Nonlinear Mixed Effects Modeling for
Slash Pine Dominant Height Growth
Following Intensive Silvicultural
Treatments
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ABSTRACT. Amodified Richard’s growth model with nonlinear mixed effects is developed for modeling
slash pine (Pinus elliottii Engelm.) dominant height growth in conjunction with different silvicultural
treatments. All three parameters in the model turn out to have both fixed and random individual plot
or silvicultural treatments effects. Moving average correlation with 2° was identified as within-plot error
structure. The advantages of the mixed effects model in prediction for new responses are demon-
strated in detail by formulations and examples. The modified Richards model has a form that combines
dominant height growth and site index into one model form, so the incompatibility between height
growth and site index model can be avoided. The general methodologies of nonlinear mixed effects
model building, such as which parameters in the model should be considered to be random and which
should be purely fixed, how to determine appropriate within-plot variance covariance structure, and how
to specify between-plot variation via appropriate covariate modeling, are addressed in detail.
Likelihood ratio test and Akaike information criterion (AIC) are used in model performance evaluation.
Some useful graphical model diagnosis tools are also presented. For. Sci. 47(3):287-300.
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fixed length of time, are often used for evaluating

forest growth and yield and are especially effective
asasampling methodto eval uatechangesinforest conditions
(Avery and Burkhart 1994, p. 208). In the practice of inten-
sive forest management, some new attributes are added into
the usual permanent plot sampling method. For example, to
accelerate stand growth and development and to increase
financial returns, silvicultural treatments such asmechanical
and chemical site preparation and herbicide or fertilization
applications are very common. To monitor and predict the
changes of forest stands with different silvicultural treat-
ments or factors, the permanent plots are usually established
in amore careful way: they are actually built up from some
standard experimental design. For example, a split-plot de-
sign is often used in the southeastern United States. In one
such designed study, soil type serves asthewhole-plot factor

P ERMANENT SAMPLE PLOTS, measured repeatedly over a

and silvicultural treatment as the split-plot factor (Shiver et
al. 1994). A split-plot design with repeated measurements
naturally formsasplit-split plot designwith thetimefactor as
the within-plot effect (Gumpertz and Brownie 1993).
Intheforestry literature, acommon approach to modeling
such split-plot repeated measurement data from permanent
plotsistoonly “adjust” thefixed part of themodel with some
additional fixed termsthat partially explainthe“gains’ from
the silvicultural treatments (Pienaar and Rheney 1995, Mar-
tin et a. 1999, Castleberry 1998). The advantage of this
approach isits simplicity. It allows any treatment effects on
forest growth and yield to be explicitly expressed in the
model. However, thespecial propertiesof split-plot repeated-
measurement data as discussed above are partially or totally
ignored by this approach. For example, the variability of
individual plotsor within-plot correlationisrarely takeninto
account in such an approach. Consequently, different plots,
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no matter how different their plot attributes, will obtain
exactly the same “gains’ as long as they are treated by the
same silvicultural treatments. This is usually not realistic,
however. Also, any information contained in past observa-
tions for a plot or stand is only partially applicable in this
approach when predictions are desired for expected future
values for a specified plot.

Gregoire et al (1995) recently presented alinear mixed
effects model based on data from permanent plots and
justified the necessity of an appropriate variance-covari-
ance for the modeling of such data. While linear models
can be made robust to assumptions about the correlation,
especially when the number of observations per plot are
small relativeto the number of plots(Diggleet al. 1994, p.
79), this is not always true for nonlinear models. The
expectation of an individual mean response usually does
not coincide with the marginal mean of the population for
anonlinear model (Zeger etal. 1988, VV onesh and Chinchilli
1997, p. 295). Thus it is obviously inappropriate to use a
population mean response as the prediction for an indi-
vidual whose former information is available.

The idea of a random effects model is not new in
forestry. Conceptually it goes back as early as Dr. J.L.
Clutter’ sDuke University Ph.D. dissertation, whichisone
of the earliest recognitions of the uniqueness of repeated
measurementsin aforestry context (Clutter 1961). Clutter
noted that the independent randomness assumption in
regression analysis is violated by the repeated sampling
nature of datafrom permanent plots, and a corresponding
adjustment in regression analysis may be necessary. His
original assumption that observations from a particular
plot may reflect an underlying pattern which is particular
to that plot and a function of time as well is broadly
implemented today by a random effects model both in
statistics and in widespread applied fields, including for-
estry. Bailey and Clutter’'s (1974) article, in which the
concept of varying parameters uniquely identified with
sites (plot-specific parameters) was introduced, can be
considered the pioneering work in forestry. Thereafter,
other models with varying or random coefficients were
introduced in forestry (Garcia 1983, Borders and Bailey
and Clutter 1984, Biging 1985, Lappi and Bailey, 1988,
McDill and Amateis 1992, Lappi and Malinen 1994).

The methodology of linear and nonlinear mixed effects
models has been quite well developed, and corresponding
softwarehasbecomepublicly availablerecently (e.g., Vonesh
and Chinchilli 1997). However, because of the compl exity of
model specification and the procedure of parameter estima-
tion for random effects models, mixed effects models, espe-
cially nonlinear mixed effects models, have not become as
popular with foresters as they should be.

Here we use repeated measures of slash pine (Pinus
éliottii Engelm.) dominant height from a permanent plot
study with asplit-plot design to study the effects of intensive
silvicultural treatments by using a nonlinear mixed effects
model. Weal so present the techniques of model building and
diagnosisfor nonlinear mixed effects models with consider-
ation for the special nature of the data.
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Data

Thedatausedinthisstudy comefrom adesigned study for
slash pine(Pinusélliottii Engelm.) installed by the Plantation
Management Research Cooperative (PMRC) of the Univer-
sity of Georgia. The purpose of this study is to evaluate
growth, yield, and stand structure of slash pine plantations
with different site preparation treatments alone and in com-
bination with fertilization and vegetation control (Pienaar et
al. 1998). Theoriginal design used in the study isasplit-plot
with installation locations as whol e plots and the permanent
plots as the subplots. The whole-plot factor is the soil type,
and the subplot factor is the silvicultural treatment. Eleven
treatment plots, initially assigned randomly to 20 installation
locations, were established on 4 types of soil across the
flatwoods of Georgiato north Florida.l Some common stand
characteristics such as dominant height and basal area have
been measured up to 5 times on each treatment plot from age
5 to age 17 with 3 yr intervals since establishment in 1979.
Seventeen years after installation, 16 of the original installa-
tionsremain for the analysis. These comprise 7 nonspodosol
and 9 spodosol soil groups. The total number of treatment
plots is 191. Details of the data description were given by
Pienaar et al. (1998). Inthecurrent analysis, weonly focuson
the response of dominant/codominant height.

Method

The General Dominant Height Growth Model

The well-known three-parameter Richards model (1959)
serves as the basic dominant height growth model. The
statistical expectation of the Richards model may be ex-
pressed as.

f(t) = A(L-ePit)P D)

where t is stand age, f(t) is the mean response function of
dominant height, Aistheasymptote parameter which denotes
theasymptotic valueof thedominant height, and 3, istherate
parameter. Since Aisthemost unstable parameter to estimate
with our data, it was replaced by an expected-value param-
eter, B, corresponding to the expected height when t = t,,.
This allows model (1) to be represented as:

O1-e Pt 0

f(t,B) :BOWE (2)

Model (2) has exactly the same form as an algebraic
differenceproject model (Bordersand Bailey 1984), but with

1 Treatments: CNTL: control (harvest and plant, no site preparation);
UCHP:chop (single pass with a rolling drum chopper); FCHP: chop,
fertilize; UCHB: chop, burn (chop followed by abroadcast burn) ; FCHB:
chop, burn, fertilize; UCBB: chop, burn, bed; FCBB: chop, burn, bed,
fertilize, UCBH: chop, burn, herbicide; FCBH: chop, burn, herbicide,
fertilize; UBHB: chop, burn, bed, herbicide; FBHB: Chop, burn, bed,
herbicide, fertilize. Soil type—A: poorly drained, nonspodosol; B: some-
what poorly to moderately well drained, nonspodosol; C: poorly to
moderately well drained spodosol with an underlying argillic horizon; D:
poorly to moderately well drained spodosol without an underlying argillic
horizon.
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onebig differenceininterpretation. In (2), B, istreated asan
unknown parameter (rather than ameasured height) andt,is
treated asagiven age, which may not necessarily beincluded
in the data. There is no limit on t, aslong as it is positive,
although areasonabl et should be chosen within the range of
the data. The properties of model (2) can be summarized as
follows:

1. B, isthe expected dominant/co-dominant height at given
agety, thus, if tistaken asthesiteindex reference age (25
yr for slash pine) then 3, corresponds to the site index; if
tyistakenasareasonably largevalue, then 3, corresponds
to the asymptote and (2) has the same form as (1).

2. For agiven data set, the estimates of 3; and 3, will be
unchanged for different choicesof ), i.e. changing ty only
affects the estimate of 3,

3. Theasymptotic height is B, /[1- exp(-Bty)]™ -

The advantages of models with expected-value
parameter(s) were discussed by Schnute (1981), Cieszewski
and Bella (1989), and Cieszewski and Bailey (2000).

Nonlinear Mixed Effects Model

To apply Equation (2) to thereal data, various statistical
modelswill result in different statistical assumptions. Let Yij
denote adomlnant hei ght measurement at occasion j for the
ithplot (i = N j= , M ). m isthe total number of
measurements on pIot i; e”- denotes the corresponding re-
sidual for Yij with the model; and the stand age for plot i at
occasionj ist;;.. Thefunction f (Equation 2) is assumed to be
common to aII plots, but the parameter estimates may vary
acrossplots In vector form lety; = (Yiq, - Y.m) &= (8

] I m ) (t|l! . | m )Tand B| (B|01 B|11 B|2) Thereare
some stand charactenstlcs corresponding to an individual
plot, such asinstallation number of the plot, the soil group,
and the silvicultural treatment, which have not been explic-
itly expressed thus far, but they will be addressed in the
section on model specification. We adopt the two-stage
model formulation (Lindstromand Bates1990, Davidianand
Giltinan 1995, p. 99) in order to write the general nonlinear
model as:

Stage 1: Within-Plot Variation

yi =f(t.Bi) +8 U

. 0

iid 0

& [Bi ~ N[O, R(B;,0,6)] =
=Ely; [Bi] =f(t.B) E -

th- eBl"[F 0

f(t.B) = BOIDTE E

In (3), R(B;,a,6) is an m; x m within-plot variance-
covariance matrix, which may depend on parameter 3; (via
the mean function) and some other covariance parameters 6.
From Davidianand Giltinan (1995, p. 26), onemay formalize
the within-individual variance-covariance as:

Cov(e |B,)=R (B;,0.6)
=026 Y23, )T, (0)G Y2 a) P

where the m; x m, diagonal matrix GY2(B;,a) specifies
within-plot variance and the m; x m matrix I';,(6) describes
the correlation pattern within-plot i. Both heteroscedasticity
and correlation of the intra-plot error are considered by this
formulation.

Stage 2: Between-Plot Variation

Bi =AB +Bib; O
b~ N(,D) [ ®

In(5), Ay isa3 x pdesign matrix for p x 1 fixed effects 3,
b, istheq x 1 vector of random effects associated withtheith
plot, and B; isthe corresponding design matrix. D isa(q x q)
covariance matrix for the random effects. The design matrix
A, and matrix B, are determined by the stand characteristics,
such as silvicultural treatments and soil types, which are
usually, but not necessarily, matrices containing only zeroes
and ones as elements.

Equations (3) to (5) represent the general formulation of a
nonlinear mixed effects model based on the deterministic
dominant height growth equation, Equation (2). Different
models can be obtained with distinct variance-covariance
specifications.

Model Specification
To apply the model represented by (3)—(5) with areal set
of data, one needs to:

1. Specify the nature of the three parameters (3, B, BZ)T as
fixed and random effects or purely fixed effects;

2. Determine an appropriate variance-covariance structure
for the individual plot [the structure and components of

Ri(B;.2)1:

3. Chooseappropriatecovariatesto explaininterplot param-
eter variability (i.e., determinethe dimension and compo-
nents of the fixed effects 3 and random effects and the
corresponding design matrix A; and B;).

Thefirst two issuesabove arise naturally inthefirst phase
of model formulation. But the last, which is of most concern
by a model user, should be answered before addressing the
guestionspresented by theoriginal research, such assilvicul-
tural treatment effectstests, prediction problems, etc. Corre-
sponding totheabovetwo-stage hierarchical formulation, we
address these three problems in the following three steps.

Step 1: Determine Parameter Effects

In modeling, which effects should be considered mixed
(both fixed and random) and which should be considered
purely fixed are generally data dependent. For example,
Lappi and Bailey (1988) chosetherate parameters3, asfixed
while the asymptote parameter and 3, were considered ran-
dom when they used Richards model for dominant height
growth. They did so simply becauseitisimpossibleto obtain
reasonable estimates with all parameters random due to
collinearity problems in their data. Intuitively, one simple
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approach to this question is to obtain separate fits for each
plot and assessthevariability of estimated parameters across
plots by considering the individual confidence intervals for
the parameters. The parameterswith high variability and less
overlapinconfidenceinterval sacrossplotsshould beconsid-
ered as mixed effects. This approach requires sufficient
observations on each plot to give meaningful parameter
estimates by separate fitting. However, in forestry, repeated
measurements from permanent plots usually do not cover a
long enough time span or contain enough degrees of freedom
to produce stableindividual parameter estimates. In our case
there are only five observations on each plot and three
parameters to be estimated. In this situation, the separate-
fittings approach is not likely to be helpful in judging the
nature of the parameters.

If no prior information about the random effectsvariance-
covariance structure is available, and convergence is pos-
sible, Pinheiroand Bates (1998) suggested that all parameters
in the model should first be considered mixed (both random
and fixed). After the initia estimates are available, the
eigenvalues of the estimated covariance matrix of the effects
(D matrix) may be studied to see if one or more are close to
zero. Theassociated eigenvector(s) for such eigenvalueswill
then give an indication of the linear combinations of param-
eters that could be taken as fixed. Since small eigenvalues
may arise when the relative magnitudes of the scales of the
parametersinthemodel are quitedifferent, the* normalized”
variance-covariance matrix [i.e., the coefficient of variation
(CV) matrix D, ] wasrecommended instead of the variance-
covariance matrix [Pinheiro and Bates (1998)].

[Dlim
|Bk(I)Bk(m)| (6)

In(6), B, isthekthfixed effect and k(I), k(m) arethe fixed
effects associated with the Ith and the mth random effects.
This approach is still an ad hoc method, for there is no
decision rule to indicate how close an eigenvalue may be to
zero and not indicate rank deficiency.

Alternatively, oncethelarger model (for example, withall
the parameters mixed) isfit, oneactually can evaluateit with
some smaller (reduced) model using a likelihood ratio test
(LRT) or information criterion statistics, such as Akaike
Information Criterion (AIC). Suppose L isthelikelihood of
the more general model (e.g., the model with all parameters
mixed) and L, isthe likelihood of the restricted model (e.g.,
some parameters are purely fixed), and the total number of
estimated parameters of thesetwo modelsarerespectively k;
and k;. Then the likelihood ratio test statistic is defined as:

LRT =2log(Ly/ L4) = 2[log(Ly) —log(L,)] (7

Under the null hypothesis that the restricted model is
adequate, the asymptotic (large sample) distribution of LRT
isax?with ky—k, degreeof freedom. If LRT > X2 (ky—ky,0)
then onerejectsthe null hypothesiswith (1—a)% confidence
that the full model should not be reduced to the restricted
model. Here a is some specified percentile of the Chi-
squared distribution.

[Dcv]lm=
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The Akaike Information Criterion (AIC) is defined as
(Akaike 1972):

AIC =-2log(L) + 2k 8)

where L is the likelihood value of the model with k param-
eters. The AlC isoften used to compare modelswith alterna-
tive sets of fixed-effects and covariance parameters, espe-
cially nonnested modelsfor which thelikelihood ratio test is
inappropriate (Gregoire et al.1995).

Following Maitreet al. (1991), in thisfirst step we didn’t
consider any covariates on the mixed effects. Suppose

Bi=B+b, 9)
where3; isa3 x 1 vector of the mixed effectsinthenonlinear
dominant height model [Equation (3)], i.e. B; = (Bio, (B
([3i2)T , B and b; are the corresponding vector of fixed and
random effects, respectively, for ploti (i =1, ... n, indexing
individual treatment plot). It is assumed that b, ~ N(0,4,
D3ya)-

Itisworth noting that the interplot variation Equation (9)
is just a special case of the general formulation of
interindividual variation [see (5)], in which no covariate was
put into the random effect. In other words, it is simply a
random coefficient model and both design matrices A; and B,
in (5) are 3 x 3 identity matrixesin this case.

When all three parameters are mixed, the estimated coef-
ficient of variation matrix D, is*

50*/B2  Goy/IBo Byl 602/|B0B2|g

0
s _H. Q0 ~2 /02 S~ Rt

Doy =gcm/l BBol  G2/B Gp/IBB | C

Hox0/IB2Bo | Ou/IBBl G2/ BH

[]0.017378  —0.00732 —0.0042777]

= B —-0.00732 0.00970 —0.007095

0 —000427  —0.00709 0.013020

Theeigenvaluesof |5CV are0.02181,0.018286,and5.2014

x 1075, There is some evidence of rank deficiency, but the
evidence is not so strong. The eigenvector corresponding
to the smallest eigenvalue, converted back to the original
scale of the random effects and normalized, is (—0.002193,
—0.99948,-0.03201). Eventhough both thefirst and thethird
component of this eigenvector are very small, it is hard to
concludethat they are closeto each other becauseoneismore
than ten timesthe other in magnitude. So aformal likelihood
ratio test is necessary in this case to determine the effects of
the parameters. We first took all three parameters as mixed
effectswithout considering any covariates (thisisreferred as
the full model), and then picked each of thethree parameters
aspurely fixedinturn. Thisresultedinthreereduced models.
Since the reduced models are nested within the full model,
likelihood ratio tests can be carried out to check if the

2 Maximum likelihood method was used in the parameter estimation (ref.
Pinheiro and Bates 2000). t, in (3) wastaken asty = 25 yr all through this

study.
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Table 1. Likelihood ratio tests (LRT) for nonlinear mixed-effects models of slash pine dominant height with different

fixed and random effects components.

Model
Mixed Fixed No.* of
effects only parameters AIC Log-likelihood LRT P-value
By BB,  Nome 10 1,731.185 —855.593
Bos By B, 7 1,785.984 —885.992 60.799 <0.0001
B, B, B, 7 2,160.942 -1,056.455 401.72 <0.0001
Bos B, B, 7 1,739.007 —862.504 13.822 <0.0032

* The number of parameters here includes both the parameters in the mean function (three in this case) and variance-covariance (six for the full model and

three for the reduced model) and add another deviance parameter o.
Maximum likelihood method was applied in parameter estimation.

reduction in parameters caused any significant changes in
model performance. Replacing any mixed effects parameter
withapurely fixed effect significantly lowered thelikelihood
values (Table 1). Therefore, preference must be given to all
three parameters being considered as mixed effects. Of
course, results may be different with different covariatesfor
the fixed effects and variance-covariance structure for the
random effects, but the above procedure should be the same.

Step 2: Determine Within-Plot Variance-Covariance
Structure

To specify the within-plot variance-covariance structure,
asimplied in (4), two components should be addressed: one
is the heteroscedaticity, and the other is autocorrelation
structure. Forest growth and yield datafrom permanent plots
usually exhibit both autocorrelation and heteroscedasticity
(Gregoire 1987).

1. Variance Function

The variances of errors around growth and yield models
are often found to be dependent on the means; larger means
usually havelarger variance. Some frequently used variance
functionsfor growthmodelinginclude(Davidianand Giltinan
1995, p. 23) the power function model,

gk, @) = ok, @) = (10)
and the exponential function model,
g(H;j, o) = exp(ap;;), (11)

where |;; is the mean function, which is defined in (3).
Note that both of the above functions imply that the
variance of responses depends on the regression parameters
through the means. Random effectsin the mean function may
remove some heterogeneity in variance. Thisis not hard to
understand. Sincethevariancesdepend onthemeanresponse
through the parameters, random effects in parameters will
definitely affect the underlying distribution of error of the

model and thusthe variance. LRT (if the alternative models
are nested) or AIC (if not nested) may be used to determine
an appropriate variance function for the model.

Thefitting comparison of afull mixed-effectsmodel with
both exponential and power variancefunctionsindicatesthat
the LRT tests are significant for both of these variance
functions (Table 2). So even with random effects in the
parameters, heteroscedasticity still exists in the mixed-ef-
fectsdominant height model. With apower functionto model
the variance, asmaller Al C value results than with an expo-
nential function. Since both have the same number of param-
eters in the model, the power function is judged superior in
this case.

2. Serial Correlation Structure

Forest growth and yield datafrom permanent plotsmay be
correlated over time, and thus some adjustment in regression
techniques might be necessary (Leak 1966, Gregoire 1987,
Lappi and Malinen 1994). The empirical autocorrelation
function (Box et al. 1994) can be used to investigate serial
correlation. Let r;; denote the standardized residuals from a
fitted mixed model for individual i(i =1, ... n) at occasion
(=1,...n). Theempirical autocorrelation at lag| is defined
as (Pinheiro and Bates 2000):

N 2
DI

where N(I) is the number of residual pairs used in the
calculation forp(l) and

n
N= Zi N
is the total number of the observations.

Anapproximatetwo-sided critical valuefor autocorrelation
p(l) atsigificancelevel aisgivenby Z(1—a/2)/«/ N(l) ,where

p() = (12)

Table 2. Comparisons of mixed-effects model performance for slash pine dominant height growth data with different

variance functions.

Variance No. of
Model function parameters AIC Log-likelihood LRT! P-value
1 1* 10 1,731.185 —855.593
2 Exponential 11 1,703.053 —840.527 30.132  <0.0001
3 Power 11 1,697.299 —837.650 35.886  <0.0001

* Variance function 1 means that the variances are homogeneous.
T Likelihood ratio is calculated with respect to Model 1.
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Z1-q/2 is the standard normal quantile at percentile 1 — a/2
and N(I) isdefined in (12).

The estimated empirical correlation for Equation (3) in
Table2is

p=[p(1).,p(2),p(3), p(A]"
=[-0.4895, —0.1859, —0.1731,0.4014] T

The autocorrelation looks “strange” in that the first three
lags are all negatively correlated, and the fourth lag is
significantly positively correlated. Thisisnot consistent with
our intuition, because one usually expects that observations
spaced closely in time should be positively associated.
However, such a counter-intutive autocorrelation is not
uncommon in the real world (e.g., Davidian and Giltinan
1995, p. 133). This is an excellent example to show the
complexity of within-plot autocorrelation. Knowing that the
empirical autocorrelation is significant, it is necessary to
modify Model 3 (in Table 2) to refelect this within-plot
autocorrelation.

One of the most commonly used within-individual
autocorrelation structureswith repeated measurement datais
AR(1),i.e., autoregressivemodel with order 1 (Gregoireetal.
1995). However, therewasno significant improvement when
we included an AR(1) autocorrelation structure with mixed
effects Model 3 (see Table 3). Therefore, an inappropriate
correlation structure can result in no improvement in fitting
eventhoughthereissomeevidenceof correlationintheerror.
Thismay partially explainwhy several authorsintheforestry
literature concluded that modeling the within-plot
autocorrelation produced no improvementsin forest growth
and yield prediction (see, for example, Sullivan and Clutter
1972). After trying several models, we found that a moving
average correlation model was the best for improvement in
the mixed effects version of Model 3 ( see Table 3).

If & isthe current error in the model, then MA(Q), i.e., a
moving average correlation model with order g, isgiven by:

et:elst—l +”'+eq€t—q tE, (13)

whereg (i=t g, ..., t) areq+ 1 white noise terms. 6 = (8,
e eq) isthe g parametersin MA(Q) correlation structure.
The correlation function for aMA(qQ) model is:

(B, +0,6, ++6 .0

Dk 1k21 k2q q, k:l...,q
rke)=H 1+62+-+8,

H o k=q+L q+2,...

(14

Observations more than g time units apart are deemed
uncorrelated in aMA(q) correlation structure.

For current data, a moving average correlation structure
withorder 2wasthebest of thecandidatecorrel ation structures
investigated with the likelihood ratio test and AIC values
(Table3). Wecall thisModel 4 (i.e.,al parametersaremixed,
with no covariate considered, power function asthevariance
function and MA(2) asthe within-plot correlation structure).
Thus we have finished one cycle of model specification in
Step 1 and Step 2. Model 4is“thebest model” specified thus
far. However, after considering covariates for the mixed
effects(Step 3), theappropriatewithin-plot variancefunction
and correlation structure may be different, but the general
procedure described aboveis still valid.

Step 3: Foecify Between-Plot Variation:
Covariate Modeling

After determining the nature of the parameters in the
model (random or fixed), an immediate question is how to
track the random effects parameters. In this step, we address
the question of which variablesin the survey or experiment
are potentially useful in explaining random effects variation
and how the random effects are explained by those variables
[i.e., determine the design matrix in Equation (5)].Thisisa
proceduresimilar to variableselectioninordinary regression
analysisand should be primarily determined by the design of
the experiment and the variables in the survey.

Itwill beinformativeasafirstlook to check thecorrelation
matrix of the random effects from the final model in Step 2.
High correlation among the random effectsusually indicates
that some similar patterns exist among the design compo-
nents which may be explained by some other covariates.

All correlations among the three random effects are mod-
erately high givingusastrong messagethat acovariate model
for the mixed effectswould be useful in explaining variation
(Figure 1).

Another useful graphical device for investigating pos-
sible relationships between mixed effects and individual
plot attributes (such as silvicultural treatments, soil type,
etc.) is to plot estimates of the random effects against
potential covariates. The empirical Bayes estimates of
random effects in Equation (4) from Step 2 are plotted
conditionally on silvicultural treatments (see Figure 2)
and soil type (see Figure 3). Visually, silvicultural treat-
ments are more likely to be the significant factor than the
soil types. A formal split-plot analysis of variance (e.g.,
Lentner and Bishop, 1986, Chap. 11) to the three random
effects shows that silvicultural treatment is the only sig-
nificant term to the random effects. Soil type and the

Table 3. Comparisons of mixed-effects model performance for slash pine dominant height growth data with
different within-plot correlation structures and no interplot covariates.

Correlation*® No. of
Model structure parameters AIC Log-likelihood LRT! P-value
3 Independent 11 1,697.299 —837.650
AR(1) 12 1,697.092 —836.544 2.2078 0.1373
ARMA(1,1) 13 1,695.872 —834.936 5.4278 0.0663
4 MA(2) 13 1,694.808 —834.404 6.4919 0.0389

" Refer to Bates and Pinheiro 2000.
' Likelihood ratio is calculated with respect to Model 3.
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Figure 1. Scatter plot of estimated random effects from Model 4
for the modified Richards dominant height growth model with
random effects and independent normal within-plot errors.

interactions are not significant. This conclusion is also
consistent with reports by other researchers using differ-
ent approaches with these same data (e.g., Castleberry
1998).

Even though the general silvicultural treatments are sig-
nificant for all the mixed effects, it may well be an
overparameterization to consider every silvicultural treat-
ment as a fixed effect. There are 11 levels of treatments
(including the control), and the differences between response
curvesfor some of them arevery small. Oneway around this
is to take the significant treatments as fixed effects and the
others as random. But some problems still remain because
terms significant in the analysis of variance (ANOVA) are
not necessarily significant when they are put into the model
asfixed effects. One of the attributes of the original study is
that the silvicultural treatments are arranged in an additive
way. Five distinct silvicultural activities (chop, burn, bed,
fertilizer, and herbicide) are applied to individual treatment
plotsindividually or in combination. For example, treatment
FCHB isthe combination of chopping, burning, andfertiliza-
tion. By assuming that the effects of the silvicultural treat-
ments on the response (dominant height growth) are additive
(e.g., Pienaar et al. 1998) some dimension reduction can be
obtained. Only 5 fixed effectswill beinvolvedinstead of 11.
However, it is still unrealistic to take all 5 silvicultural
treatments asfixed in the 3 mixed effects (B; o, 3; ; and B; ,).
After initial efforts, effects of burning and fertilizer were
taken asfixed to f3; , effects of fertilizer and herbicide fixed
to B3; 1, and effects of fertilizer, bed, and herbicide fixed to
Bi - For the random effects terms, the intercepts of the first
two parameters(3;and 3, ) arechosen asrandom, which may
explain the combined random effects such as soil types,
silvicultural treatment combinations, installations, or indi-
vidual plot. Chopping has arandom effect on parameter [3,.
Let zchop;, zburny, zf;, zbed; and zh; be respective dummy

FBHB
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UBHB

UCBH
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£
“FCHP
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UCHP
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Random effects

Figure 2. Comparisons of estimated random effects by silvicultural
treatments for the modified Richards dominant height growth
model with random effects and independent normal within-plot
errors.

variables indicating if chopping, burning, fertilizer, bed, or
herbicide treatment were applied on a specified treatment
ploti. Theinterplot formulation for the slash pine dominant
height growth may be represented as:
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(15)

where 3, ..., B,3 denote the fixed effects. Parameters 3,
B1o By are, respectively, the intercepts for fixed effects.
Parameter vectors(B;, Byy): (B11: B12): (B21, Boos By3) arethe
fixed “gains’ on parameters Bi,o' Bi,l’ Bi,z' respectively,
because of burning and fertilization, fertilization and herbi-
cide, fertilizer, bed, and herbicide.
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Figure 3. Comparisons of estimated random effects by soil types

for the modified Richards dominant height growth model with
random effects and independent normal within-plot errors.

Parametersb; o, b; ;, b; , are the random effects, in which
b gand b; 4 are the random intercept effectson f3; g and f3; ;
respectlvely Parameter b , isthe random effect in conjunc-
tion with site preparation chopping.

Assume (b, o, b; 1 B; )T~ N(O5,3, D3,q), and that D is3 x 3
positive symmetric covariance matrix for the random effects.

Therefore, matrices A; and B; in (5) are specified as:

Ai_
[12burnzfi0 0O 0 0 O O 0O
% 1 # zZn 0 0 o U
OOOlzfzbedlzh%
o 0 0 O
= 0
353105

0 O zchopO

Once appropriate covariate models (design matrices A, ,
B;) are determined, one still needs to go back to Step 2, to
choose an appropriate within-plot variance function and
correlation structure. Usually, Step 3 and Step 2 need to be
repeated until asatisfactory model isobtained. Just asbefore,
thelikelihood ratio test and the Al1C valuesindicate that both
heterogeneity and correlation are evident even after includ-
ing covariatesin the model. For example, both the exponen-

tial and the power functions significantly improve model
fitting. Moreover, correlation structures AR(1), ARMA(1,1),
and MA(2) areall significant compared to the model with an
independent structure. A power variance function combined
with the moving average correlation with g = 2 denote the
best among these models (Table 4).

Thus the final specified model has the following form:

yi= f(t.B)+e
Hi = ELy; [Bil= f(t.B)
Hi =(Boo +Boyzburn; + Bo, Z; +Q,o)

A e e

%_ e—(gm +Buzl, +Bzh +hy, )t %

&~ N[O, R(B;,a,0)]

Cov(e |B;)=R (B, &) =0°G"*(B;,a)r; (0)G**(B;, )
G (Bi, o) =p;*

i (6)=MA(2)

(b|,0!b|,l!Q,2)T~

N(03><1’ D3><3)

where MA(2) denotes a moving average correlation model
with two parametersasdefinedin (13) and (14). Thereare 20
parameters (including the parametersin the variance-covari-
ance matrices) to estimate in the above mixed effects model.
Individual random effects can be predicted by first-order
approximation (Lindstrom and Bates 1990)

Parameter Estimation and Model Diagnosis

Parameter estimation for nonlinear mixed effects models
requires numerical integration of random effectsin the model.
This procedure can be computationally difficult as the random
effectsoften enter themode! nonlinearly (e.g., b; 1 andb, 2 inthe
abovemode!). Different approximations have been used to deal
with interindividual random effects, among those linear ap-
proximation with a first-order Taylor expansion in dl the
interindividual random effectsisthemost commonmethod. The
Taylor expansion can be either a 0 (the mean of the random
effects) or attheempirical bestlinear unbiased predictor (EBLUP)
of the random effects. Thefirst approach is cheaper in term of
computing time, but the second approach can be more accurate

Table 4. Comparisons of mixed effects model performance for slash pine dominant height growth data with between-
plot covariates [Equation (15)] and different within-plot variance function and correlation structures.

Variance Correlation No. of Log-
Model function structure parameters AIC likelihood LRT! P-value
5 1% Independent 17 1,524.069 —745.035
6 Exp. Independent 18 1,499.589 -731.795 26.480 <0.0001
7 Power Independent 18 1,493.780 —728.890 32.289 <0.0001
8 Power AR(1) 19 1,489.443 —725.722 6.337 0.0118
9 Power ARMA(1,1) 20 1,489.831 —724.916 7.949 0.0188
10 Power MA(2) 20 1,487.933 —723.966 9.848 0.0073

T For Models 6 and 7, the likelihood ratios are calculated with respect to Model 5; for Models 8, 9, and 10, the likelihood ratios are calculated with respect

to Model 7.
Variance function 1 means that the variances are homogeneous.
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although possibly more unstable (Wolfinger and Lin 1997).
Other dternativefirst-order Taylor seriesexpansionshave been
proposed. For example, V onesh and Carter (1992) proposed the
use of estimated generalized least squares and established the
asymptotic properties of the resulting estimates. Except for the
first-order approximation, an adaptive Gaussian quadrature
approximation has been optionaly availablewithinanew SAS
procedure NLMIXED (available SAS 7.0 or later). Different
parameter estimation methods have been implemented into
variouscommercial software package, such asS-plusand SAS.
A comprehensivereview hasbeen presented by Roe (1997). We
use the EBLUP approximation approach, which uses a first-
order Taylor seriesexpansion about conditional estimatesof the
interindividual random effects. Detailed descriptions for this
method can be found in Davidian and Giltinan (1995). S-plus
softwareimplementations are available from the NLME library
by Pinheiro and Bates (2000). Modd 10 fitswell to the dataand
all ten fixed-effect parameters were significant with generally
low covariances between pairs of parameters.

Comparing Model 10withModel 4 (see Tables3and4), one
canseethat themodel performancehasremarkably improved by
including theinterplot covariates (silvicultural treatments). For
example, thelog-likelihood valueincreased from —834.404 to—
723.966. ThisgivesaLRT of 220.876 with 20— 13 =7 degrees
of freedom, which is significant a any common significance
level. A closer diagnosis of the final mode can be obtained by
checking plots of the residuals, the fitted values, and the esti-
mated random effects. Because the within-plot errors are as-
sumed to be independent and normally distributed, given the
appropriate within-plot variance-covariance [R matrix in (4)]
theresidua plot (residuals or standardized residuals against the
fitted values) should not reveal any observable pattern, and the
Q-Q plot should be approximately linear. The residual and Q-
Q plots of Modd 10 do not indicate serious departures of
randomness and normality. The numbers identified on the
residua plotsaretheobservationswhicharepotential outliersin
that the corresponding standardized residuals are outside of the
range 2.5 to 97.5 standard normal quantiles (see Figure 4).
Overal, thestandardizedresiduasaresmall, thussuggestingthe
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Figure 4. The residual plot for the modified Richards dominant
height growth model with random between-plot effects and
MA(2) within-plot autocorrelation and power variance function
[Model (10)1.

nonlinear mixed effectsModel 10 was successful inexplaining
the dominant height growth data.

Interpretation of Model Parameters

“Typical” Responsesfor Different Silvicultural
Treatments

Parameter interpretation for anonlinear mixed effectsmodel
will usually bequitedifferent depending onwhether onechooses
to mode! the response y; at the individual level or to consider
population behavior and the marginad momentsdirectly. Zeger
et a. (1988) refer to the case of the hierarchical modd for an
individual as a subject-specific model, and that of a model for
marginal moments as population-averaged moddl. We have
chosen a subject-specific approach thusfar. A higher precision
for individua prediction usualy results with this approach.
However, it is gill possible in this approach to assess the
“typica” response for an individual or some grouping of indi-
viduals. For example, we assume the random individual treat-
ment plot effectsto be 0 and then this“typical” dominant height
growthfor agivenindividua (or group) can be obtained by just
substituting corresponding fixed effects into the find model
(Model 10). We obtained parametersin the modified Richards
mode for 11 silvicultural treatment groupswith random effects
set to zero (Table 5).

One may use the parameters in Table 5 to obtain the
“typical” dominant height growth curve for each indi-
vidual silvicultural treatment. For example, weconstructed
acomparison of the “typical” dominant height growth for
the following six silvicultural treatments: FCHP, FCHB,
FCBB, FCBH, FBHB, and CNTL. Treatment FBHB has
highest growth response (Figure 5). It is also the most
comprehensive treatment combination. CNTL has lowest
growth response and has no silvicultural treatment in-
cluded. While this model is still informative to assess the
“typical” or mean responses for individual prediction,
information on random effects is always helpful. As an
example, we graphed a comparison of predicted curves
with and without random effects for an experimental plot
in the original data (atreatment plot in Installation 7, soil
type C) with silvicultural treatment FCBH. From thisitis
clear that one obtains much more precise prediction with
estimated random effectsincluded inthemodel (Figure6).

Tableb. The estimated parameters for “typical” dominant height
growth (random effects input as 0) with modified Richards model
by silvicultural treatment groups.

Silvicultural Estimated parameters

treatments Bo Bl Bz

CNTL 18.57601 0.07859702 1.967684
UCHP 18.57601 0.07859702 1.967684
FCHP 21.10557 0.05432134 1.675987
UCHB 19.67853 0.07859702 1.967684
FCHB 22.20809 0.05432134 1.675987
UCBB 19.67853 0.07859702 1.813103
FCBB 22.20809 0.05432134 1.521406
UCBH 19.67853 0.09306127 1.792522
FCBH 22.20809 0.06878559 1.500825
UBHB 19.67853 0.09306127 1.637942
FBHB 22.20809 0.06878559 1.346245
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Figure5. A comparison of the meanresponses (typical responses)
of dominant height growth by six differentsilvicultural treatments
(CNTL, FCHP, FCHB, FCBB, FCBH, FBHB) with the nonlinear
mixed-effects dominant height growth model.

Localization of Site Index Curves

Aget,inthe modified dominant height model [model (2)]
was chosen to be 25, which is often used asthe reference age
for slash pine. The estimated parameter B, , is naturally
interpreted to be the estimated site index for plot i. So the
dominant height growth and the siteindex prediction models
are combined into one model in the current approach. For
example, to obtain the siteindex curve, one may solvefor 3,
directly from the current dominant height growth model or
estimate a series of By's by changing t,. With the second
approach, one can not only obtain a site index curve for an
individual plot, but also estimate upper and lower bounds on
this curve. This naturally provides a method to label site
index curves for slash pine plantations with silvicultural
treatments.

It is easy to show that the nonlinear mixed effects model
based ontheRichardsmodd (10) ispolymorphicinthat varying
rates of height growth on different sitesarereflected. Model 10
is aso base age invariant. That is, predictions and curves are
invariant withrespect tothechangesinthebaseagefor siteindex
(Bailey and Clutter 1974). It isaso interesting to note that site
index is affected by silvicultural treatments. This has been
demonstrated not only because some silvicultura treatments
(e.g., burning and fertilization ) aresignificant for parameter (3,
but a so becausethedominant height growth curveisaffected by
silvicultural treatments (see Figure 5).

Individual Prediction for New Observations

Suppose we are interested in the prediction of asingle
observation from a new experimental plot. This plot may
or may not contain prior observations. Traditional regres-
sion type prediction does not distinguish these two situa-
tions. The nonlinear mixed effects model will distinguish
thesetwo situations, and prior observationsfor aspecified
individual will improve the precision of the individual
prediction.

Case 1: Prediction Is Required for a New Individual with
No Prior Observations

Suppose we are interested in the prediction of the
dominant height on plot k at age t,;,, and there is no prior
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Figure 6. A comparison of individual dominant height growth
predictions by typical response and subject-specified response
with the nonlinear mixed-effects dominant height growth model.

observation on this plot. Assume all stand attributes are
given, so the design matrices of thefixed (A,) and random
effects (B) for this plot are also known. However, since
thereareno prior observationsonthisplot, itisimpossible
to determine the random effects (b, ) corresponding to this
plot. Prediction and reference can be obtained by replac-
ing b, with 0’sin Model 10 in this case:

. ~ ~ Eh__ e_ékltkh EFkZ
Yin = FBi:tin) = BroG——=—0 (16)
01— Pl [

with prediction variance:

var(Yig = Yin) = FkT(ék)(AkéAi-(r +B,D BkT)Fk(ék)

+ 0°Ry, (7
where
B, O
) ELBKOD
Bk = ELBME
o
=Ak(f500 Bm éoz &10 Bu Blz bzo bﬂ A&z A&s)T
5y Of (4, By)
e (By)=—0 k2
aBI B =P

R = f&(ék,tkh) 15 =25, Q isa 10 x 10 covariance matrix
corresponding to the estimated parameter vector Bk. The
B ’'s, D, g,and g aretheestimated parameters. All other
terms are defined above.

So an approximate 100(1 — a)% confidence interval for
this prediction is:

Yin tt(N=q1-a/2)yvar(Ye) (18)

20z Iudy 61 U0 1enB AQ G/ /1L9¥//82/E/L1/9101E/20UBI0S)SAI0}/ W0 dNO"dlWapeo.//:sdy Woly papeojumod



where n — g is the degrees of freedom associated with the
fixed effects. n—q=955—10=945 (for example, if wewant
to predict the slash pine dominant height at age 20 on anew
plotwithsilvicultural treatmentsFCBH (chop, burn, herbicide,
fertilize) and there is no other information on this plot
available. We have

! 1 0 00 O 00

A =L 0 1 1.1 0 o0 odU
HJ 0 0 0 1 1 1H
a 0 0O

= 1 o0

%= 0
@ o 10

thus

[118.57601[]
U 1.102520
O O
0 2'52956D
g 0.078605

0.02428 ]

0.01446 U

0 o 0 00 1 1 o0 1 O
0 1.96768 [

5—0.29170 S

[}-0.15458 [

E—O.17516 H
[22.20809 []
=Uo.0687860

.500825

Substitutethe f;k’ sintoModel 10, thentheestimated dominant
height at age 20 is

Vi, =19.29m.

R = (0.8686262 37.81246 -1.810287).

Substitute Q, D, G, &, and design matrices into (17) to
obtain avarianceof thisprediction: var(y,,) =3.8758. The
95% confidence interval for the prediction is [15.43 m,
23.15 m]

Case 2 Prediction Is Required for a New Individual with
Prior Observations

An alternate, and perhaps more practical, situation in
forestry occurs when a prediction is required for a known
individual for which acollection of formerly observed datais

available. Onemay still usethe procedurein Case1toobtain
the prediction and corresponding prediction limits just as
with traditional regression. However, this approach would
ignoreany information containedin the prior observations of
the specifiedindividual. Instead, we may usetheinformation
contained in former observations to estimate the subject-
specific random effects for this individual and incorporate
this directly into our prediction.

Suppose the information available for individual plotkis
{Yio t Ao B}, wherey, is a vector of former observed
dominant heights at corresponding age vector t,. Wewishto
predictafuturedominant heighty,,, at agivenaget,,,. Wefirst
estimate the random effect b,. We can take a first order
expansion of f(tk’ ABy + Byby) about b, = 0. From the
residual, g = yk—f(tk’ A By ), one can estimate b, by the post
mean and variance of (| y,), By, &), where &, isthe vector
of variance covariance parameters for individual k [see the
general model form (4)]. For details refer to Vonesh and
Chinchilli (1997, Chap. 7).

b =DZ{ (ZDZ{ +R)™& (19)
where
ikz AkT )
& =Yk ~ f(tk:Akﬁk)'
with variance
Vi = var(b, -b,)

A an AN A A AAT A A Al A 20
-5-B3 57 3.H2 0 + DL EePR 2D X0

where
= (B.8) =ZDZ] +R,
Q(B) = AQAL
After estimating bk , wemay take afirst-order expansion
of f(tk’ AB + Bhby) about B = B and by = b, with alittle
algebra, the prediction for y,,, can be redized as:
Yir = f (tns ABi + By (21)
with prediction variance:
var (i = Yin) = ﬁkﬁé(ﬁ) 'Ekh + 2grw\}kikh
“TA 5 5T ATE a (22)
+R6aCZan + ZanC Fn + Ran
where

Cc =CoM(B-B).(b ~b)'] & QBR (BZ'(B §ZD
and R, Z, are, respectively, the component of a column
vector in matrix R, Z, corresponding to the hth occasion
(on which prediction is required).

Similarly, the approximate 100(1 — )% can be obtained
by (18).

For a specific example, suppose we know the dominant
heights at age 11,14,17 to be 12 m,16 m, and 18 m for aplot
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with the FCBH treatment. We want to predict the dominant
height of this plot at age 20. Thus,

20 [11.540 [00.460
& =y — =HelU- U= U
&= Vi~ f(te, ABy) =163~ H451= 49
180 [17.090 [0.910

Suppose the within-plot correlation still follow MA(2)
structure, then

R, = diag(fi/?)l a.adiag(ii§2)
(126168 04415 091760
:50.4415 28635 0.47697%
009176 0.47697 30537 [

2k= 'EkTBk
05197 0.6535 0.7696[T1 0O OO
2573.9598 69.4579 56.4948%b 1 og
[+5.0331 —4.1139 —2.9823([0 0 10

05197 739598 -50331[] ,
= Eb.6535 69.4579 —4.11395
[0.7696 56.4948 29823

Hence, by (19),

0 1319972097601
by :B —0.0005567815%
0 —0.01656287720]

Withtherandom effectsconsidered, the predicted dominant
heights for this specific plot at ages 11,14,17 are 12.27 m,
15.41m,18.13m, respectively, whicharecloser totheobserved
values (12 m,16 m,18 m) than those given by the means
response function (11.54 m, 14.51 m, 17.09 m). Thisisnot a
surprising result, becausetherandom effect estimati on process
hasusedall observedinformation, whereasthemean response
prediction does not.

The estimated variance-covariance matrix for the random
effectsis[by (20)]:

\7k = var(by - 6k)
(0352872532 -0.0132174726 -0.031320308[]
= 5—0.01321747 0.0002521917  0.001825877 U
[-0.03132031 0.0018258767 0.0324799710]

Therefore, with the random effects considered, the
predicted dominant height at age 20 [by (21)] is: ,, = 20.45
m, theestmated varianceis[by (22)]: var(y,;,) =2.097 m, thus
the 95% confidence interval for the prediction is:[17.61 m,
23.68 m].

Comparingwith Case1, wecan seethat former observations
for a specified individual can improve the precision of the
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future prediction for that individual with the mixed effects
model approach. In this example, the standard error of the
prediction decreased by 26.5% from 1.969 m to 1.448 m.
Generally, the more special an individua is (i.e., the more
different from the “typical” response with b;’s of zero), the
more*“ gain” will result by using the mixed effectsprediction.
Itisworth pointing out that thecorrect within plot variance-
covariancestructureal soplaysanimportant rolein prediction.
For example, if we ignore the random effects and within-plot
heterogenity and correlation, and use the ordinary least square
approach tothefinal chosen model (Model 10), the effects of
fertilizer and herbicidewill not be significant any more (with
Pvalue=0.80and0.15respectively). Thepredictiondominant
height for theabove examplewill be 18.72 m, with error 2.07
m, which is 5% higher than that obtained by appropriate
variance-covariance structure (Case 1).

Discussion and Conclusion

A mixed effects model is appealing for the analysis of
repeated measurement datafrom agiven experimental design
because of itsflexibility in representing the covariance struc-
turesthat are not readily identified by the traditional regres-
sion approach. A modified Richards model with nonlinear
mixed effectsisrecommended for modeling slash pinedomi-
nant height growth in conjunction with different silvicultural
treatments. The analysis results show that a random effects
model provided better model fitting and more precise predic-
tions compared to a similar model without random effects.

Mixed effects reasonably explain the individual random
variation that is quite common for repeated measurement
data from permanent plots with an experimental design. If
prior observations are available, the random effects corre-
sponding to this specified individual can be estimated, thus
more precise prediction for future observations can be ob-
tained. This makes intuitive sense since moreinformation is
applied in the prediction by using the random effects ap-
proach. Random effects may relieve such problem as
nonhomogeneous variance and within-plot autocorrelation
error in modeling forest growth and yield repeated measure-
ment data. But heterogeneity and correlation still occur for
dlash pinedominant height growth even after considering the
appropriate random effects.

Heteroscedasticity is usually easier to handle. Once the
trend of the variance (variance function) is identified, an
appropriateindividual weight (inverseof thevariance) canbe
applied to individual observations to justify the process of
parameter estimation. Comparatively, within-plot
autocorrelation is not so easy to justify. Because many other
factors in the model (or data) affect the autocorrelation, a
reasonabl e structure may not be obvious for a given collec-
tion of data and model. No benefits will accrue from an
inappropriate structurewhen autocorrelationisevidentinthe
data. So, the model for autocorrelation structure should
usually be as simple as possible when an appropriate one is
not available (Davidian and Giltinan, p. 133, 1995). Moving
average correlation with two parameters was used to model
the within-plot correlation for the slash pine data. The esti-
mated 0, issmaller than that of 6, (0.1853 vs. 0.3386). This
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seemscounterintuitive. Onewoul d expect observationsspaced
closer in time to exhibit higher correlation. Actually, thisis
also demonstrated on the empirical autocorrelation function
in that negative correlation was estimated for the first three
lags. Sincetheplottoplot variationisthemain sourceof error
(i.e., the random effects are much higher than the errors of
within-plot error components.), any pattern of plot to plot
variation may lead to unexpected within-plot patterns. An-
other explanation isthat the effects of silvicultural treatment
effects can be time-varied, and the autocorrelation pattern
might reflect such variations. In such sense, a time-varied
mixed effects model can be more desirable.

Incorrect covariance structure not only resultsin anincor-
rect model, but also produces a larger prediction error for a
new observation prediction. For example, when we used the
traditional ordinary least squares approach and ignored the
random effects and within-plot heterogeneity, the prediction
error increased 5% as compared to population level predic-
tion with the covariance structure appropriately addressed.

The well-known Richards model was modified to in-
clude an expected-value parameter, which is naturally
interpreted as site index with t, as the base age. In the
recommended final structure, dominant height growth and
site index are explicitly combined into one model form.
Incompatibility between the height growth and site index
model (Curtis et al 1974) can be avoided in the recom-
mended model form. By changing t, serially, one can
obtain amethod of |abeling siteindex curvesthat does not
really involve the concept of site index. As Northway
(1985) pointed out, site index of a stand should be alabel
that refersto acurvewhich most closely followsthe height
development of the stand. Even though traditionally the
label is made so that the curve passes through the point
(reference age, site index), site index itself is not the
primary value of interest. Thisis clearly demonstrated by
the procedure suggested by Clutter et al. (1992, p. 58) in
which the concept of index ageiscompletely avoided. The
above recommended model form can express these ideas
about site index calibration. It is easy to show that the
modified Richards model with mixed effects naturally
forms a base age invariant polymorphic site index model
(Bailey and Clutter 1974).

| should note that the modified Richards model was
chosen without comparing it to other growth models. Asone
anonymous reviewer pointed out, the Richards model does
not fit slash or loblolly pine well at early ages because of
initial rapid growth of these species. So it is helpful to
emphasi ze that the purpose of thiswork isto demonstratethe
useful method rather than to advocate the final product.

Three parameters in the modified Richards model are
all chosen to be mixed (both fixed and random). Silvicul-
tural treatments are significant in covariate modeling, but
soil typesarenot. Likelihood ratio and Al C valuesare used
inmodel performanceevaluation. The proceduresof model
specification with the nonlinear mixed effects model is
discussed in detail, and some useful graphical diagnosis
methods are al so presented. In summary, (1) between-plot
variation is the main source of error for dominant height

growth prediction. (2) Within-plot heterogeneity and cor-
relation still exist even after introducing random compo-
nents into all three parameters in a modified Richards
dominant height growth model. A power variance func-
tion and moving average correlation with order 2 [MV(2)]
arejustified for thewithin-plot error structureinaconven-
tional nonlinear mixed-effects model approach. (3) Pre-
dictions(including responsevalue and prediction variance
and thus confidence interval for the predictions) for new
observations can be obtained at different precision levels
in distinct situations. Past observations can be used to
estimate the individual-specific parameters and thus im-
prove the precision of the prediction for the specific
individual experimental unit.
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