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Trigonometric Variable-Form Taper
Equations for Australian Eucalypts
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ABSTRACT.  This article introduces a new variable-form taper model that is stable in specification yet
flexible in its ability to fit data for species and trees with different stem forms. The base function is
constructed from trigonometric volume-ratio equations following the geometry of a tree stem. The
specification for the exponent includes variables for depicting changes in stem form along a stem and
variables for taking into account differences in stem form among trees of different sizes. This model
is fitted to data from 25 species of Australian eucalypts and is compared with Kozak’s taper model
to demonstrate its characteristics: stability in specification, flexibility in fitting data for species and
trees with varying stem forms and accurate predictions of taper and merchantable height. FOR. SCI.
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T APER EQUATIONS THAT CAN ACCURATELY PREDICT the
diameter at any point on a stem from diameter at
breast height and total tree height, two readily mea-

sured variables that characterize the basic dimensions of tree
size, have long been the subject of research of many forest
scientists. The construction of such equations has taken a
number of approaches as demonstrated by the vast amount of
literature in this area (e.g., Fries and Matern 1966, Goulding
and Murray 1975, Max and Burkhart 1976, Clutter 1980,
Amidon 1984, Biging 1984, Newnham 1988, 1992, Kozak
1988, 1997, Candy 1989, Thomas and Parresol 1991,
Flewelling and Raynes 1993, Bailey 1994, Gordon et al.
1995, Fang and Bailey 1999). The weaknesses shared by
many taper equations are (1) the existence of a large degree
of local bias in diameter prediction over some portions of the
stem, particularly the lower and/or upper stem, despite a low
global bias, and (2) the failure to take into account differences
in stem form between trees. A recent approach introduced by
Newnham (1988, 1992) and Kozak (1988, 1997) uses a single
continuous function as the base with an exponent that changes
along the stem to describe the continuous change of stem
form from ground to tip. Such a power function eliminates the
necessity of developing segmented taper functions for differ-
ent portions of the stem in order to reduce local bias. The

exponent can also be specified to change with diameter at
breast height and tree height to account for the differences in
stem form between trees. In comparison with other ap-
proaches such as the whole bole system of Demaerschalk and
Kozak (1977) and the segmented polynomial function of
Max and Burkhart (1976), this approach has the least degree
of local bias and greater precision in taper predictions
(Newnham 1988, 1992, Kozak 1988, Perez et al. 1990, Kozak
and Smith 1993, Muhairwe 1999).

The methods of modeling the exponent have been to select
a subset of variables which fits the data well enough from a
larger number of candidates that are assumed to exert an
influence on the exponent in multiple linear least squares
regression (Newnham 1988, 1992, Kozak 1988, 1997, Perez
et al. 1990, Bi and Turner 1994, Muhairwe 1999). These
candidate variables, often large in number, usually include
various transformations of relative height, overbark diameter
at breast height, and total tree height. In the extreme cases,
dozens of combinations of these transformed variables were
reportedly included (Newnham 1992, Kozak 1997). These
variables are usually highly intercorrelated (Kozak 1997).
Such high multicollinearity leads to much inflated estimates
of the standard errors of parameters and also causes the least-
squares estimates of parameters to be unstable (Myers 1990,
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Fox 1991). Consequently, it is difficult to separate the indi-
vidual effects of the variables for discriminating redundant
ones in the model. A small change in the data can substan-
tially alter the least-squares coefficients (e.g., Kozak 1997)
and may result in a different subset of variables being se-
lected. In addition, the variable selection itself may not be
consistent in the sense that there is no guarantee that the same
subset will be selected as the sample size in the data increases
(Nishii 1984, Breiman 1992). The lack of consistency in
variable selection compounded with high multicollinearity
among the candidate predictors have made the variable-form
taper models overwhelmingly data driven, and indeed very
variable. As species or data sets change, different models
often emerge (Newnham1988, 1992, Kozak 1988, 1997,
Perez et al. 1990, Bi and Turner 1994, Muhairwe 1999). This
variability has translated the variable-form taper models,
particularly those of Newham (1988, 1992), into a general
approach rather than a model with stable designed features
apart from the specification of a general power function.

This article introduces a new variable-form taper model
that is stable in specification yet flexible in its ability to fit
data for species and trees with different stem forms. The
base function is constructed from trigonometric volume-
ratio equations. The specification for the exponent is
based on Fourier transformation. It includes variables for
depicting changes in stem form along the stem and vari-
ables for taking into account differences in stem form
between trees of different sizes. This model is fitted,
without resorting to subset selection, to data from 25
species of Australian eucalypts with a range of stem forms
and is compared with Kozak’s (1988) model to demon-
strate its accuracy and flexibility.

Notation

The following notation will be used throughout the re-
mainder of this article. Other notation specific to a particular
equation will be listed with the equation.

TH = total tree height in m;

H = height above ground, 0 < H ≤ TH, in m;

h = H/TH, relative height;

b = 1.3/TH, relative breast height;

DBHOB = diameter at breast height over bark;

DBHUB = diameter at breast height under bark;

DUB = diameter under bark at relative height h;

d = DUB/DBHUB, relative diameter;

K = a variable exponent that is a function of h and
DBHOB and TH.

B =
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π
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, the base function derived in this

article;
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−
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p
, the base function of Kozak (1988);

p = a species-specific relative height of the inflec-
tion point.

Data

The data set for this work included 5,739 trees from more
than 25 species of Eucalyptus and Corymbia. The sample size
among the species ranged from more than 1000 to less than
20 trees. For major commercial species, the sample size was
more than 100. For a number of minor species including E.
scias, E. consideniana, E. maideni, E. rubida, E.
angophoroides, E. bosistoana, the sample size was less than
20, so these species were grouped together and coded as
Eucalyptus spp. The diameter and height distributions of
these sample trees were summarized for all species using
Tukey’s (1977) boxplots (Figure 1). The geographical areas
and forest types where the samples were taken and the field
measurements of stem taper were described in detail by Bi
and Hamilton (1998).

The scatterplot of relative diameter against relative height
was examined visually for each species to detect possible
anomalies in the data. After spending much time searching
and checking the original data sheets of some individual trees
to verify and correct possible data errors one by one, a
systematic approach of detecting abnormal data points was
adopted to increase efficiency. Assuming identically distrib-
uted Gaussian errors, a nonparametric taper curve was fitted
for each species using local regression, loess (Cleveland
1993). A locally quadratic fitting with a smoothing parameter
of 0.25 was used for all species after some iterative fitting and
visual examination of the smoothed taper curves and the data.
The residuals of the nonparametric curve were divided into
ten even intervals of relative height. The distribution of
residuals within each interval was examined, and two par-
ticular values were calculated for discriminating extreme
data points: the lower quartile minus twice the interquartile
range and the upper quartile plus twice the interquartile
range. Data points outside the range of these two values are
very extreme points because this range is even greater than
that used in the boxplots of Tukey (1977) to show extreme
data points in an univariate distribution. The number of these
extreme data points accounted for between 0.89% and 4.04%
of the total number of taper measurements among the species,
and about 2.05% for all species combined.

Field notes on taper measurements of these points were
extracted from the database for detailed examination. Apart
from a small number of data errors, most of these data points
were from deformed stem sections due to the presence of fire
scars, large knots or bulges, other physical damages, partial
death of the stem and coppice, or epicormic growth, etc.,
reflecting partly the frequent fire disturbance in the regrowth
forests where many of the samples were taken (Bi and Jurskis
1996). Since the taper equations were not intended for stem
sections with deformities, these data points were excluded
from further analysis.
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Figure 1.  Boxplots of diameter overbark at breast height (DBHOB) and total height of sample trees of 25 species of Eucalyptus and
Corymbia, plus a sample labelled E. spp. being a mixture of eucalypt species each of sample size less than 20. Numbers on the righthand
side indicate the number of sample trees.

Model Derivation and Estimation

Considering a tree bole with a given relative stem profile
(Figure 2), the volume of a stem section from ground to any
specified top height or diameter limit can be expressed as a
volume ratio (i.e., a percentage of the total stem volume).
Volume ratio increases monotonically from 0 to 1 as relative
height increases from 0 to 1 and as relative diameter de-
creases from a value greater than 1 to 0. The volume ratio to
any top height limit (Rh) can be expressed as a function of
relative height h, Rh = f1(h). Similarly, the volume ratio to any
top end diameter limit (Rd) can be expressed as a function of
relative diameter d, Rd = f2(d). At any given point on the stem
profile, a volume ratio can be obtained from either Rh or Rd,
and the two values must be the same such that Rd = Rh, and
so f2(d) = f1(h). The inverse of this relation-
ship, d f f h= −

2
1

1( ( )) , provides a taper function for the stem
profile.

The model developed by Bi (1999) for predicting the
volume ratio to any specified top height limit for these species
takes the following form:
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where Rh is the ratio between stem volume from ground to
relative height h and the total stem volume, α1 to α4 are

coefficients specific to each species. Arguments for trigono-
metric functions are expressed in radians. The predicted
volume ratio at breast height, Rb, differs among trees because
the relative breast height, b, changes with total tree height.
The volume ratio to any diameter limit can be predicted from
relative diameter using the following model form:

R Rd b
d K=

1

(2)

Equation (2) is related to Equation (1) through Rb, which is
the predicted volume ratio at relative breast height from Equa-
tion (1). Another exponential function similar to Equation (2),
but using the base of the natural logarithm in place of Rb, has been
shown to provide accurate predictions of volume-ratio to any
diameter limit for Pinus taeda (Van Deusen et al. 1981). For a
given stem profile, the values of Rh and Rd should be the same
for any given volume ratio such that

R Rb
d

h
K

1

= (3)

Rearranging Equation (3), d becomes the dependent vari-
able of the power function

d
R

R
h

b

K
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ln
ln

(4)

where ln represents natural logarithm. Taking K as a variable
exponent that changes with h and tree size, Equation (4)
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becomes a taper function that is consistent with Equation (1)
since they are mathematically related. However, this model
is not the most parsimonious because Rh and Rb are predicted
already by four parameters in Equation (1). To improve
model parsimony, Rh and Rb are replaced by

sin
π
2

h



  and sin
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 respectively, such that
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b
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(5)

In comparison with the variable-form taper models of
Newnham (1988) and Kozak (1988), the characteristics of
Equation (5) lie in the base of the power function, which is the
ratio between the logarithms of two trigonometric functions.
The denominator is a negative constant for a given tree, and
the numerator lies between – ∞ and 0 as relative height h
varies from 0 to 1. The ratio tends to ∞  as h tends to 0 and
equals 0 when h = 1. This monotonic base function also

differs among trees because the relative breast height, b,
varies with total tree height. In addition, this trigonometric
variable-form taper function is conditioned to pass through
underbark diameter at breast height since the base function
equals 1 when h = b (i.e., relative height equal to relative
breast height). Bi and Turner (1994) found that a sine func-
tion was a better base function than that used by Newnham
(1988, 1992) for describing average stem profiles using a
power function possibly because the trigonometric function
has inherent inflection points and is hence more flexible.

For simplicity, the taper model specified in Equation (5)
can be written as a general power function:

d BK= (6)

where B represents the base, a monotonic function of relative
height h. Because no biological or statistical theory can be
relied on to identify the “true” model for K, an empirical
function purely for the purpose of prediction will have to
come from exploratory model building. A preliminary analy-
sis regressing lnd against lnB without the intercept term (i.e.,
effectively taking K as a constant) resulted in residuals
showing cyclic patterns for every species. The common
approach of overcoming such patterned residuals has been
the use of polynomial functions of h in variable-form taper
functions (Newham 1988, 1992, Kozak 1988, 1997, Perez et
al. 1990, Muhairwe 1999), and more so in other nonsegmented
taper functions which often involve many terms and in some
cases a very high power term (e.g., Bruce et al. 1968, Gordon
1983). However, the theory of Fourier analysis suggests that
any cyclic function can be decomposed into a weighted sum
of mutually orthogonal sine and cosine pairs (Mathews
1987). Often a few large Fourier weights are able to provide
a compact structural summary of the observed periodicity in
empirical data. Analyses using two and three pairs of sine and
cosine with different frequencies showed almost no cyclic
patterns in the residuals. After further exploratory analysis of
various equation forms and consideration of model parsi-
mony, the variable exponent K was specified as a function of
relative height h, DBHOB, and tree height TH for all species
as follows:
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where a1 to a7 are parameters. The first three trigonometric
variables were used for depicting changes in stem form along
the stem, and the last three variables were used for taking into
account differences in stem form between trees of different
sizes.

Substituting Equation (7) into Equation (6) and taking loga-
rithm on both sides, lnd becomes a linear function of variables
that are multiplications of the logarithm of base B and all
variables in Equation (7) as shown in Equation (8) below.

Figure 2.  Diagram showing the derivation of the base function of
the trigonometric variable form taper model (see Notation and
text).
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Equation (8) was fitted to data using least squares regres-
sion to obtain parameter estimates for each species. Positive
autocorrelations and heteroskedasticity present in the data
were not taken into account in the least squares regression.
When both are present, the least squares estimates of regres-
sion coefficients remain unbiased and consistent, although
no longer efficient (Myers 1990). Prediction accuracy is little
affected by autocorrelation in the error term and
multicollinearity among predictor variables in the equation
(Kozak 1997). Even when the correlated error structure is
accounted for in fitting taper models, the improvement in
prediction accuracy was too small to be of practical impor-
tance (Williams and Reich 1997).

Predicting Underbark
Diameter at Breast Height

The dependent variable of the trigonometric taper func-
tions is relative diameter d (i.e., the ratio of diameter underbark
at any height above ground to that at breast height). To
convert any predicted relative diameter to absolute underbark
stem diameter, DBHUB must first be estimated. To facilitate
the application of the taper equations, a set of equations was
developed for these species using the following equation
form

DBHUB DBHOBeb b DBHOB b DBHOB b TH= + + +
1

0 1 2 3ln ln (9)

where b0 – b3 are parameters. This equation form was
selected from several linear and nonlinear model forms by
comparing their prediction accuracy within the range of
observed data and consistency in extrapolation beyond this
range. The equation was linearized and parameters were
estimated using least squares regression.

Validation

Prediction Accuracy
To assess the prediction accuracy of the estimated taper

equations, the resampling approach taken by Bi (1999) was
adopted. For each species with N sample trees, Equation (8)
was fitted N times. Each time, all data points of one tree were
removed from the fitting process, and predicted values of
relative diameter were obtained for them using the coeffi-
cients estimated from the remaining data. The difference
between the observed and predicted values was taken as the
error of prediction, ε. The mean squared error of prediction
(MSEP) was taken as a measure of prediction accuracy:

MSEP 

Var

= = − +( )
= +( )

E E E E

E

( ) ( ) ( )

( ) ( )

ε ε ε ε

ε ε

2 2

2 (10)

where Var(ε) and E(ε) were the variance and expectation of
prediction error, indicating the precision and the bias of
prediction respectively (Wackerly et al. 1996). The average
size of prediction error is indicated by E(|ε|). For a normally
distributed ε with zero mean and variance σ2, E(|ε|) equals

2 / πσ (Flury 1990, Greene 1993). The accuracy of predic-

tion was evaluated over ten relative height intervals for each
species. Within each interval, E(ε), E(|ε|) and the 2.5th and
the 97.5th percentiles of prediction error were calculated and
plotted to show the bias and precision of prediction.

For eight species with more than 200 sample trees (Figure
1), the taper equations were further evaluated to see if they
adequately reflected the differences in stem shape associated
with changes in tree size that was found with some species
(Forslund 1991, Allen 1993, Bi and Turner 1994, Muhairwe
1994). For each of these species, the data were divided into
eight size classes according to DBHOB and tree height in a
manner similar to that of Flewelling and Raynes (1993). A
nonparametric height-diameter curve was fitted at first using
local regression, loess (Cleveland 1993), with a locally qua-
dratic fitting and a smoothing parameter of 0.75. The height-
diameter curve divided the data points of each species into
two parts (Figure 3). Points above the curve had greater than
average height at a given diameter, while points below the
curve showed the contrary. Then the data were further di-
vided into four diameter classes by using the median, the
upper and lower quartiles shown in Figure 1. Thus the data of
each species was divided into eight size classes in the height-
diameter space (Figure 3). For each group, the accuracy of
prediction was evaluated over ten relative height intervals by
calculating E(ε), E(|ε|) and the 2.5th and the 97.5th percen-
tiles of prediction error.

Model Comparison
Prediction accuracy of the trigonometric taper function

for each species was compared with that of the taper model of
Kozak (1988):

Figure 3.  Height plotted against DBHOB for E. delegatensis as an
example of the division of data into 8 size groups in the height-
diameter space for the eight species, each with more than 200
sample trees.
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This model was fitted using least squares regression for
each species. Errors of prediction were obtained using the
same resampling approach as described above. However,
instead of taking p as the species-specific relative height
of inflection point in the base function BK as defined by
Kozak (1988), the relative height of centroid was used,
which ranged from 0.206 to 0.258 among the 25 species
(Bi 1999). Variations in the value of p between 0.15 and
0.35 were shown to have little effect on the prediction
accuracy of the variable-exponent model (Perez et al.
1990, LeMay et al. 1993).

Prediction accuracy of the two models was com-
pared in terms of predictions of both relative diameter
and underbark stem diameter to see how each per-
formed when used for describing stem form and pre-
dicting underbark stem diameter. The dependent vari-
able of Kozak’s (1988) model is underbark diameter,
DUB, not relative diameter, d, as in the trigonometric
taper function. Therefore, the predicted values of DUB
from Kozak’s (1988) model were divided by DBHUB to
obtain predicted relative diameter, and the predicted
values of relative diameter from the trigonometric taper
functions were multiplied by DBHUB predicted from
Equation (9) to obtain predicted DUB. Values of the
mean squared error of prediction (MSEP) and bias in
the prediction of both relative and absolute underbark
diameter were compared between the two models across
species, species by relative height classes for all spe-
cies, and species by size groups and by relative height
classes for the eight species with large samples. Since
it was too lengthy to report, this detailed comparison
was summarized by two ratios for each species, RMSEP
= MSEPK/MSEPB and Rbias = E EK B( ) ( )ε ε , where
MSEPK is the mean squared error of prediction of
Kozak’s (1988) model and MSEPB is that of the trigo-
nometric taper function, E K( )ε  is the absolute value of
local bias over 10 relative height intervals for Kozak’s
(1988) model and E B( )ε  is that of the trigonometric
taper function. The two ratios indicated the overall
predictive performance and the average magnitude of
local bias of the trigonometric taper function relative
to Kozak’s(1988) model. For each of the 8 species with
large samples, an additional value of Rbias was ob-
tained from a total of 80 values of local bias because the
data were divided by 8 size groups and by 10 relative
height intervals.

Accuracy of Merchantable Height Estimation
Apart from taper prediction, taper functions are also

used for estimating the merchantable height of a tree given
a specified top end diameter (Kozak and Smith 1993).
Since the trigonometric taper functions cannot be trans-
posed to give explicit mathematical solutions of relative
height for a given relative diameter, numerical solutions
have to be obtained through iterations. Using the trigono-
metric taper functions and DBHUB predicted from Equa-
tion (9), the predicted merchantable height for a range of
top limit underbark diameter from 6 cm to 30 cm with an
even interval of 2 cm was obtained through numerical
iterations for all trees with predicted DBHUB greater than
the specified top diameter limit. For many species, a top
limit underbark diameter of 8 cm is the current specifica-
tion in management. The observed merchantable height
was obtained through linear interpolation for each tree
using taper measurements immediately below and above
the point of interpolation. Linear interpolation was used
because taper measurements above breast height were
taken at 1.5 m intervals for most trees and at 3 m intervals
only for a small number of samples of mainly E.
delegatensis. Quadratic interpolation would improve the
accuracy of merchantable height estimation very little.
The difference between the observed and predicted values
of merchantable height was taken as the error of predic-
tion. For each species, the mean, the lower and upper
quartile, the 2.5th and the 97.5th percentiles of prediction
error for each specified top end diameter were calculated
and plotted to show the bias and precision of prediction.

Results

The complete expression of the trigonometric taper
model is the same for all species [see Equation (12)
below].

The estimated parameters are shown in Table 1. Three
stem profiles were made for a small, average, and large
tree using the taper function for E. delegatensis as an
example (Figure 4). These stem profiles illustrated the
changes in stem form along the stem and also differences
in stem form among trees of different sizes as depicted by
the trigonometric taper function. Predictions of underbark
diameter from DBHOB and tree height can be obtained by
multiplying the predicted relative diameter with underbark
diameter at breast height predicted from Equation (9) and
parameters in Table 2.

There was little local bias across relative height classes
in the predictions of relative diameter for all species
[Figure (5)]. For C. maculata, E. badjensis, E. delegatensis,
E. fastigata, E. fraxinoidies, E. pilularis, and E. piperita,
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the precision of prediction was relatively high among the
species as shown by the narrower confidence intervals
across all relative height classes for these species. For C.
gummifera, E. camuldulensis, E. pauciflora, and E. ra-
diata, the precision was relatively low. As expected, the
prediction in the section closest to the ground was gener-
ally less precise than that in other stem sections. The
average size of error in relative diameter prediction was
below 0.1 for all relative height classes and for all species
(Figure 5).

For the eight species with sample size larger than 200
trees (Figure 1), the division of data of each species by 8
size groups and by 10 relative height classes provided
more than 600 observations of local bias and precision in
relative diameter prediction. Some relative height classes
close to the tip of smaller size groups had less than 10
observations, and they were merged with the adjacent
relative height class. Almost all values of local bias in
relative diameter prediction were within ± 0.05, with 95%
of the observations within ± 0.035, and 90% within ±
0.025. There was not a pattern of local bias that varied
systematically with tree size among the 8 species. Two
species, E. delegatensis and E. sieberi, were shown as
examples (Figure 6). The former had the largest size range
and the latter the largest number of sample trees.

The trigonometric taper functions were generally
less biased and more precise than the taper model of
Kozak (1988) for predicting both relative diameter and
absolute underbark diameter. On average, the mean
squared error of prediction of Kozak’s model was 7.4%

greater than that of the trigonometric taper function for
predicting relative diameter and 14% greater for pre-
dicting absolute underbark diameter for the 26 species
(Table 3). In either case, the largest value of the ratio
between MSEPK and MSEPB was 50% or more. The
magnitude of local bias of Kozak’s model was on
average 28% greater than that of the trigonometric
taper equation for predicting relative diameter and
25% greater for predicting absolute underbark diam-
eter. For the eight species with data divided into eight
size groups in height-diameter space, the magnitude of
local bias of Kozak’s model was 44% greater than that
of the trigonometric taper equation for predicting rela-
tive diameter and 19% greater for predicting absolute
underbark diameter when averaged over all size groups
and relative height intervals.

The bias in the estimation of merchantable height using
the trigonometric taper functions was small, not more than
1 m for all top end diameters and all species (Figure 7).
Precision of the estimation was the best for E. pilularis and
E. piperita, and the worst for E. camaldulensis and E.
agglomerata among the 25 species. As expected, the 90%
confidence intervals of the error of estimation generally
increased in width as top end diameter became larger.
They were not symmetric for certain top end diameters of
some species such as E. cypellocarpa. In comparison with
the confidence intervals, the interquartile range where
50% of the prediction error fell was generally much nar-
rower, mostly within 1.5 m or less for all species over the
range of top limit underbark diameter from 6 cm to 30 cm.

Species a1 a2 a3 a4 a5 a6 a7 R2 RMSE I2 IRMSE
C. gummifera 1.5745 –0.4691 –0.0995 –0.8095 0.0028 0.0468 –0.0489 0.92 0.132 0.90 0.100
C. maculata 0.9477 –0.1125 –0.0050 –0.4595 –0.0018 0.0731 –0.0632 0.96 0.103 0.97 0.053
E. agglomerata 1.9268 –0.4932 –0.0437 –0.9866 0.0020 0.0348 –0.0617 0.95 0.131 0.94 0.080
E. badjensis 1.6678 –0.1985 –0.0214 –0.9098 –0.0003 0.0603 –0.0872 0.99 0.079 0.98 0.043
E. camaldulensis 0.8364 0.2216 –0.0031 –0.4110 0.0015 0.0547 –0.1332 0.92 0.159 0.94 0.077
E. cypellocarpa 0.4361 0.1186 0.0552 –0.1528 –0.0011 0.0641 –0.0632 0.95 0.113 0.94 0.070
E. dalrympleana 0.8266 –0.3792 –0.0470 –0.3323 –0.0022 0.0342 0.0367 0.95 0.128 0.95 0.069
E. delegatensis 1.2992 –0.0564 0.0096 –0.7248 0.0017 –0.0099 –0.0254 0.96 0.107 0.96 0.054
E. elata 1.2717 0.2267 0.0515 –0.6965 –0.0003 0.0955 –0.1777 0.97 0.103 0.97 0.053
E. fastigata 0.7965 0.0513 0.0312 –0.3703 –0.0011 0.0737 –0.0874 0.97 0.099 0.97 0.052
E. fraxinoides 1.1467 –0.0718 0.0048 –0.6167 0.0015 0.0201 –0.0424 0.97 0.089 0.97 0.046
E. globoidea 1.0495 –0.2678 –0.0062 –0.4681 –0.0025 0.1120 –0.0905 0.95 0.108 0.93 0.076
E. muellerana 1.9618 –0.5850 –0.0783 –0.9549 –0.0004 0.0826 –0.0953 0.95 0.131 0.93 0.088
E. nitens 0.9654 0.0889 0.0329 –0.5134 0.0004 0.0496 –0.0833 0.95 0.130 0.97 0.055
E. obliqua 0.5744 0.2210 0.0748 –0.2838 0.0001 0.0554 –0.0863 0.96 0.108 0.95 0.064
E. paniculata 1.3308 –0.2888 –0.0334 –0.6855 –0.0008 0.1121 –0.1022 0.95 0.107 0.94 0.075
E. pauciflora 1.1689 0.3397 0.0372 –0.6628 0.0043 0.0675 –0.2003 0.95 0.134 0.94 0.083
E. pilularis 1.0546 –0.2531 –0.0168 –0.4707 –0.0020 0.0880 –0.0711 0.97 0.095 0.97 0.054
E. piperita 0.5564 –0.1492 0.0162 –0.1696 –0.0015 0.0696 –0.0349 0.94 0.120 0.97 0.053
E. radiata 0.7775 0.1525 0.0025 –0.3706 0.0004 0.0683 –0.1247 0.92 0.158 0.94 0.079
E. saligna 1.0391 –0.5304 –0.0298 –0.4386 –0.0017 0.0565 0.0128 0.97 0.094 0.96 0.059
E. scias 0.2577 0.2832 0.0692 –0.0243 –0.0090 0.1519 –0.1540 0.93 0.131 0.94 0.074
E. sieberi 0.8948 –0.0415 0.0349 –0.3895 –0.0004 0.0744 –0.0951 0.96 0.106 0.95 0.071
E. smithii 1.9891 –0.5870 –0.0256 –0.9106 –0.0020 0.0863 –0.0927 0.96 0.109 0.93 0.085
E. spp. 0.9834 0.1636 0.0406 –0.4887 0.0006 0.1178 –0.1874 0.94 0.136 0.91 0.097
E. viminalis 1.3184 –0.0296 0.0158 –0.7196 0.0012 0.0420 –0.0847 0.96 0.105 0.96 0.060

Table 1.  Parameters of the trigonometric variable-form taper model [Equation (12)] for the 25 species. The fitting statistics for the
regression involving log transformed relative diameter are R 2 and root mean squared error (RMSE). I 2 and IRMSE represent the
corresponding fit statistics for the regression between observed and predicted relative diameter obtained through resampling.
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Discussion

The trigonometric variable-form taper model has over-
come the weakness of unstable specification in the variable-
form taper models introduced by Newnham (1988, 1992) and
Kozak (1988, 1997). The characteristics of this model lie in
its base function and the specification for the exponent K. The
construction of the base function from trigonometric volume-
ratio equations follows the geometry of a tree stem and is also
constrained to pass through diameter at breast height. The
specification for the exponent K is based on Fourier transfor-
mation. It has three trigonometric variables for depicting
changes in stem form along the stem and three other variables
for taking into account differences in stem form between
trees of different sizes. These characteristics have provided
the flexibility observed in the model in fitting data without
resorting to variable selection for species and trees from a
range of growth conditions and with varying stem forms. This
flexibility is particularly useful for minimizing local bias and
improving global prediction accuracy.

Among the 25 species, E. delegatensis had the largest
size range and changes in stem form associated with tree
size were more evident (Bi and Hamilton 1998). Such
changes were adequately described by the trigonometric
taper function (Figure 4). The relative stem profile pre-
dicted from the trigonometric taper equation was more
paraboloidal for small trees, consistent with the findings
of Forslund (1991) and Allen (1993). The basal swell and
the neiloidal proportion at lower stem increased with tree
size. Consequently, the relative height of the point of
inflection (where the taper curve changes from neiloidal to
paraboloidal) on the predicted stem profile also increased
with tree size (Figure 4). Also, local bias was small and
practically negligible along the stem in all size groups in
the height and diameter space (Figure 3, Figure 6).

Unlike Kozak’s (1988) model, which is constrained to
pass through a fixed inflection point for a given species
regardless of tree size, the trigonometric taper function is
more flexible. It allows both the base function and the
exponent to vary with tree size. So the point of inflection
derived from the trigonometric taper function can vary
with tree size. For the three examples in Figure 4, the
relative height of the point of inflection, derived numeri-
cally from the trigonometric taper equation, ranged from
0.266 to 0.324, with a mean of 0.295. From the smallest
diameter tree to the largest within the data space (Figure
3), the point of inflection on the predicted stem profile
increased from a relative height of 0.268 to 0.347, almost
10% of the total tree height. This predicted increase differs
from the findings of Demaerschalk and Kozak (1977) that
relative height of the inflection point is relatively constant
within a species regardless of tree size. Such size-related
changes in relative height of the inflection point may
explain why variations in the relative height of the inflec-
tion point in the base function of Kozak’s (1988) model
had little effect on its prediction accuracy (Perez et al.
1990, Lemay et al. 1993). The flexibility of the trigono-
metric taper model to depict such changes in stem form
could be a major contributor to its comparatively superior
predictive performance.

 Despite the usefulness of taper equations in forest
management, their development has been very limited for
native tree species in Australia (Goodwin 1992, Muhairwe
1999). As the management of native forests becomes
increasingly intensive, accurate estimates of stem volume
and taper will be needed for native tree species. Recently,
equations have been developed to predict total stem vol-
ume from ground to tip for 25 native tree species in
southern New South Wales and Victoria (Bi and Hamilton
1998). In addition, trigonometric volume-ratio equations,
which predict stem volume to any specified top height
limit as a percentage of the total stem volume, were
developed for these species (Bi 1999). When used together
with the companion total stem volume equations, they
allow direct predictions of volume of any stem section.
The trigonometric variable-form taper equations form a
part of a system of equations for stem volume and taper
predictions for these species. They will be used primarily

Figure 4.  Relative and absolute stem profiles for a small, an
average and a large tree derived from the trigonometric variable-
form taper function for E. delegatensis. The points on the stem
profiles are points of inflection obtained numerically from the
taper function. The broken lines show breast height and relative
breast height for the absolute and relative stem profiles of the
three trees.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article/46/3/397/4617336 by guest on 20 April 2024



Forest Science 46(3) 2000 405

Table 2.  Parameters and fitting statistics for Equation (9) for predicting underbark diameter at breast height for the
25 species.

Species b0 b 1 b 2 b 3 RMSE R2

C. gummifera –5.4249 –0.2918 4.4868 –1.6979 1.096 0.942
C. maculata 1.5514 –0.0784 –0.9343 –0.7221 0.699 0.987
E. agglomerata –3.1890 –0.2951 7.7669 –6.2804 1.491 0.979
E. badjensis 2.6711 0.0224 2.0702 –5.8250 0.827 0.997
E. camaldulensis 7.3801 –0.0257 –3.4093 –0.9238 1.503 0.991
E. cypellocarpa –6.3526 –0.2435 4.2712 –2.2543 0.705 0.992
E. dalrympleana –1.9227 0.0486 –1.9439 –0.5452 0.832 0.978
E. delegatensis –19.2493 –0.1124 6.2012 –1.7207 1.681 0.996
E. elata –2.5573 0.1193 –2.9895 0.0000 0.606 0.998
E. fastigata –4.7471 –0.0962 1.7585 –0.8877 0.940 0.993
E. fraxinoides –19.4705 –0.2660 10.7957 –5.3715 0.444 0.997
E. globoidea –4.8415 –0.1452 2.1128 –0.6441 0.881 0.956
E. muellerana –3.4680 –0.0988 1.1051 –0.5494 0.945 0.997
E. nitens –0.8269 –0.0715 0.3794 –1.4807 0.602 0.997
E. obliqua –0.9364 –0.0628 0.5001 –0.9724 1.064 0.990
E. paniculata –3.6234 –0.1485 1.9373 –0.5739 0.913 0.960
E. pauciflora 12.2289 0.5486 –11.8786 0.0000 0.643 0.992
E. pilularis 2.4828 –0.0790 1.3682 –3.0222 0.831 0.988
E. piperita –1.7287 –0.1347 1.3574 –1.3270 0.553 0.989
E. radiata –6.8957 –0.3296 –1.2053 3.6160 0.917 0.987
E. saligna –11.3675 –0.2593 4.2534 0.0000 1.481 0.965
E. scias 3.1396 0.2192 –3.5289 0.0000 0.787 0.934
E. sieberi –5.7986 –0.0434 0.1301 0.5839 0.850 0.990
E. smithii 1.8002 0.0728 –2.7889 0.0000 0.955 0.985
E. spp. –14.7972 –0.5416 8.1128 –0.9621 0.931 0.981
E. viminalis –5.6868 –0.1732 2.4357 –1.2902 0.696 0.990

for predicting underbark diameter and estimating mer-
chantable height at specified top end diameters. For sev-
eral minor species, the size range of the sample trees was
relatively small; any extrapolation much beyond the size
range should be made with caution.

Literature Cited
ALLEN, P.J. 1993. Average relative stem profile comparisons for tree size

classes of Caribbean pine. Can. J. For. Res. 23:2594–2598.

AMIDON, E.L. 1984. A general taper functional form to predict bole volume for
five mixed-conifer species in California. For. Sci. 30:166–171.

BAILEY, R.L. 1994. A compatible volume-taper model based on the Schumacher
and Hall generalised constant form factor volume equation. For. Sci.
40:303–313.

BI, H. 1999. Predicting stem volume to any height limit for native tree species
in Southern New South Wales and Victoria. N.Z. J. For. Sci. 29:318–331.

BI, H., AND F. HAMILTON. 1998. Stem volume equations for native tree species
in southern New South Wales and Victoria. Aus. For. 61:275-286.

BI, H., AND V. JURSKIS. 1996. Yield equations for irregular regrowth forests of
Eucalyptus fastigata on the south-east tablelands of New South Wales.
Aus. For. 59:151–160.

BI, H., AND J. TURNER. 1994. Long term effects of superphosphate fertilization
on stem form, taper and stem volume estimation of Pinus radiata. For.
Ecol. Manage. 70:285–297.

BIGING, G.S. 1984. Taper equations for second-growth mixed conifers of
northern California. For. Sci. 30:1103–1117.

BREIMAN, L. 1992. The little bootstrap and other methods for multidimension-
ality selection in regression:X-fixed prediction error. J. Am. Stat. Assoc.
87:738–754.

BRUCE, D.R., R.O. CURTIS, AND C. VANCOEVERING. 1968. Development of a
system of taper and volume tables for red alder. For. Sci. 14:339–350.

CANDY, S.G. 1989. Compatible tree volume and variable-form stem taper
models for Pinus radiata in Tasmania. N.Z. J. For. Sci. 19:97–111.

CLEVELAND, W.S. 1993. Visualizing data. AT&T Bell Laboratories, Murray
Hill, NJ. 360 p.

CLUTTER, J.L. 1980. Development of taper functions from variable-top
merchantable volume equations. For. Sci. 26:117–120

DEMAERSCHALK, J.P., AND A. KOZAK. 1977. The whole-bole system: A condi-
tioned dual-equation system for precise prediction of tree profiles. Can.
J. For. Res. 7:488–497.

FANG, Z., AND R.L. BAILEY. 1999. Compatible volume and taper models with
coefficients for tropical species on Hainan Island in Southern China. For.
Sci. 45:85–100.

FLEWELLING, J.W., AND L.M. RAYNES. 1993. Variable-shape stem-profile
predictions for western hemlock. Part I. Predictions from DBH and total
height. Can. J. For. Res. 23:520–536.

FLURY, B. 1990. Principal points. Biometrica 77:33–41.

FORSLUND, R.R. 1991. The power function as a simple stem profile examina-
tion tool. Can. J. For. Res. 21:193–198.

FOX, J. 1991. Regression diagnostics. Sage Univ. Pap. Ser. on Quantitative
applications in the social sciences, Series No:07-079. Sage, Newbury
Park, CA

FRIES, J., AND B. MATERN. 1966. On the use of multivariate methods for the
construction of tree taper curves. P. 85–117 in Res. Notes, No. 9. Internat.
Advisory Group of Forest Statisticians. Dep. of For. Biom., Roy. Coll. of
For., Stockholm, Sweden. 370 p.

GOODWIN, A. 1992. A taper equation for Eucalyptus obliqua. P. 454–467 in
Proc. of IUFRO conf. on Integrating forest information over space and
time. ANUTECH Pty Ltd., Canberra, Australia. 499 p.

GORDON, A.D. 1983. Comparison of compatible polynomial taper equations.
N.Z. J. For. Sci. 13:146–155.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article/46/3/397/4617336 by guest on 20 April 2024



406 Forest Science 46(3) 2000

GORDON, A.D., C. LUNDGREN, AND E. HAY. 1995. Development of a composite
taper equation to predict over- and under-bark diameter and volume of
Eucalyptus saligna in New Zealand. N.Z. J. For. Sci. 25:318–327.

GOULDING, C.J., AND J.C. MURRAY. 1975. Polynomial taper equations that are
compatible with tree volume equations. N.Z. J. For. Sci. 5:313–322.

GREENE, W.H. 1993. Econometric analysis. Ed 2. MacMillan, New
York. 791 p.

KOZAK, A. 1988. A variable-exponent taper equation. Can. J. For. Res.
18:1363–1368.

KOZAK, A. 1997. Effects of multicollinearity and autocorrelation on the
variable-exponent taper functions. Can. J. For. Res. 27:619–629.

KOZAK, A., AND J.H.G. SMITH. 1993. Standards for evaluating taper estimating
systems. For. Chron. 69:438–444.

LEMAY, V.M., A. KOZAK, C.K. MUHAREWE, AND R.A. KOZAK. 1993.
Factors affecting the performance of Kozak’s (1988) variable-expo-
nent taper functions. Proc. of IUFRO conf. on Modern methods of
estimating tree and log volume. West Virginia Univ. Publ. Serv.,
Morgantown, WV, P. 168.

MATHEWS, J.H. 1987. Numerical methods for computer science, engineering
and mathematics. Prentice-Hall International, Inc., London. 507 p. (AU:
Place of Publisher?)

MAX, T.A., AND H.E. BURKHART. 1976. Segmented polynomial regression
applied to taper equations. For. Sci. 22:283–289.

MUHAIRWE, C.K. 1994. Tree form and taper variation over time for interior
lodgepole pine. Can. J. For. Res. 24:1904–1913.

MUHAIRWE, C.K. 1999. Taper equations for Eucalyptus pilularis and E.
grandis for the north coast in New South Wales, Australia. For. Ecol.
Manage. 113:251–269.

MYERS, R.H. 1990. Classical and modern regression with applications. PWS-
KENT, Boston. 488 p.

NEWNHAM, R.M. 1988. A variable form taper function. For. Can. Petawawa
Nat. For. Inst. Inf. Rep., PI-X-83.

NEWNHAM, R.M. 1992. Variable-form taper functions for four Alberta tree
species. Can. J. For. Res. 22:210–223.

NISHII, R. 1984. Asymptotic properties of criteria for selection of variables in
multiple regression. Ann. Stat. 12:758–765.

PEREZ, D.N., H.E. BURKHART, AND C.T. STIFF. 1990. A variable-form taper
function for Pinus oocarpa Schiede in central Honduras. For. Sci.
36:186–191.

THOMAS, C.E., AND B.R. PARRESOL. 1991. Simple, flexible, trignometric taper
equations. Can. J. For. Res. 21:1132–1137.

TUKEY, J.W. 1977. Exploratory data analysis. Addison-Wesley, Reading,
MA. 688 p.

VAN DEUSEN, P.C., A.D. SULLIVAN, AND T.G. MATNEY. 1981. A prediction
system for cubic foot volume of Loblolly pine applicable through much
of its range. South. J. Appl. For. 5:186–189.

WACKERLY, D.D., W. MENDENHALL, AND R. L. SCHEAFFER. 1996. Mathematical
statistics with applications. Duxbury Press, Belmont. 798 p.

Williams, M.S., AND R.M. Reich. 1997. Exploring the error structure of taper
equations. For. Sci. 43:378-386.

Figure 5.  Bias and precision of taper prediction along relative height classes for the 25 species as indicated by the six-letter code for the
trigonometric variable-form taper functions. The filled circles represent the bias for the corresponding relative height classes. Within
each relative height class, 90% of the prediction errors fall within the interval shown by the vertical bar. The mean absolute values of
prediction error are indicated by the small horizontal line segment crossing the vertical bar. The horizontal lines immediately above and
blow the x-axis mark a range of ± 0.025. The number below each bar indicates the number of data points in the relative height class.
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Figure 6.  Bias and precision of taper prediction along relative height classes in each size group of E. delegatensis and E. sieberi (indicated
by the code in the strip of each panel) for the trigonometric variable-form taper functions. The filled circles represent the bias for the
corresponding relative height classes. Within each relative height class, 90% of the prediction errors fall within the interval shown by
the vertical bar. The mean absolute values of prediction error are indicated by the small horizontal line segment crossing the vertical
bar. The horizontal lines immediately above and below the x-axis mark a range of ± 0.025. The number below each bar indicates the
number of data points in the relative height class.
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Table 3.  Comparative prediction accuracy of the trigonometric variable-form taper function and Kozak’s (1988) model
for predicting relative diameter and absolute underbark diameter. RMSEP and Rbias are the ratio of mean squared error
of prediction and the ratio of the mean absolute local bias of Kozak’s (1988) taper model over that of the trigonometric
taper function. The extra value of Rbias for each of the 8 species with larger sample sizes was based on a total of 80
relative height classes in 8 size groups.

Relative diameter Underbark diameter

Species RMSEP Rbias RMSEP Rbias

C. gummifera 1.07 1.38 1.19 1.74

C. maculata 1.02 1.01 1.32 1.00 1.15 0.95
E. agglomerata 1.02 1.42 1.08 0.68
E. badjensis 1.07 1.14 1.26 1.22
E. camaldulensis 1.01 0.94 0.98 0.99
E. cypellocarpa 1.02 0.89 0.91 1.04 0.93 1.13
E. dalrympleana 0.92 1.12 0.87 1.13
E. delegatensis 1.23 1.28 1.29 1.24 1.17 1.18
E. elata 1.22 1.73 1.47 2.40
E. fastigata 1.13 2.16 2.04 1.06 1.61 1.49
E. fraxinoides 1.00 0.66 1.02 1.00
E. globoidea 1.01 1.11 1.25 1.06 1.01 1.11
E. muellerana 1.10 0.83 1.50 2.05
E. nitens 1.06 1.79 1.33 1.92
E. obliqua 1.08 0.98 1.79 1.16 1.05 1.32
E. paniculata 0.97 1.70 1.02 1.05
E. pauciflora 1.52 1.25 1.25 1.24
E. pilularis 1.04 1.04 1.01 1.04
E. piperita 1.05 0.92 1.11 1.30
E. radiata 1.09 1.46 1.15 1.00 0.85 0.86
E. saligna 1.09 1.93 1.09 0.87
E. scias 1.04 1.79 1.47 1.90
E. sieberi 1.05 1.52 1.81 1.08 1.27 1.45
E. smithii 1.01 1.03 0.94 0.83
E. spp. 1.06 1.03 1.31 0.89
E. viminalis 1.04 1.14 1.08 1.10

Mean 1.07 1.28 1.44 1.14 1.25 1.19
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Figure 7.  Bias and precision of merchantable height estimation for a number of top end underbark diameters for the 25 species. The filled
circles represent the mean error of merchantable height estimation. For each top end diameter, 90% of the prediction errors fall within
the interval shown by the vertical bar, and 50% fall within the horizontal line segments cross the vertical bar. The number below each
bar indicates the number of data points.
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