through linear interpolation for each tree
using taper measurements immediately below and above
the point of interpolation. Linear interpolation was used
because taper measurements above breast height were
taken at 1.5 mintervalsfor most treesand at 3 mintervals
only for a small number of samples of mainly E.
delegatensis. Quadratic interpolation would improve the
accuracy of merchantable height estimation very little.
The difference between the observed and predicted values
of merchantable height was taken as the error of predic-
tion. For each species, the mean, the lower and upper
guartile, the 2.5th and the 97.5th percentiles of prediction
error for each specified top end diameter were cal cul ated
and plotted to show the bias and precision of prediction.

Results

The complete expression of the trigonometric taper
model is the same for all species [see Equation (12)
below].

The estimated parameters are shown in Table 1. Three
stem profiles were made for a small, average, and large
tree using the taper function for E. delegatensis as an
example (Figure 4). These stem profiles illustrated the
changes in stem form along the stem and also differences
in stem form among trees of different sizes as depicted by
thetrigonometric taper function. Predictions of underbark
diameter from DBHOB and tree height can be obtained by
multiplyingthe predicted relativediameter with underbark
diameter at breast height predicted from Equation (9) and
parametersin Table 2.

Therewaslittlelocal biasacrossrelative height classes
in the predictions of relative diameter for all species
[Figure(5)]. For C. maculata, E. badjensis, E. delegatensis,
E. fastigata, E. fraxinoidies, E. pilularis, and E. piperita,

., [ BT

+ —h_—+ —

e, sl o M+ 8 cos
d= o
= [
. [ [
ElnstEbDD

hg+ a, sin%"hg/ h+ a;DBHOB + aghv DBHOB +a,hy/TH

(12)
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Table 1. Parameters of the trigonometric variable-form taper model [Equation (12)] for the 25 species. The fitting statistics for the
regression involving log transformed relative diameter are R 2 and root mean squared error (RMSE). /2 and IRMSE represent the

corresponding fit statistics for the regression between observed and predicted relative diameter obtained through resampling.

Species a, a, a, a, a, a, a, R? RMSE I’ IRMSE
C. gummifera 15745 -0.4691 -0.0995 -0.8095 0.0028 0.0468 -0.0489 0.92 0.132 0.90 0.100
C. maculata 0.9477 -0.1125 -0.0050 -0.4595 -0.0018 0.0731 -0.0632 0.96 0.103 0.97 0.053
E. agglomerata 1.9268 -0.4932 -0.0437 -0.9866 0.0020 0.0348 -0.0617 0.95 0.131 0.94 0.080
E. badjensis 1.6678 -0.1985 -0.0214 -0.9098 -0.0003  0.0603 -0.0872 0.99 0.079 0.98 0.043
E. camaldulensis 0.8364  0.2216 -0.0031 -0.4110 0.0015 0.0547 -0.1332 0.92 0.159 0.94 0.077
E. cypellocarpa 0.4361 0.1186  0.0552 -0.1528 -0.0011 0.0641 -0.0632 0.95 0.113 0.94 0.070
E.dalrympleana  0.8266 -0.3792 -0.0470 -0.3323 -0.0022  0.0342  0.0367 0.95 0.128 0.95 0.069
E. delegatensis 1.2992 -0.0564 0.0096 -0.7248 0.0017 -0.0099 -0.0254 0.96 0.107 0.96 0.054
E. elata 1.2717  0.2267 0.0515 -0.6965 -0.0003  0.0955 -0.1777 0.97 0.103 0.97 0.053
E. fastigata 0.7965 0.0513 0.0312 -0.3703 -0.0011 0.0737 -0.0874 0.97 0.099 0.97 0.052
E. fraxinoides 1.1467 -0.0718 0.0048 -0.6167 0.0015 0.0201 -0.0424 0.97 0.089 0.97 0.046
E. globoidea 1.0495 -0.2678 -0.0062 -0.4681 -0.0025 0.1120 -0.0905 0.95 0.108 0.93 0.076
E. muellerana 1.9618 -0.5850 -0.0783 -0.9549 -0.0004 0.0826 -0.0953 0.95 0.131 0.93 0.088
E. nitens 0.9654 0.0889 0.0329 -0.5134 0.0004 0.0496 -0.0833 0.95 0.130 0.97 0.055
E. obliqua 0.5744  0.2210 0.0748 -0.2838 0.0001 0.0554 -0.0863 0.96 0.108 0.95 0.064
E. paniculata 1.3308 -0.2888 -0.0334 -0.6855 -0.0008 0.1121 -0.1022 0.95 0.107 0.94 0.075
E. pauciflora 1.1689 0.3397 0.0372 -0.6628 0.0043 0.0675 -0.2003 0.95 0.134 0.94 0.083
E. pilularis 1.0546 -0.2531 -0.0168 -0.4707 -0.0020 0.0880 -0.0711 0.97 0.095 0.97 0.054
E. piperita 0.5564 -0.1492 0.0162 -0.1696 -0.0015 0.0696 -0.0349 0.94 0.120 0.97 0.053
E. radiata 0.7775 0.1525 0.0025 -0.3706  0.0004 0.0683 -0.1247 0.92 0.158 0.94 0.079
E. saligna 1.0391 -0.5304 -0.0298 -0.4386 -0.0017 0.0565 0.0128 0.97 0.094 0.96 0.059
E. scias 0.2577 0.2832 0.0692 -0.0243 -0.0090 0.1519 -0.1540 0.93 0.131 0.94 0.074
E. sieberi 0.8948 -0.0415 0.0349 -0.3895 -0.0004 0.0744 -0.0951 0.96 0.106 0.95 0.071
E. smithii 19891 -0.5870 -0.0256 -0.9106 -0.0020 0.0863 -0.0927 0.96 0.109 0.93 0.085
E. spp. 0.9834 0.1636 0.0406 -0.4887 0.0006 0.1178 -0.1874 0.94 0.136 0.91 0.097
E. viminalis 1.3184 -0.0296  0.0158 -0.7196 0.0012 0.0420 -0.0847 0.96 0.105 0.96 0.060

the precision of prediction was relatively high among the
species as shown by the narrower confidence intervals
across all relative height classes for these species. For C.
gummifera, E. camuldulensis, E. pauciflora, and E. ra-
diata, the precision was relatively low. As expected, the
prediction in the section closest to the ground was gener-
ally less precise than that in other stem sections. The
average size of error in relative diameter prediction was
below 0.1 for all relative height classes and for all species
(Figure 5).

For the eight species with sample size larger than 200
trees (Figure 1), the division of data of each species by 8
size groups and by 10 relative height classes provided
more than 600 observations of local bias and precision in
relative diameter prediction. Somerelative height classes
close to the tip of smaller size groups had less than 10
observations, and they were merged with the adjacent
relative height class. Almost all values of local bias in
relative diameter prediction werewithin = 0.05, with 95%
of the observations within + 0.035, and 90% within
0.025. There was not a pattern of local bias that varied
systematically with tree size among the 8 species. Two
species, E. delegatensis and E. sieberi, were shown as
examples (Figure 6). Theformer had thelargest sizerange
and the latter the largest number of sample trees.

The trigonometric taper functions were generally
less biased and more precise than the taper model of
Kozak (1988) for predicting both relative diameter and
absolute underbark diameter. On average, the mean
squared error of prediction of Kozak’s model was 7.4%

greater than that of the trigonometric taper function for
predicting relative diameter and 14% greater for pre-
dicting absolute underbark diameter for the 26 species
(Table 3). In either case, the largest value of the ratio
between MSEP, and MSEPg was 50% or more. The
magnitude of local bias of Kozak’s model was on
average 28% greater than that of the trigonometric
taper equation for predicting relative diameter and
25% greater for predicting absolute underbark diam-
eter. For the eight species with data divided into eight
size groupsin height-diameter space, the magnitude of
local bias of Kozak’s model was 44% greater than that
of the trigonometric taper equation for predicting rela-
tive diameter and 19% greater for predicting absolute
underbark diameter when averaged over all size groups
and relative height intervals.

Thebiasin the estimation of merchantable height using
thetrigonometric taper functionswas small, not morethan
1 mfor all top end diameters and all species (Figure 7).
Precision of the estimation wasthebest for E. pilularisand
E. piperita, and the worst for E. camaldulensis and E.
agglomerata among the 25 species. As expected, the 90%
confidence intervals of the error of estimation generally
increased in width as top end diameter became larger.
They were not symmetric for certain top end diameters of
some species such as E. cypellocarpa. In comparison with
the confidence intervals, the interquartile range where
50% of the prediction error fell was generally much nar-
rower, mostly within 1.5 m or lessfor all species over the
range of top limit underbark diameter from 6 cm to 30 cm.
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Figure 4. Relative and absolute stem profiles for a small, an
average and a large tree derived from the trigonometric variable-
form taper function for E. delegatensis. The points on the stem
profiles are points of inflection obtained numerically from the
taper function. The broken lines show breast height and relative
breast height for the absolute and relative stem profiles of the
three trees.

Discussion

The trigonometric variable-form taper model has over-
come the weakness of unstable specification in the variable-
formtaper modelsintroduced by Newnham (1988, 1992) and
Kozak (1988, 1997). The characteristics of thismodel liein
itsbasefunctionandthe specificationfor theexponent K. The
construction of thebasefunctionfromtrigonometricvolume-
ratio equationsfollowsthegeometry of atreestemandisalso
constrained to pass through diameter at breast height. The
specification for the exponent K isbased on Fourier transfor-
mation. It has three trigonometric variables for depicting
changesin stemformalongthe stem and threeother variables
for taking into account differences in stem form between
trees of different sizes. These characteristics have provided
the flexibility observed in the model in fitting data without
resorting to variable selection for species and trees from a
rangeof growth conditionsandwithvaryingstemforms. This
flexibility isparticularly useful for minimizinglocal biasand
improving global prediction accuracy.
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Among the 25 species, E. delegatensis had the largest
size range and changes in stem form associated with tree
size were more evident (Bi and Hamilton 1998). Such
changes were adequately described by the trigonometric
taper function (Figure 4). The relative stem profile pre-
dicted from the trigonometric taper equation was more
paraboloidal for small trees, consistent with the findings
of Forslund (1991) and Allen (1993). The basal swell and
the neiloidal proportion at lower stem increased with tree
size. Consequently, the relative height of the point of
inflection (wherethetaper curve changesfrom neiloidal to
paraboloidal) on the predicted stem profile also increased
with tree size (Figure 4). Also, local bias was small and
practically negligible along the stemin all size groupsin
the height and diameter space (Figure 3, Figure 6).

Unlike Kozak’s (1988) model, which is constrained to
pass through a fixed inflection point for a given species
regardless of tree size, the trigonometric taper functionis
more flexible. It allows both the base function and the
exponent to vary with tree size. So the point of inflection
derived from the trigonometric taper function can vary
with tree size. For the three examples in Figure 4, the
relative height of the point of inflection, derived numeri-
cally from the trigonometric taper equation, ranged from
0.266 to 0.324, with a mean of 0.295. From the smallest
diameter tree to the largest within the data space (Figure
3), the point of inflection on the predicted stem profile
increased from arelative height of 0.268 to 0.347, almost
10% of thetotal treeheight. Thispredicted increasediffers
from the findings of Demaerschalk and K ozak (1977) that
relative height of theinflection pointisrelatively constant
within a species regardless of tree size. Such size-related
changes in relative height of the inflection point may
explain why variationsin the relative height of the inflec-
tion point in the base function of Kozak’s (1988) model
had little effect on its prediction accuracy (Perez et al.
1990, Lemay et al. 1993). The flexibility of the trigono-
metric taper model to depict such changes in stem form
could be amajor contributor to its comparatively superior
predictive performance.

Despite the usefulness of taper equations in forest
management, their development has been very limited for
nativetreespeciesin Australia(Goodwin 1992, Muhairwe
1999). As the management of native forests becomes
increasingly intensive, accurate estimates of stem volume
and taper will be needed for native tree species. Recently,
equations have been developed to predict total stem vol-
ume from ground to tip for 25 native tree species in
southern New South Walesand Victoria (Bi and Hamilton
1998). In addition, trigonometric volume-ratio equations,
which predict stem volume to any specified top height
limit as a percentage of the total stem volume, were
developed for these species (Bi 1999). When used together
with the companion total stem volume equations, they
allow direct predictions of volume of any stem section.
The trigonometric variable-form taper equations form a
part of a system of equations for stem volume and taper
predictions for these species. They will be used primarily
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Table 2. Parameters and fitting statistics for Equation (9) for predicting underbark diameter at breast height for the

25 species.

Species b, b, b, b, RMSE R’

C. gummifera -5.4249 -0.2918 4.4868 -1.6979 1.096 0.942
C. maculata 1.5514 -0.0784 -0.9343 -0.7221 0.699 0.987
E. agglomerata -3.1890 -0.2951 7.7669 —6.2804 1.491 0.979
E. badjensis 2.6711 0.0224 2.0702 -5.8250 0.827 0.997
E. camaldulensis 7.3801 -0.0257 -3.4093 -0.9238 1.503 0.991
E. cypellocarpa —6.3526 -0.2435 42712 —2.2543 0.705 0.992
E. dalrympleana -1.9227 0.0486 -1.9439 -0.5452 0.832 0.978
E. delegatensis -19.2493 -0.1124 6.2012 -1.7207 1.681 0.996
E. elata -2.5573 0.1193 -2.9895 0.0000 0.606 0.998
E. fastigata —4.7471 -0.0962 1.7585 -0.8877 0.940 0.993
E. fraxinoides -19.4705 -0.2660 10.7957 -5.3715 0.444 0.997
E. globoidea —-4.8415 -0.1452 2.1128 -0.6441 0.881 0.956
E. muellerana -3.4680 -0.0988 1.1051 -0.5494 0.945 0.997
E. nitens -0.8269 -0.0715 0.3794 -1.4807 0.602 0.997
E. obliqua -0.9364 -0.0628 0.5001 -0.9724 1.064 0.990
E. paniculata -3.6234 -0.1485 1.9373 -0.5739 0.913 0.960
E. pauciflora 12.2289 0.5486 -11.8786 0.0000 0.643 0.992
E. pilularis 2.4828 -0.0790 1.3682 -3.0222 0.831 0.988
E. piperita -1.7287 -0.1347 1.3574 -1.3270 0.553 0.989
E. radiata -6.8957 -0.3296 -1.2053 3.6160 0.917 0.987
E. saligna -11.3675 -0.2593 4.2534 0.0000 1.481 0.965
E. scias 3.1396 0.2192 -3.5289 0.0000 0.787 0.934
E. sieberi -5.7986 -0.0434 0.1301 0.5839 0.850 0.990
E. smithii 1.8002 0.0728 -2.7889 0.0000 0.955 0.985
E. spp. -14.7972 -0.5416 8.1128 -0.9621 0.931 0.981
E. viminalis -5.6868 -0.1732 2.4357 -1.2902 0.696 0.990

for predicting underbark diameter and estimating mer-
chantable height at specified top end diameters. For sev-
eral minor species, the size range of the sample trees was
relatively small; any extrapolation much beyond the size
range should be made with caution.
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Table 3. Comparative prediction accuracy of the trigonometric variable-form taper function and Kozak’s (1988) model
for predicting relative diameter and absolute underbark diameter. R, ,g-pand R,,,; are the ratio of mean squared error
of prediction and the ratio of the mean absolute local bias of Kozak’s (1988) taper model over that of the trigonometric
taper function. The extra value of Ry, for each of the 8 species with larger sample sizes was based on a total of 80
relative height classes in 8 size groups.

Relative diameter Underbark diameter

Species Ruser Ruyias Rusep Rpias

C. gummifera 1.07 1.38 1.19 1.74

C. maculata 1.02 1.01 1.32 1.00 1.15 0.95
E. agglomerata 1.02 1.42 1.08 0.68

E. badjensis 1.07 1.14 1.26 1.22

E. camaldulensis 1.01 0.94 0.98 0.99

E. cypellocarpa 1.02 0.89 0.91 1.04 0.93 1.13
E. dalrympleana 0.92 1.12 0.87 1.13

E. delegatensis 1.23 1.28 1.29 1.24 1.17 1.18
E. elata 1.22 1.73 1.47 2.40

E. fastigata 1.13 2.16 2.04 1.06 1.61 1.49
E. fraxinoides 1.00 0.66 1.02 1.00

E. globoidea 1.01 111 1.25 1.06 1.01 1.11
E. muellerana 1.10 0.83 1.50 2.05

E. nitens 1.06 1.79 1.33 1.92

E. obliqua 1.08 0.98 1.79 1.16 1.05 1.32
E. paniculata 0.97 1.70 1.02 1.05

E. pauciflora 1.52 1.25 1.25 1.24

E. pilularis 1.04 1.04 1.01 1.04

E. piperita 1.05 0.92 111 1.30

E. radiata 1.09 1.46 1.15 1.00 0.85 0.86
E. saligna 1.09 1.93 1.09 0.87

E. scias 1.04 1.79 1.47 1.90

E. sieberi 1.05 1.52 1.81 1.08 1.27 1.45
E. smithii 1.01 1.03 0.94 0.83

E. spp. 1.06 1.03 1.31 0.89

E. viminalis 1.04 1.14 1.08 1.10

Mean 1.07 1.28 1.44 1.14 1.25 1.19
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Error in merchantable height estimation (m)
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Figure 7. Bias and precision of merchantable height estimation for anumber of top end underbark diameters for the 25 species. The filled
circles represent the mean error of merchantable height estimation. For each top end diameter, 90% of the prediction errors fall within
the interval shown by the vertical bar, and 50% fall within the horizontal line segments cross the vertical bar. The number below each
bar indicates the number of data points.
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