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Nonlinear Mixed Effects Modeling for
Slash Pine Dominant Height Growth
Following Intensive Silvicultural
Treatments

Zixing Fang and Robert L. Bailey

ABSTRACT.  A modified Richard’s growth model with nonlinear mixed effects is developed for modeling
slash pine (Pinus elliottii Engelm.) dominant height growth in conjunction with different silvicultural
treatments. All three parameters in the model turn out to have both fixed and random individual plot
or silvicultural treatments effects. Moving average correlation with 2˚ was identified as within-plot error
structure. The advantages of the mixed effects model in prediction for new responses are demon-
strated in detail by formulations and examples. The modified Richards model has a form that combines
dominant height growth and site index into one model form, so the incompatibility between height
growth and site index model can be avoided. The general methodologies of nonlinear mixed effects
model building, such as which parameters in the model should be considered to be random and which
should be purely fixed, how to determine appropriate within-plot variance covariance structure, and how
to specify between-plot variation via appropriate covariate modeling, are addressed in detail.
Likelihood ratio test and Akaike information criterion (AIC) are used in model performance evaluation.
Some useful graphical model diagnosis tools are also presented. FOR. SCI. 47(3):287–300.
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P ERMANENT SAMPLE PLOTS, measured repeatedly over a
fixed length of time, are often used for evaluating
forest growth and yield and are especially effective

as a sampling method to evaluate changes in forest conditions
(Avery and Burkhart 1994, p. 208). In the practice of inten-
sive forest management, some new attributes are added into
the usual permanent plot sampling method. For example, to
accelerate stand growth and development and to increase
financial returns, silvicultural treatments such as mechanical
and chemical site preparation and herbicide or fertilization
applications are very common. To monitor and predict the
changes of forest stands with different silvicultural treat-
ments or factors, the permanent plots are usually established
in a more careful way: they are actually built up from some
standard experimental design. For example, a split-plot de-
sign is often used in the southeastern United States. In one
such designed study, soil type serves as the whole-plot factor

and silvicultural treatment as the split-plot factor (Shiver et
al. 1994). A split-plot design with repeated measurements
naturally forms a split-split plot design with the time factor as
the within-plot effect (Gumpertz and Brownie 1993).

In the forestry literature, a common approach to modeling
such split-plot repeated measurement data from permanent
plots is to only “adjust” the fixed part of the model with some
additional fixed terms that partially explain the “gains” from
the silvicultural treatments (Pienaar and Rheney 1995, Mar-
tin et al. 1999, Castleberry 1998). The advantage of this
approach is its simplicity. It allows any treatment effects on
forest growth and yield to be explicitly expressed in the
model. However, the special properties of split-plot repeated-
measurement data as discussed above are partially or totally
ignored by this approach. For example, the variability of
individual plots or within-plot correlation is rarely taken into
account in such an approach. Consequently, different plots,
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no matter how different their plot attributes, will obtain
exactly the same “gains” as long as they are treated by the
same silvicultural treatments. This is usually not realistic,
however. Also, any information contained in past observa-
tions for a plot or stand is only partially applicable in this
approach when predictions are desired for expected future
values for a specified plot.

Gregoire et al (1995) recently presented a linear mixed
effects model based on data from permanent plots and
justified the necessity of an appropriate variance-covari-
ance for the modeling of such data. While linear models
can be made robust to assumptions about the correlation,
especially when the number of observations per plot are
small relative to the number of plots (Diggle et al. 1994, p.
79), this is not always true for nonlinear models. The
expectation of an individual mean response usually does
not coincide with the marginal mean of the population for
a nonlinear model (Zeger et al. 1988, Vonesh and Chinchilli
1997, p. 295). Thus it is obviously inappropriate to use a
population mean response as the prediction for an indi-
vidual whose former information is available.

The idea of a random effects model is not new in
forestry. Conceptually it goes back as early as Dr. J.L.
Clutter’s Duke University Ph.D. dissertation, which is one
of the earliest recognitions of the uniqueness of repeated
measurements in a forestry context (Clutter 1961). Clutter
noted that the independent randomness assumption in
regression analysis is violated by the repeated sampling
nature of data from permanent plots, and a corresponding
adjustment in regression analysis may be necessary. His
original assumption that observations from a particular
plot may reflect an underlying pattern which is particular
to that plot and a function of time as well is broadly
implemented today by a random effects model both in
statistics and in widespread applied fields, including for-
estry. Bailey and Clutter’s (1974) article, in which the
concept of varying parameters uniquely identified with
sites (plot-specific parameters) was introduced, can be
considered the pioneering work in forestry. Thereafter,
other models with varying or random coefficients were
introduced in forestry (Garcia 1983, Borders and Bailey
and Clutter 1984, Biging 1985, Lappi and Bailey, 1988,
McDill and Amateis 1992, Lappi and Malinen 1994).

The methodology of linear and nonlinear mixed effects
models has been quite well developed, and corresponding
software has become publicly available recently (e.g., Vonesh
and Chinchilli 1997). However, because of the complexity of
model specification and the procedure of parameter estima-
tion for random effects models, mixed effects models, espe-
cially nonlinear mixed effects models, have not become as
popular with foresters as they should be.

Here we use repeated measures of slash pine (Pinus
elliottii Engelm.) dominant height from a permanent plot
study with a split-plot design to study the effects of intensive
silvicultural treatments by using a nonlinear mixed effects
model. We also present the techniques of model building and
diagnosis for nonlinear mixed effects models with consider-
ation for the special nature of the data.

Data

The data used in this study come from a designed study for
slash pine (Pinus elliottii Engelm.) installed by the Plantation
Management Research Cooperative (PMRC) of the Univer-
sity of Georgia. The purpose of this study is to evaluate
growth, yield, and stand structure of slash pine plantations
with different site preparation treatments alone and in com-
bination with fertilization and vegetation control (Pienaar et
al. 1998). The original design used in the study is a split-plot
with installation locations as whole plots and the permanent
plots as the subplots. The whole-plot factor is the soil type,
and the subplot factor is the silvicultural treatment. Eleven
treatment plots, initially assigned randomly to 20 installation
locations, were established on 4 types of soil across the
flatwoods of Georgia to north Florida.1 Some common stand
characteristics such as dominant height and basal area have
been measured up to 5 times on each treatment plot from age
5 to age 17 with 3 yr intervals since establishment in 1979.
Seventeen years after installation, 16 of the original installa-
tions remain for the analysis. These comprise 7 nonspodosol
and 9 spodosol soil groups. The total number of treatment
plots is 191. Details of the data description were given by
Pienaar et al. (1998). In the current analysis, we only focus on
the response of dominant/codominant height.

Method

The General Dominant Height Growth Model
The well-known three-parameter Richards model (1959)

serves as the basic dominant height growth model. The
statistical expectation of the Richards model may be ex-
pressed as:

f t A e t( ) ( )= − −1 1 2β β (1)

where t is stand age, f(t) is the mean response function of
dominant height, A is the asymptote parameter which denotes
the asymptotic value of the dominant height, and β1 is the rate
parameter. Since A is the most unstable parameter to estimate
with our data, it was replaced by an expected-value param-
eter, β0, corresponding to the expected height when t = t0.
This allows model (1) to be represented as:
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Model (2) has exactly the same form as an algebraic
difference project model (Borders and Bailey 1984), but with

1 Treatments: CNTL: control (harvest and plant, no site preparation);
UCHP:chop (single pass with a rolling drum chopper); FCHP: chop,
fertilize; UCHB: chop, burn (chop followed by a broadcast burn) ; FCHB:
chop, burn, fertilize; UCBB: chop, burn, bed; FCBB: chop, burn, bed,
fertilize, UCBH: chop, burn, herbicide; FCBH: chop, burn, herbicide,
fertilize; UBHB: chop, burn, bed, herbicide; FBHB: Chop, burn, bed,
herbicide, fertilize. Soil type—A: poorly drained, nonspodosol; B: some-
what poorly to moderately well drained, nonspodosol; C: poorly to
moderately well drained spodosol with an underlying argillic horizon; D:
poorly to moderately well drained spodosol without an underlying argillic
horizon.
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one big difference in interpretation. In (2), β0 is treated as an
unknown parameter (rather than a measured height) and t0 is
treated as a given age, which may not necessarily be included
in the data. There is no limit on t0 as long as it is positive,
although a reasonable t0 should be chosen within the range of
the data. The properties of model (2) can be summarized as
follows:

1. β0 is the expected dominant/co-dominant height at given
age t0, thus, if t0 is taken as the site index reference age (25
yr for slash pine) then β0 corresponds to the site index; if
t0 is taken as a reasonably large value, then β0 corresponds
to the asymptote and (2) has the same form as (1).

2. For a given data set, the estimates of β1 and β2 will be
unchanged for different choices of t0, i.e. changing t0 only
affects the estimate of β0;

3. The asymptotic height is β β β
0 1 01 2[ exp( )]− − t .

The advantages of models with expected-value
parameter(s) were discussed by Schnute (1981), Cieszewski
and Bella (1989), and Cieszewski and Bailey (2000).

Nonlinear Mixed Effects Model
To apply Equation (2) to the real data, various statistical

models will result in different statistical assumptions. Let yij
denote a dominant height measurement at occasion j for the
ith plot (i = 1, …, n; j = 1, …, mi ). mi is the total number of
measurements on plot i; eij denotes the corresponding re-
sidual for yij with the model; and the stand age for plot i at
occasion j is tij. The function f (Equation 2) is assumed to be
common to all plots, but the parameter estimates may vary
across plots. In vector form, let yi = (yi1, …, yi mi

)T, ei = (ei1,
…,

imie )T, ti = (ti1, …, ti mi
)T and βββββi = (βi0, βi1, βi2)T. There are

some stand characteristics corresponding to an individual
plot, such as installation number of the plot, the soil group,
and the silvicultural treatment, which have not been explic-
itly expressed thus far, but they will be addressed in the
section on model specification. We adopt the two-stage
model formulation (Lindstrom and Bates 1990, Davidian and
Giltinan 1995, p. 99) in order to write the general nonlinear
model as:

Stage 1: Within-Plot Variation
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In (3), Ri(βi,α,θ) is an mi × mi within-plot variance-
covariance matrix, which may depend on parameter βi (via
the mean function) and some other covariance parameters θ.
From Davidian and Giltinan (1995, p. 26), one may formalize
the within-individual variance-covariance as:

Cov e R
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σ β α θ β α

=

= 2 1 2 1 2Γ (4)

where the mi × mi diagonal matrix Gi i
1 2 ( , )β α  specifies

within-plot variance and the mi × mi matrix Γi(θ) describes
the correlation pattern within-plot i. Both heteroscedasticity
and correlation of the intra-plot error are considered by this
formulation.

Stage 2: Between-Plot Variation

β βi i i i

i

A B b

b N D

= + 

~ ( , )0

(5)

In (5), Ai is a 3 × p design matrix for p × 1 fixed effects βββββ,
bi is the q × 1 vector of random effects associated with the ith
plot, and Bi is the corresponding design matrix. D is a (q × q)
covariance matrix for the random effects. The design matrix
Ai and matrix Bi are determined by the stand characteristics,
such as silvicultural treatments and soil types, which are
usually, but not necessarily, matrices containing only zeroes
and ones as elements.

Equations (3) to (5) represent the general formulation of a
nonlinear mixed effects model based on the deterministic
dominant height growth equation, Equation (2). Different
models can be obtained with distinct variance-covariance
specifications.

Model Specification
To apply the model represented by (3)–(5) with a real set

of data, one needs to:

1. Specify the nature of the three parameters (β0, β1, β2)T as
fixed and random effects or purely fixed effects;

2. Determine an appropriate variance-covariance structure
for the individual plot [the structure and components of
Ri(βi,ξ)];

3. Choose appropriate covariates to explain interplot param-
eter variability (i.e., determine the dimension and compo-
nents of the fixed effects β and random effects and the
corresponding design matrix Ai and Bi).

The first two issues above arise naturally in the first phase
of model formulation. But the last, which is of most concern
by a model user, should be answered before addressing the
questions presented by the original research, such as silvicul-
tural treatment effects tests, prediction problems, etc. Corre-
sponding to the above two-stage hierarchical formulation, we
address these three problems in the following three steps.

Step 1: Determine Parameter Effects
In modeling, which effects should be considered mixed

(both fixed and random) and which should be considered
purely fixed are generally data dependent. For example,
Lappi and Bailey (1988) chose the rate parameters β1 as fixed
while the asymptote parameter and β2 were considered ran-
dom when they used Richards model for dominant height
growth. They did so simply because it is impossible to obtain
reasonable estimates with all parameters random due to
collinearity problems in their data. Intuitively, one simple
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approach to this question is to obtain separate fits for each
plot and assess the variability of estimated parameters across
plots by considering the individual confidence intervals for
the parameters. The parameters with high variability and less
overlap in confidence intervals across plots should be consid-
ered as mixed effects. This approach requires sufficient
observations on each plot to give meaningful parameter
estimates by separate fitting. However, in forestry, repeated
measurements from permanent plots usually do not cover a
long enough time span or contain enough degrees of freedom
to produce stable individual parameter estimates. In our case
there are only five observations on each plot and three
parameters to be estimated. In this situation, the separate-
fittings approach is not likely to be helpful in judging the
nature of the parameters.

If no prior information about the random effects variance-
covariance structure is available, and convergence is pos-
sible, Pinheiro and Bates (1998) suggested that all parameters
in the model should first be considered mixed (both random
and fixed). After the initial estimates are available, the
eigenvalues of the estimated covariance matrix of the effects
(D matrix) may be studied to see if one or more are close to
zero. The associated eigenvector(s) for such eigenvalues will
then give an indication of the linear combinations of param-
eters that could be taken as fixed. Since small eigenvalues
may arise when the relative magnitudes of the scales of the
parameters in the model are quite different, the “normalized”
variance-covariance matrix [i.e., the coefficient of variation
(CV) matrix Dcv] was recommended instead of the variance-
covariance matrix [Pinheiro and Bates (1998)].

[ ]
[ ]

( ) ( )

D
D

cv lm
lm

k l k m

=
β β (6)

In (6), βk is the kth fixed effect and k(l), k(m) are the fixed
effects associated with the lth and the mth random effects.
This approach is still an ad hoc method, for there is no
decision rule to indicate how close an eigenvalue may be to
zero and not indicate rank deficiency.

Alternatively, once the larger model (for example, with all
the parameters mixed) is fit, one actually can evaluate it with
some smaller (reduced) model using a likelihood ratio test
(LRT) or information criterion statistics, such as Akaike
Information Criterion (AIC). Suppose L0 is the likelihood of
the more general model (e.g., the model with all parameters
mixed) and L1 is the likelihood of the restricted model (e.g.,
some parameters are purely fixed), and the total number of
estimated parameters of these two models are respectively k0
and k1. Then the likelihood ratio test statistic is defined as:

LRT = 2log(L0 / L1) = 2 [log(L0 ) – log(L1)] (7)

Under the null hypothesis that the restricted model is
adequate, the asymptotic (large sample) distribution of LRT
is a χ2 with k0 – k1 degree of freedom. If LRT > χ2 (k0 – k1,α)
then one rejects the null hypothesis with (1 – α)% confidence
that the full model should not be reduced to the restricted
model. Here α is some specified percentile of the Chi-
squared distribution.

 The Akaike Information Criterion (AIC) is defined as
(Akaike 1972):

AIC = –2 log(L) + 2k (8)

where L is the likelihood value of the model with k param-
eters. The AIC is often used to compare models with alterna-
tive sets of fixed-effects and covariance parameters, espe-
cially nonnested models for which the likelihood ratio test is
inappropriate (Gregoire et al.1995).

Following Maitre et al. (1991), in this first step we didn’t
consider any covariates on the mixed effects. Suppose

βi = β + bi (9)

where βi is a 3 × 1 vector of the mixed effects in the nonlinear
dominant height model [Equation (3)], i.e. βi = (βi0, (βi1,
(βi2)T , β and bi are the corresponding vector of fixed and
random effects, respectively, for plot i (i = 1, … n, indexing
individual treatment plot). It is assumed that bi ~ N(03×1,
D3×3).

It is worth noting that the interplot variation Equation (9)
is just a special case of the general formulation of
interindividual variation [see (5)], in which no covariate was
put into the random effect. In other words, it is simply a
random coefficient model and both design matrices Ai and Bi
in (5) are 3 × 3 identity matrixes in this case.

When all three parameters are mixed, the estimated coef-
ficient of variation matrix Dcv is

2:
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The eigenvalues of D̂cv  are 0.02181, 0.018286, and 5.2014

× 10–6. There is some evidence of rank deficiency, but the
evidence is not so strong. The eigenvector corresponding
to the smallest eigenvalue, converted back to the original
scale of the random effects and normalized, is (–0.002193,
–0.99948, –0.03201). Even though both the first and the third
component of this eigenvector are very small, it is hard to
conclude that they are close to each other because one is more
than ten times the other in magnitude. So a formal likelihood
ratio test is necessary in this case to determine the effects of
the parameters. We first took all three parameters as mixed
effects without considering any covariates (this is referred as
the full model), and then picked each of the three parameters
as purely fixed in turn. This resulted in three reduced models.
Since the reduced models are nested within the full model,
likelihood ratio tests can be carried out to check if the

2 Maximum likelihood method was used in the parameter estimation (ref.
Pinheiro and Bates 2000). t0 in (3) was taken as t0 = 25 yr all through this
study.
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reduction in parameters caused any significant changes in
model performance. Replacing any mixed effects parameter
with a purely fixed effect significantly lowered the likelihood
values (Table 1). Therefore, preference must be given to all
three parameters being considered as mixed effects. Of
course, results may be different with different covariates for
the fixed effects and variance-covariance structure for the
random effects, but the above procedure should be the same.

Step 2: Determine Within-Plot Variance-Covariance
Structure

To specify the within-plot variance-covariance structure,
as implied in (4), two components should be addressed: one
is the heteroscedaticity, and the other is autocorrelation
structure. Forest growth and yield data from permanent plots
usually exhibit both autocorrelation and heteroscedasticity
(Gregoire 1987).

1.  Variance Function

The variances of errors around growth and yield models
are often found to be dependent on the means; larger means
usually have larger variance. Some frequently used variance
functions for growth modeling include (Davidian and Giltinan
1995, p. 23) the power function model,

g(µij, α) = g ij ij
( , )µ α µα= (10)

 and the exponential function model,

g ij ij(µ α αµ, ) exp( )= , (11)

where µij is the mean function, which is defined in (3).
Note that both of the above functions imply that the

variance of responses depends on the regression parameters
through the means. Random effects in the mean function may
remove some heterogeneity in variance. This is not hard to
understand. Since the variances depend on the mean response
through the parameters, random effects in parameters will
definitely affect the underlying distribution of error of the

model and thus the variance. LRT (if the alternative models
are nested) or AIC (if not nested) may be used to determine
an appropriate variance function for the model.

The fitting comparison of a full mixed-effects model with
both exponential and power variance functions indicates that
the LRT tests are significant for both of these variance
functions (Table 2). So even with random effects in the
parameters, heteroscedasticity still exists in the mixed-ef-
fects dominant height model. With a power function to model
the variance, a smaller AIC value results than with an expo-
nential function. Since both have the same number of param-
eters in the model, the power function is judged superior in
this case.

2. Serial Correlation Structure

Forest growth and yield data from permanent plots may be
correlated over time, and thus some adjustment in regression
techniques might be necessary (Leak 1966, Gregoire 1987,
Lappi and Malinen 1994). The empirical autocorrelation
function (Box et al. 1994) can be used to investigate serial
correlation. Let rij denote the standardized residuals from a
fitted mixed model for individual i(i = 1, … n) at occasion j
(j = 1, … ni). The empirical autocorrelation at lag l is defined
as (Pinheiro and Bates 2000):

ˆ ( )
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1

, (12)

where N(l) is the number of residual pairs used in the
calculation for ˆ ( )ρ l and

N nii

n
=

=∑ 1

is the total number of the observations.
An approximate two-sided critical value for autocorrelation

ˆ ( )ρ l at sigificance level α is given by z N l( ) ( )1 2−α , where

Table 1.  Likelihood ratio tests (LRT) for nonlinear mixed-effects models of slash pine dominant height with different
fixed and random effects components.

* The number of parameters here includes both the parameters in the mean function (three in this case) and variance-covariance (six for the full model and
three for the reduced model) and add another deviance parameter σ.

† Maximum likelihood method was applied in parameter estimation.

Model
Mixed
effects

Fixed
only

No.* of
parameters AIC Log-likelihood † LRT P-value

β0, β1, β2
None 10 1,731.185 –855.593

β0, β1 β2
7 1,785.984 –885.992 60.799 <0.0001

β1, β2 β0
7 2,160.942 –1,056.455 401.72 <0.0001

β0, β2 β1
7 1,739.007 –862.504 13.822 <0.0032

Table 2.  Comparisons of mixed-effects model performance for slash pine dominant height growth data with different
variance functions.

* Variance function 1 means that the variances are homogeneous.
† Likelihood ratio is calculated with respect to Model 1.

Model
Variance
function

No. of
parameters AIC Log-likelihood LRT† P-value

1 1* 10 1,731.185 –855.593
2 Exponential 11 1,703.053 –840.527 30.132 <0.0001
3 Power 11 1,697.299 –837.650 35.886 <0.0001
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z(1-α/2) is the standard normal quantile at percentile 1 – α/2
and N(l) is defined in (12).

The estimated empirical correlation for  Equation (3) in
Table 2 is

ˆ [ˆ ( ), ˆ ( ), ˆ ( ), ˆ ( )]

[ . , . , . , . ]

ρ ρ ρ ρ ρ=

= − − −

1 2 3 4

0 4895 0 1859 0 1731 0 4014

T

T

The autocorrelation looks “strange” in that the first three
lags are all negatively correlated, and the fourth lag is
significantly positively correlated. This is not consistent with
our intuition, because one usually expects that observations
spaced closely in time should be positively associated.
However, such a counter-intutive autocorrelation is not
uncommon in the real world (e.g., Davidian and Giltinan
1995, p. 133). This is an excellent example to show the
complexity of within-plot autocorrelation. Knowing that the
empirical autocorrelation is significant, it is necessary to
modify Model 3 (in Table 2) to refelect this within-plot
autocorrelation.

One of the most commonly used within-individual
autocorrelation structures with repeated measurement data is
AR(1), i.e., autoregressive model with order 1 (Gregoire et al.
1995). However, there was no significant improvement when
we included an AR(1) autocorrelation structure with mixed
effects Model 3 (see Table 3). Therefore, an inappropriate
correlation structure can result in no improvement in fitting
even though there is some evidence of correlation in the error.
This may partially explain why several authors in the forestry
literature concluded that modeling the within-plot
autocorrelation produced no improvements in forest growth
and yield prediction (see, for example, Sullivan and Clutter
1972). After trying several models, we found that a moving
average correlation model was the best for improvement in
the mixed effects version of  Model 3 ( see Table 3).

If et is the current error in the model, then MA(q), i.e., a
moving average correlation model with order q, is given by:

  et t q t q t= + + +− −θ ε θ ε ε1 1 L , (13)

where εi (i = t  q, …, t) are q + 1 white noise terms. θθθθθ = (θ1,
… , θq)T is the q parameters in MA(q) correlation structure.

The correlation function for a MA(q) model is:
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k q q
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(14)

Observations more than q time units apart are deemed
uncorrelated in a MA(q) correlation structure.

For current data, a moving average correlation structure
with order 2 was the best of the candidate correlation structures
investigated with the likelihood ratio test and AIC values
(Table 3). We call this Model 4 (i.e.,all parameters are mixed,
with no covariate considered, power function as the variance
function and MA(2) as the within-plot correlation structure).
Thus we have finished one cycle of model specification in
Step 1 and Step 2.  Model 4 is “the best model” specified thus
far. However, after considering covariates for the mixed
effects (Step 3), the appropriate within-plot variance function
and correlation structure may be different, but the general
procedure described above is still valid.

Step 3: Specify Between-Plot Variation:
Covariate Modeling

After determining the nature of the parameters in the
model (random or fixed), an immediate question is how to
track the random effects parameters. In this step, we address
the question of which variables in the survey or experiment
are potentially useful in explaining random effects variation
and how the random effects are explained by those variables
[i.e., determine the design matrix in  Equation (5)].This is a
procedure similar to variable selection in ordinary regression
analysis and should be primarily determined by the design of
the experiment and the variables in the survey.

It will be informative as a first look to check the correlation
matrix of the random effects from the final model in Step 2.
High correlation among the random effects usually indicates
that some similar patterns exist among the design compo-
nents which may be explained by some other covariates.

All correlations among the three random effects are mod-
erately high giving us a strong message that a covariate model
for the mixed effects would be useful in explaining variation
(Figure 1).

Another useful graphical device for investigating pos-
sible relationships between mixed effects and individual
plot attributes (such as silvicultural treatments, soil type,
etc.) is to plot estimates of the random effects against
potential covariates. The empirical Bayes estimates of
random effects in  Equation (4) from Step 2 are plotted
conditionally on silvicultural treatments (see Figure 2)
and soil type (see Figure 3). Visually, silvicultural treat-
ments are more likely to be the significant factor than the
soil types. A formal split-plot analysis of variance (e.g.,
Lentner and Bishop, 1986, Chap. 11) to the three random
effects shows that silvicultural treatment is the only sig-
nificant term to the random effects. Soil type and the

Table 3.  Comparisons of mixed-effects model performance for slash pine dominant height growth data with
different within-plot correlation structures and no interplot covariates.

* Refer to Bates and Pinheiro 2000.
† Likelihood ratio is calculated with respect to Model 3.

Model
Correlation*

structure
No. of

parameters AIC Log-likelihood LRT† P-value
3 Independent 11 1,697.299 –837.650

AR(1) 12 1,697.092 –836.544 2.2078 0.1373
ARMA(1,1) 13 1,695.872 –834.936 5.4278 0.0663

4 MA(2) 13 1,694.808 –834.404 6.4919 0.0389
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interactions are not significant. This conclusion is also
consistent with reports by other researchers using differ-
ent approaches with these same data (e.g., Castleberry
1998).

Even though the general silvicultural treatments are sig-
nificant for all the mixed effects, it may well be an
overparameterization to consider every silvicultural treat-
ment as a fixed effect. There are 11 levels of treatments
(including the control), and the differences between response
curves for some of them are very small. One way around this
is to take the significant treatments as fixed effects and the
others as random. But some problems still remain because
terms significant in the analysis of variance (ANOVA) are
not necessarily significant when they are put into the model
as fixed effects. One of the attributes of the original study is
that the silvicultural treatments are arranged in an additive
way. Five distinct silvicultural activities (chop, burn, bed,
fertilizer, and herbicide) are applied to individual treatment
plots individually or in combination. For example, treatment
FCHB is the combination of chopping, burning, and fertiliza-
tion. By assuming that the effects of the silvicultural treat-
ments on the response (dominant height growth) are additive
(e.g., Pienaar et al. 1998) some dimension reduction can be
obtained. Only 5 fixed effects will be involved instead of 11.
However, it is still unrealistic to take all 5 silvicultural
treatments as fixed in the 3 mixed effects (βi,0, βi,1 and βi,2).
After initial efforts, effects of burning and fertilizer were
taken as fixed to βi,0, effects of fertilizer and herbicide fixed
to βi,1, and effects of fertilizer, bed, and herbicide fixed to
βi,2. For the random effects terms, the intercepts of the first
two parameters (β0 and β1 ) are chosen as random, which may
explain the combined random effects such as soil types,
silvicultural treatment combinations, installations, or indi-
vidual plot. Chopping has a random effect on parameter β2.
Let zchopi, zburni, zfi, zbedi and zhi be respective dummy

variables indicating if chopping, burning, fertilizer, bed, or
herbicide treatment were applied on a specified treatment
plot i. The interplot formulation for the slash pine dominant
height growth may be represented as:
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where β00, …, β23 denote the fixed effects. Parameters β00,
β10, β20 are, respectively, the intercepts for fixed effects.
Parameter vectors (β01, β02), (β11, β12), (β21, β22, β23) are the
fixed “gains” on parameters βi,0, βi,1, βi,2, respectively,
because of burning and fertilization, fertilization and herbi-
cide, fertilizer, bed, and herbicide.

Figure 1.  Scatter plot of estimated random effects from Model 4
for the modified Richards dominant height growth model with
random effects and independent normal within-plot errors.
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Figure 2.  Comparisons of estimated random effects by silvicultural
treatments for the modified Richards dominant height growth
model with random effects and independent normal within-plot
errors.
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Parameters bi,0, bi,1, bi,2 are the random effects, in which
bi,0 and bi,1 are the random intercept effects on βi,0 and βi,1
respectively. Parameter bi,2 is the random effect in conjunc-
tion with site preparation chopping.

Assume (bi,0, bi,1 bi,2)T ~ N(03×1, D3×3), and that D is 3 × 3
positive symmetric covariance matrix for the random effects.

Therefore, matrices Ai and Bi in (5) are specified as:

A

zburn zf

zf zh

zf zbed zh

i

i i

i i

i i i
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Once appropriate covariate models (design matrices Ai ,
Bi) are determined, one still needs to go back to Step 2, to
choose an appropriate within-plot variance function and
correlation structure. Usually, Step 3 and Step 2 need to be
repeated until a satisfactory model is obtained. Just as before,
the likelihood ratio test and the AIC values indicate that both
heterogeneity and correlation are evident even after includ-
ing covariates in the model. For example, both the exponen-

tial and the power functions significantly improve model
fitting. Moreover, correlation structures AR(1), ARMA(1,1),
and MA(2) are all significant compared to the model with an
independent structure. A power variance function combined
with the moving average correlation with q = 2 denote the
best among these models (Table 4).

Thus the final specified model has the following form:
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where MA(2) denotes a moving average correlation model
with two parameters as defined in (13) and (14). There are 20
parameters (including the parameters in the variance-covari-
ance matrices) to estimate in the above mixed effects model.
Individual random effects can be predicted by first-order
approximation (Lindstrom and Bates 1990)

Parameter Estimation and Model Diagnosis
Parameter estimation for nonlinear mixed effects models

requires numerical integration of random effects in the model.
This procedure can be computationally difficult as the random
effects often enter the model nonlinearly (e.g., bi,1 and bi,2 in the
above model). Different approximations have been used to deal
with interindividual random effects, among those linear ap-
proximation with a first-order Taylor expansion in all the
interindividual random effects is the most common method. The
Taylor expansion can be either at 0 (the mean of the random
effects) or at the empirical best linear unbiased predictor (EBLUP)
of the random effects. The first approach is cheaper in term of
computing time, but the second approach can be more accurate

Table 4.  Comparisons of mixed effects model performance for slash pine dominant height growth data with between-
plot covariates [Equation (15)] and different within-plot variance function and correlation structures.

† For Models 6 and 7, the likelihood ratios are calculated with respect to Model 5; for Models 8, 9, and 10, the likelihood ratios are calculated with respect
to Model 7.

* Variance function 1 means that the variances are homogeneous.

Model
Variance
function

Correlation
structure

No. of
parameters AIC

Log-
likelihood LRT† P-value

5 1* Independent 17 1,524.069 –745.035
6 Exp. Independent 18 1,499.589 –731.795 26.480 <0.0001
7 Power Independent 18 1,493.780 –728.890 32.289 <0.0001
8 Power AR(1) 19 1,489.443 –725.722 6.337 0.0118
9 Power ARMA(1,1) 20 1,489.831 –724.916 7.949 0.0188

10 Power MA(2) 20 1,487.933 –723.966 9.848 0.0073

Figure 3.  Comparisons of estimated random effects by soil types
for the modified Richards dominant height growth model with
random effects and independent normal within-plot errors.
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although possibly more unstable (Wolfinger and Lin 1997).
Other alternative first-order Taylor series expansions have been
proposed. For example, Vonesh and Carter (1992) proposed the
use of estimated generalized least squares and established the
asymptotic properties of the resulting estimates. Except for the
first-order approximation, an adaptive Gaussian quadrature
approximation has been optionally available within a new SAS
procedure NLMIXED (available SAS 7.0 or later). Different
parameter estimation methods have been implemented into
various commercial software package, such as S-plus and SAS.
A comprehensive review has been presented by Roe (1997). We
use the EBLUP approximation approach, which uses a first-
order Taylor series expansion about conditional estimates of the
interindividual random effects. Detailed descriptions for this
method can be found in Davidian and Giltinan (1995). S-plus
software implementations are available from the NLME library
by Pinheiro and Bates (2000). Model 10 fits well to the data and
all ten fixed-effect parameters were significant with generally
low covariances between pairs of parameters.

Comparing Model 10 with Model 4 (see Tables 3 and 4), one
can see that the model performance has remarkably improved by
including the interplot covariates (silvicultural treatments). For
example, the log-likelihood value increased from –834.404 to –
723.966. This gives a LRT of 220.876 with 20 – 13 = 7 degrees
of freedom, which is significant at any common significance
level. A closer diagnosis of the final model can be obtained by
checking plots of the residuals, the fitted values, and the esti-
mated random effects. Because the within-plot errors are as-
sumed to be independent and normally distributed, given the
appropriate within-plot variance-covariance [R matrix in (4)]
the residual plot (residuals or standardized residuals against the
fitted values) should not reveal any observable pattern, and the
Q–Q plot should be approximately linear. The residual and Q–
Q plots of Model 10 do not indicate serious departures of
randomness and normality. The numbers identified on the
residual plots are the observations which are potential outliers in
that the corresponding standardized residuals are outside of the
range 2.5 to 97.5 standard normal quantiles (see Figure 4).
Overall, the standardized residuals are small, thus suggesting the

nonlinear mixed effects Model 10 was successful in explaining
the dominant height growth data.

Interpretation of Model Parameters

 “Typical” Responses for Different Silvicultural
Treatments

Parameter interpretation for a nonlinear mixed effects model
will usually be quite different depending on whether one chooses
to model the response yi at the individual level or to consider
population behavior and the marginal moments directly. Zeger
et al. (1988) refer to the case of the hierarchical model for an
individual as a subject-specific model, and that of a model for
marginal moments as population-averaged model. We have
chosen a subject-specific approach thus far. A higher precision
for individual prediction usually results with this approach.
However, it is still possible in this approach to assess the
“typical” response for an individual or some grouping of indi-
viduals. For example, we assume the random individual treat-
ment plot effects to be 0 and then this “typical” dominant height
growth for a given individual (or group) can be obtained by just
substituting corresponding fixed effects into the final model
(Model 10). We obtained parameters in the modified Richards
model for 11 silvicultural treatment groups with random effects
set to zero (Table 5).

One may use the parameters in Table 5 to obtain the
“typical” dominant height growth curve for each indi-
vidual silvicultural treatment. For example, we constructed
a comparison of the “typical” dominant height growth for
the following six silvicultural treatments: FCHP, FCHB,
FCBB, FCBH, FBHB, and CNTL. Treatment FBHB has
highest growth response (Figure 5). It is also the most
comprehensive treatment combination. CNTL has lowest
growth response and has no silvicultural treatment in-
cluded. While this model is still informative to assess the
“typical” or mean responses for individual prediction,
information on random effects is always helpful. As an
example, we graphed a comparison of predicted curves
with and without random effects for an experimental plot
in the original data (a treatment plot in Installation 7, soil
type C) with silvicultural treatment FCBH. From this it is
clear that one obtains much more precise prediction with
estimated random effects included in the model (Figure 6).

Figure 4.  The residual plot for the modified Richards dominant
height growth model with random between-plot effects and
MA(2) within-plot autocorrelation and power variance function
[Model (10)].
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Table 5.  The estimated parameters for “typical” dominant height
growth (random effects input as 0) with modified Richards model
by silvicultural treatment groups.

Estimated parameters
Silvicultural
treatments β0 β1 β2

CNTL 18.57601 0.07859702 1.967684
UCHP 18.57601 0.07859702 1.967684
FCHP 21.10557 0.05432134 1.675987
UCHB 19.67853 0.07859702 1.967684
FCHB 22.20809 0.05432134 1.675987
UCBB 19.67853 0.07859702 1.813103
FCBB 22.20809 0.05432134 1.521406
UCBH 19.67853 0.09306127 1.792522
FCBH 22.20809 0.06878559 1.500825
UBHB 19.67853 0.09306127 1.637942
FBHB 22.20809 0.06878559 1.346245
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Localization of Site Index Curves
Age t0 in the modified dominant height model [model (2)]

was chosen to be 25, which is often used as the reference age
for slash pine. The estimated parameter ˆ

,βi 0  is naturally
interpreted to be the estimated site index for plot i. So the
dominant height growth and the site index prediction models
are combined into one model in the current approach. For
example, to obtain the site index curve, one may solve for β0
directly from the current dominant height growth model or
estimate a series of β0’s by changing t0. With the second
approach, one can not only obtain a site index curve for an
individual plot, but also estimate upper and lower bounds on
this curve. This naturally provides a method to label site
index curves for slash pine plantations with silvicultural
treatments.

It is easy to show that the nonlinear mixed effects model
based on the Richards model (10) is polymorphic in that varying
rates of height growth on different sites are reflected. Model 10
is also base age invariant. That is, predictions and curves are
invariant with respect to the changes in the base age for site index
(Bailey and Clutter 1974). It is also interesting to note that site
index is affected by silvicultural treatments. This has been
demonstrated not only because some silvicultural treatments
(e.g., burning and fertilization ) are significant for parameter β0,
but also because the dominant height growth curve is affected by
silvicultural treatments (see Figure 5).

Individual Prediction for New Observations
Suppose we are interested in the prediction of a single

observation from a new experimental plot. This plot may
or may not contain prior observations. Traditional regres-
sion type prediction does not distinguish these two situa-
tions. The nonlinear mixed effects model will distinguish
these two situations, and prior observations for a specified
individual will improve the precision of the individual
prediction.

Case 1: Prediction Is Required for a New Individual with
 No Prior Observations

Suppose we are interested in the prediction of the
dominant height on plot k at age tkh, and there is no prior

observation on this plot. Assume all stand attributes are
given, so the design matrices of the fixed (Ak) and random
effects (Bk) for this plot are also known. However, since
there are no prior observations on this plot, it is impossible
to determine the random effects (bk) corresponding to this
plot. Prediction and reference can be obtained by replac-
ing bk with 0’s in Model 10 in this case:
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R f tkh k kh= ˆ ( ˆ , )α β , t0 = 25, Ω̂  is a 10 × 10 covariance matrix
corresponding to the estimated parameter vector β̂K . The
ˆ

...β ’s , ˆ ,D σ̂ , and α̂  are the estimated parameters. All other
terms are defined above.

So an approximate 100(1 – α)% confidence interval for
this prediction is:

ˆ ( , / ) var( ˆ )y t n q ykh kh± − −1 2α (18)

Figure 5.  A comparison of the mean responses (typical responses)
of dominant height growth by six different silvicultural treatments
(CNTL, FCHP, FCHB, FCBB, FCBH, FBHB) with the nonlinear
mixed-effects dominant height growth model.
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Figure 6.  A comparison of individual dominant height growth
predictions by typical response and subject-specified response
with the nonlinear mixed-effects dominant height growth model.
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where n – q is the degrees of freedom associated with the
fixed effects. n – q = 955 – 10 = 945 (for example, if we want
to predict the slash pine dominant height at age 20 on a new
plot with silvicultural treatments FCBH (chop, burn, herbicide,
fertilize) and there is no other information on this plot
available. We have
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Substitute the β̂k ’s into Model 10, then the estimated dominant
height at age 20 is

ˆ .ykh =19 29 m.

Fk
T = −( )0 8686262 37 81246 1 810287. . . .

Substitute Ω̂ , ˆ ,D σ̂ , α̂ , and design matrices into (17) to
obtain a variance of this prediction: var( ˆ )ykh  = 3.8758. The
95% confidence interval for the prediction is [15.43 m,
23.15 m]

Case 2 Prediction Is Required for a New Individual with
 Prior Observations

An alternate, and perhaps more practical, situation in
forestry occurs when a prediction is required for a known
individual for which a collection of formerly observed data is

available. One may still use the procedure in Case 1 to obtain
the prediction and corresponding prediction limits just as
with traditional regression. However, this approach would
ignore any information contained in the prior observations of
the specified individual. Instead, we may use the information
contained in former observations to estimate the subject-
specific random effects for this individual and incorporate
this directly into our prediction.

Suppose the information available for individual plot k is
{yk, tk, Ak, Bk}, where yk is a vector of former observed
dominant heights at corresponding age vector tk. We wish to
predict a future dominant height ykh at a given age tkh. We first
estimate the random effect bk. We can take a first order
expansion of f(tk, Akβk + Bkbk) about bk = 0. From the
residual, ek = yk – f(tk, Akβk ), one can estimate bk by the post
mean and variance of (bk| yk), βk, ξk ), where ξk is the vector
of variance covariance parameters for individual k [see the
general model form (4)]. For details refer to Vonesh and
Chinchilli (1997, Chap. 7).
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After estimating kb , we may take a first-order expansion
of f(tk, Akβk + Bkbk) about β = β̂  and bk = b̂k , with a little
algebra, the prediction for ykh can be realized as:
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with prediction variance:
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where

C Cov b b F Z Dk k k
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k k= − − ≅ − −[( ˆ ), ( ˆ ) ] ( ˆ ) ˆ ( ˆ ) ( ˆ, ˆ ) ˆ ˆβ β β β β ξΩ Σ 1

and F̂kh , ẑkh  are, respectively, the component of a column
vector in matrix ˆ ,  ˆF zk k , corresponding to the hth occasion
(on which prediction is required).

Similarly, the approximate 100(1 – α)% can be obtained
by (18).

For a specific example, suppose we know the dominant
heights at age 11,14,17 to be 12 m,16 m, and 18 m for a plot
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with the FCBH treatment. We want to predict the dominant
height of this plot at age 20. Thus,

ˆ ( , )

.

.

.

.

.

.

e y f t Ak k k k k= − =













−














=















β
12

16

18

11 54

14 51

17 09

0 46

1 49

0 91

Suppose the within-plot correlation still follow MA(2)
structure, then

R diag diag

 . .  .

 .  .  .

 .  .  .

k k k=

=














×( ˆ ) ( ˆ )ˆ / ˆ /µ µα α2
3 3

2

2 6168 0 4415 0 9176

0 4415 2 8635 0 47697

0 9176 0 47697 3 0537

Γ

ˆ ˆ

–

–

Z F B

. . .

. . .

. . .

k k
T

k=

=




























=














0 5197 0 6535 0 7696

73 9598 69 4579 56 4948

5 0331 4 1139 2 9823

1 0 0

0 1 0

0 0 1

0 5197 73 9598 5 0331

0 6535 69 4579 41139

0 7696 56 4948 2 9823

. . .

. . .

– . – . – .

,

Hence, by (19),

ˆ –

–

b

 .

.

 .
k =















13199720976

0 0005567815

0 0165628772

With the random effects considered, the predicted dominant
heights for this specific plot at ages 11,14,17 are 12.27 m,
15.41 m,18.13 m, respectively, which are closer to the observed
values (12 m,16 m,18 m) than those given by the means
response function (11.54 m, 14.51 m, 17.09 m). This is not a
surprising result, because the random effect estimation process
has used all observed information, whereas the mean response
prediction does not.

The estimated variance-covariance matrix for the random
effects is [by (20)]:

ˆ vâr( ˆ )

– –

–

–

V b b

. . .

. . .

. .   .

k k k= −

=














3 52872532 0 0132174726 0 031320308

0 01321747 0 0002521917 0 001825877

0 03132031 0 0018258767 0 032479971

Therefore, with the random effects considered, the
predicted dominant height at age 20 [by (21)] is: ŷkh  = 20.45
m, the estmated variance is [by (22)]: vâr( ˆ )ykh  = 2.097 m, thus
the 95% confidence interval for the prediction is :[17.61 m,
23.68 m].

Comparing with Case 1, we can see that former observations
for a specified individual can improve the precision of the

future prediction for that individual with the mixed effects
model approach. In this example, the standard error of the
prediction decreased by 26.5% from 1.969 m to 1.448 m.
Generally, the more special an individual is (i.e., the more
different from the “typical” response with bi’s of zero), the
more “gain” will result by using the mixed effects prediction.

It is worth pointing out that the correct within plot variance-
covariance structure also plays an important role in prediction.
For example, if we ignore the random effects and within-plot
heterogenity and correlation, and use the ordinary least square
approach to the final chosen model (Model 10), the effects of
fertilizer and herbicide will not be significant any more (with
P value = 0.80 and 0.15 respectively). The prediction dominant
height for the above example will be 18.72 m, with error 2.07
m, which is 5% higher than that obtained by appropriate
variance-covariance structure (Case 1).

Discussion and Conclusion

A mixed effects model is appealing for the analysis of
repeated measurement data from a given experimental design
because of its flexibility in representing the covariance struc-
tures that are not readily identified by the traditional regres-
sion approach. A modified Richards model with nonlinear
mixed effects is recommended for modeling slash pine domi-
nant height growth in conjunction with different silvicultural
treatments. The analysis results show that a random effects
model provided better model fitting and more precise predic-
tions compared to a similar model without random effects.

 Mixed effects reasonably explain the individual random
variation that is quite common for repeated measurement
data from permanent plots with an experimental design. If
prior observations are available, the random effects corre-
sponding to this specified individual can be estimated, thus
more precise prediction for future observations can be ob-
tained. This makes intuitive sense since more information is
applied in the prediction by using the random effects ap-
proach. Random effects may relieve such problem as
nonhomogeneous variance and within-plot autocorrelation
error in modeling forest growth and yield repeated measure-
ment data. But heterogeneity and correlation still occur for
slash pine dominant height growth even after considering the
appropriate random effects.

Heteroscedasticity is usually easier to handle. Once the
trend of the variance (variance function) is identified, an
appropriate individual weight (inverse of the variance) can be
applied to individual observations to justify the process of
parameter estimation. Comparatively, within-plot
autocorrelation is not so easy to justify. Because many other
factors in the model (or data) affect the autocorrelation, a
reasonable structure may not be obvious for a given collec-
tion of data and model. No benefits will accrue from an
inappropriate structure when autocorrelation is evident in the
data. So, the model for autocorrelation structure should
usually be as simple as possible when an appropriate one is
not available (Davidian and Giltinan, p. 133, 1995). Moving
average correlation with two parameters was used to model
the within-plot correlation for the slash pine data. The esti-
mated θ1 is smaller than that of θ2 (0.1853 vs. 0.3386). This
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seems counterintuitive. One would expect observations spaced
closer in time to exhibit higher correlation. Actually, this is
also demonstrated on the empirical autocorrelation function
in that negative correlation was estimated for the first three
lags. Since the plot to plot variation is the main source of error
(i.e., the random effects are much higher than the errors of
within-plot error components.), any pattern of plot to plot
variation may lead to unexpected within-plot patterns. An-
other explanation is that the effects of silvicultural treatment
effects can be time-varied, and the autocorrelation pattern
might reflect such variations. In such sense, a time-varied
mixed effects model can be more desirable.

Incorrect covariance structure not only results in an incor-
rect model, but also produces a larger prediction error for a
new observation prediction. For example, when we used the
traditional ordinary least squares approach and ignored the
random effects and within-plot heterogeneity, the prediction
error increased 5% as compared to population level predic-
tion with the covariance structure appropriately addressed.

The well-known Richards model was modified to in-
clude an expected-value parameter, which is naturally
interpreted as site index with t0 as the base age. In the
recommended final structure, dominant height growth and
site index are explicitly combined into one model form.
Incompatibility between the height growth and site index
model (Curtis et al 1974) can be avoided in the recom-
mended model form. By changing t0 serially, one can
obtain a method of labeling site index curves that does not
really involve the concept of site index. As Northway
(1985) pointed out, site index of a stand should be a label
that refers to a curve which most closely follows the height
development of the stand. Even though traditionally the
label is made so that the curve passes through the point
(reference age, site index), site index itself is not the
primary value of interest. This is clearly demonstrated by
the procedure suggested by Clutter et al. (1992, p.  58) in
which the concept of index age is completely avoided. The
above recommended model form can express these ideas
about site index calibration. It is easy to show that the
modified Richards model with mixed effects naturally
forms a base age invariant polymorphic site index model
(Bailey and Clutter 1974).

I should note that the modified Richards model was
chosen without comparing it to other growth models. As one
anonymous reviewer pointed out, the Richards model does
not fit slash or loblolly pine well at early ages because of
initial rapid growth of these species. So it is helpful to
emphasize that the purpose of this work is to demonstrate the
useful method rather than to advocate the final product.

Three parameters in the modified Richards model are
all chosen to be mixed (both fixed and random). Silvicul-
tural treatments are significant in covariate modeling, but
soil types are not. Likelihood ratio and AIC values are used
in model performance evaluation. The procedures of model
specification with the nonlinear mixed effects model is
discussed in detail, and some useful graphical diagnosis
methods are also presented. In summary, (1) between-plot
variation is the main source of error for dominant height

growth prediction. (2) Within-plot heterogeneity and cor-
relation still exist even after introducing random compo-
nents into all three parameters in a modified Richards
dominant height growth model. A power variance func-
tion and moving average correlation with order 2 [MV(2)]
are justified for the within-plot error structure in a conven-
tional nonlinear mixed-effects model approach. (3) Pre-
dictions (including response value and prediction variance
and thus confidence interval for the predictions) for new
observations can be obtained at different precision levels
in distinct situations. Past observations can be used to
estimate the individual-specific parameters and thus im-
prove the precision of the prediction for the specific
individual experimental unit.
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