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Abstract: Forest modelers have attempted to account for the spatial autocorrelations among trees in growth and
yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized
additive models (GAM), and geographically weighted regression (GWR). However, the model errors are
commonly assessed using average errors across the entire study area and across tree size classes. Little attention
has been paid to the spatial heterogeneity of model performance. In this study, we used local Moran coefficients
to investigate the spatial distributions of the model errors from the four regression models. The results indicated
that GAM improved model-fitting to the data and provided better predictions for the response variable. However,
it is nonspatial in nature and, consequently, generated spatial distributions for the model errors similar to the ones
from ordinary least-squares (OLS). Furthermore, OLS and GAM yielded more clusters of similar (either positive
or negative) model errors, indicating that trees in some subareas were either all underestimated or all
overestimated for the response variable. In contrast, LMM was able to model the spatial covariance structures
in the data and obtain more accurate predictions by accounting for the effects of spatial autocorrelations through
the empirical best linear unbiased predictors. GWR is a varying-coefficient modeling technique. It estimated the
model coefficients locally at each tree in the example plot and resulted in more accurate predictions for the
response variable. Moreover, the spatial distributions of the model errors from LMM and GWR were more
desirable, with fewer clusters of dissimilar model errors than the ones derived from OLS and GAM. FOR. SCI.
51(4):334–346.

Key Words: Spatial autocorrelation and heterogeneity, local indicator of spatial autocorrelation, ordinary
least-squares), linear mixed model, generalized additive model, geographically weighted regression.

FOREST MODELERS HAVE LONG REALIZED that using
ordinary least-squares (OLS) regression to estimate
the parameters of growth and yield models may

violate (at least) one of the OLS assumptions (i.e., indepen-
dence of observations, due to temporal or/and spatial auto-
correlations in forest data; Liu and Burkhart 1994, Fox et al.
2001). Violating the assumption leads to a biased estimation
of the standard errors of model parameters and reduces
estimation efficiency, while regression coefficients remain
unbiased. Thus, significance tests and measures of model fit
may be misleading (West et al. 1984, Gregoire 1987, Anse-
lin and Griffith 1988, Fox et al. 2001). Temporal autocor-
relation received attention in forest modeling practice be-
ginning in the 1960s (Buckman 1962, Curtis 1967, West et
al. 1984, Gregoire 1987). A number of statistical methods
have been applied to deal with the temporal dependency
such as the first-order autoregressive model (e.g., Yang
1984, Monserud 1986), the first-order mixed autoregressive
moving average model (e.g., Stage and Wykoff 1993), and
linear and nonlinear mixed models (e.g., Lappi 1991, Gre-
goire et al. 1995, Penner et al. 1995, Schabenberger and
Gregoire 1995, Gregoire and Schabenberger 1996, Tasissa
and Burkhart 1998).

The violation of the OLS assumption due to spatial
dependency in tree data has drawn attention from forest

modelers only in recent years. Commonly, distance-depen-
dent competition indices were developed and incorporated
into individual-tree growth and yield models to account
indirectly for the presence of the spatial dependency (e.g.,
Pukkala and Kolström 1987, Pukkala 1989, Biging and
Dobbertin 1995). Other spatial analyses (e.g., Moran coef-
ficient, variogram, kriging, Ripley’s K-function, Gibbs pro-
cess, nonparametric kernel, and nearest-neighbor method)
have been used to detect, analyze, and model spatial pat-
terns and autocorrelations of many forest variables, includ-
ing tree diameter, diameter distribution, total height,
growth, mortality, and regeneration (e.g., Reed and
Burkhart 1985, Schoonderwoerd and Mohren 1988, Kenkel
et al. 1989, Moeur 1993, Biondi et al. 1994, Liu and
Burkhart 1994, Frohlich and Quednau 1995, Kangas and
Korhonen 1996, Wells and Getis 1999, Fox et al. 2001,
Goreaud et al. 2002, Nanos and Montero 2002). Modern
statistical techniques have lately become popular to deal
with spatial effects (i.e., autocorrelation and heterogeneity)
in predicting forest composition and attributes, species dis-
tribution, biodiversity, forest type and class, and insect
attack. Techniques used include linear mixed models
(LMM), generalized additive models (GAM), classification
and regression tree (CART), multivariate adaptive regres-
sion splines (MARS), artificial neural networks (ANN), and
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geographically weighted regression (GWR) (e.g., Austin
and Meyers 1996, Preisler et al. 1997, Lehmann 1998,
Moisen and Edwards 1999, Moisen et al. 1999, Frescino et
al. 2001, Guisan et al. 2002, Moisen and Frescino 2002,
Lehmann et al. 2003, Zhang and Shi 2004, Zhang et al.
2004). Many of these modeling techniques are considered
more robust for spatially correlated data, less restricted in
model assumptions, and flexible in modeling nonlinearity
and nonconstant variance structure (Guisan et al. 2002,
Moisen and Frescino 2002).

Performance assessment of these modeling techniques
has often been focused on the overall model errors (Laffan,
S.W. 1999. Spatially assessing model error using geograph-
ically weighted regression. GeoComputation at http://www.
geocomputation.org/1999/086/gc_086.htm. March 22, 2005,
Moisen and Frescino 2002), assuming the models predict
the response variable equally well across the entire study
area. Although previous studies showed the improvement
on model-fitting and parameter standard errors using global
accuracy assessments, there is little information available
on how well these models perform spatially. Areas where
predictions are not acceptable may indicate the need for
other variables in the models or a different approach. One
way to locally assess the model errors is to map them across
the study area (Rathert et al. 1999, Fotheringham et al.
2002). Visualization, however, does not enable us to iden-
tify significant clusters of positive or negative model errors
at multiple scales. An alternative is to compute local spatial
autocorrelation indices for the model errors (Tiefelsdorf and
Boots 1997, Laffan 1999 web site above, Tiefelsdorf 2000).

A set of indices known collectively as local indicator of
spatial association (LISA) has been developed to study local
spatial nonstationarity (e.g., Anselin 1995, Fotheringham
and Brunsdon 1999, Boots 2002). The strength of LISA is
its ability to identify spatial associations in a variable in one
or more portions of the study area even though there is no
discernible pattern as summarized by a global autocorrela-
tion statistic (Getis and Ord 1996). LISA has been used to
successfully identify clusters in biological data sets (Sokal
et al. 1998a, 1998b). Shi and Zhang (2003) explored the
relationships among LISA, tree growth, and traditional in-
dividual-tree competition indices. They found that LISA
was useful to identify “hot spots” (positive autocorrelation,
or similarity) and “cold spots” (negative autocorrelation, or
dissimilarity) of tree growth and competition.

The objectives of this study were (1) to apply four
alternative regression techniques (i.e., OLS, LMM, GAM,
and GWR) to model tree crown area using tree diameter, (2)
to evaluate the performance of the four models using overall
(global) model errors and errors across tree size classes, and
(3) to assess the performance of the four models in terms of
spatial distributions and clustering of positive/negative
model errors using spatial maps and local Moran
coefficients.

Description of Modeling Methods

Four regression techniques were used in this study.

1. Ordinary least-squares (OLS). Given a set of n (k � 1,
2, . . . , n) observations on p (g � 1, 2, . . . , p) indepen-
dent or predictor variables X, and a dependent or re-
sponse variable Y, the relationship between Y and X can
be regressed using OLS as

Y � X� � �, (1)

where Y is a vector of the observed response variable, X
is a known matrix including a column of 1s (for inter-
cept) and p independent variables, � is a vector of
unknown fixed-effects parameters, and � is a random
error term with assumed distribution N(0, �2I), where I
denotes an identity matrix and �2 represents the common
error variance. The OLS estimate of � is obtained by

�̂ � �XTX��1XTY, (2)

where superscript T denotes the transpose of a matrix.
The relationship represented by Equation 1 is assumed to
be universal or constant across the geographic area.

2. Linear mixed model (LMM). The linear mixed model
is a special case of generalized linear models, and can be
expressed as

Y � X� � Z� � �, (3)

where Y, X, and � are as defined in Equation 1, Z is a
known design matrix, � is a vector of unknown random-
effects parameters, and � is a vector of unobserved
random errors. It is assumed: (1) E(�) � 0 and var(�) �
G, (2) E(�) � 0 and var(�) � R, (3) cov(�, �) � 0, and
(4) both � and � are normally distributed. The variance
of Y is V � ZGZT � R, and can be estimated by setting
up the random-effects design matrix Z and by specifying
covariance structures for G and R (Littell et al. 1996).

LMM can be used to (1) characterize or model the
spatial covariance structure in the data and (2) remove
the effects of spatial autocorrelation to obtain more ac-
curate estimates for the response variable or treatment
means (Littell et al. 1996). In principle, spatial autocor-
relation can be reflected in G or R or both. For this study,
no random effects were considered. Thus, Z � 0, V � R,
and Equation 3 is reduced to

Y � X� � �. (4)

Spatial autocorrelations among observations are mod-
eled through R � var(�) such that

Var��i� � �2 � �1
2, (5)

Cov��i, �j� � �2f �dij, � �, (6)

where dij is the distance between locations i and j. This
is an LMM model with a nugget effect in which �1

2, �2

� �1
2, and � correspond to the geostatistics parameters

nugget, sill, and range, respectively. Different covari-
ance models f(dij, �) are available including spherical,
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exponential, Gaussian, and power. For example, the ex-
ponential covariance model has the form of

f �dij, � � � e��dij /� �. (7)

A likelihood ratio test can be used to determine whether
it is necessary to model the spatial covariance structure
of the data (Littell et al. 1996, SAS Institute, Inc. 2002).

In general, OLS is no longer the best approach to
estimating LMM (Littell et al. 1996). Likelihood-based
methods (e.g., maximum likelihood (ML) and
restricted/residual maximum likelihood (REML) meth-
ods) are usually used to solve for �. Numerical algo-
rithms, such as the Newton–Raphson algorithm, can be
used to obtain

�̂ � �XTV̂�1X��1XTV̂ �1Y. (8)

Furthermore, the empirical best linear unbiased predic-
tions (EBLUP) should be used to take spatial autocorre-
lations into account for predicting the response variable
(Schabenberger and Pierce 2002).

3. Generalized additive model (GAM). GAM is a non-
parametric extension of generalized linear models
(GLM) (Hastie and Tibshirani 1990, Guisan et al. 2002,
SAS Institute, Inc. 2002). Whereas GLM emphasizes
estimation and inference for model parameters, GAM
focuses on exploring data nonparametrically. The
strength of GAM is its ability to deal with highly non-
linear and nonmonotonic relationships between the re-
sponse variable and a set of explanatory variables. Thus,
GAM is sometimes referred to as data-driven rather than
model-driven (Guisan et al. 2002). In general, GAM can
be expressed as

Y � S0 � �
g�1

p

Sg�Xg� � �, (9)

where S0 is the intercept and Sg(Xg) is a nonparametric
smoothing function for the gth independent variable X.
The only underlying assumption is that the functions in
GAM are additive and that the component functions are
smooth. The restriction on additivity allows us to inter-
pret the GAM model in much the same way as a con-
ventional regression analysis. Many methods have been
proposed to approach the formulation and estimation of
GAM. One of the algorithms is known as backfitting, in
which we seek the nonparametric functions Sg(Xg) to
minimize

�2 � �Y � �S0 � �
g�1

p

Sg�Xg��� 2

. (10)

A wide range of nonparametric functions is available
for GAM, and combinations of these functions are also
possible. Several smoothers are commonly used. Cubic
smoothing spline finds the function Sg(Xg) that mini-

mizes the penalized least-squares (Hastie and Tibshirani
1990),

�
k�1

n �Y � �S0 � �
g�1

p

Sg�Xg��� 2

� �
g�1

p

	g � S �g �Xg�
2 dXg, (11)

where 	g is a nonnegative smoothing parameter for the
gth variable Xg, and S�g is the second derivative of the
spline function. The first term in Equation 11 measures
closeness to the data, whereas the second term penalizes
curvature in the function. The parameter 	g governs the
“wiggliness” of the function Sg(Xg); when 	g � 0, Sg(Xg)
produces a interpolating curve, whereas larger values of
	g force Sg(Xg) to be smoother. The Sg(Xg) is a straight
line when 	g3 �. The selection of the best 	g value can
be achieved using the concept of effective degrees of
freedom. Other spline smoothers include B-spline, poly-
nomial spline, thin-plate spline, etc. Locally weighted
scatterplot smoothing (LOESS) is also used to fit a
regression surface to the data points within a chosen
neighborhood of a given point, in which a weighted
least-squares algorithm is used to fit linear and quadratic
functions of the predictors at the centers of neighbor-
hoods (Venables and Ripley 1997, SAS Institute, Inc.
2002).

4. Geographically weighted regression (GWR). Given a
set of location coordinates (ui, vi) for each observation,
the underlying model for GWR is

Y � �0�ui,vi� � �
g�1

p

�g�ui, vi� Xg � �, (12)

where {�0(ui, vi), �1(ui, vi), . . . , �p(ui, vi)} are (P � 1)
continuous functions of the location (ui, vi) in the study
area. Again, � is the random error term with a distribu-
tion N(0, �2I). The aim of GWR is to obtain the esti-
mates of these functions for each independent variable X
and each geographic location i (i.e., each tree in this
study) using data near the location. The estimation pro-
cedure of GWR is as follows: (1) draw a circle of a given
radius around one particular location i (the center), (2)
compute a weight (wij) for each neighboring observation
k (k � 1, 2, . . . , n) according to the distance (dij)
between the location j and the center i at (ui, vi), and (3)
estimate the model coefficients using weighted least-
squares regression such that

�̂i � �XTWiX��1XTWi y,

336 Forest Science 51(4) 2005

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article/51/4/334/4617291 by guest on 05 April 2024



where the weight matrix, Wi, is

Wi � �
wi1

0
···
0

0

wi2
···
0

. . .

. . .

. . .

. . .

0

0
···

win

� (14)

If Wi � I (identity matrix), i.e., each observation has a
weight of unity, the GWR model is equivalent to the
OLS model and the coefficients are the same for every
location. Equation 13 is not a single equation but a
matrix of equations. Once wij has been calculated, the
coefficient matrix � can be computed row by row by
repeated application of Equation 13. A set of estimates of
spatially varying parameters is obtained without speci-
fying a functional form for the spatial variation. The
standard error for each coefficient can also be estimated.
Essentially, GWR lets the data speak for themselves
when estimating each regression coefficient for each
independent variable and each geographic location
(Brunsdon et al. 1998).

Different kernel functions can be used to compute the
weight matrix for each location (Fotheringham et al.
2002). In this study we used a Gaussian distance-decay-
based kernel function,

wij � e��dij/h�2
, (15)

where h is referred to as the bandwidth. This kernel
function assumes that the bandwidth at each center i is a
constant across the study area (i.e., a fixed kernel). If the
locations i and j coincide (i.e., dij � 0), wij equals one
while wij decreases according to a Gaussian curve as the
distance dij increases. For this weighting function, the
weights are nonzero for all data points no matter how far
they are from the center i. However, this is not neces-
sarily the case when other weighting functions are used
(Fotheringham et al. 2002).

Data and Methods
Data

The data used in this study were a part of the stem map
data of a softwood stand located near Sault Ste. Marie,
Ontario, Canada (Ek 1969). The stand was mature, second
growth, uneven-aged, and 8.1 hectares (20 acres) or 402 �
201 m (1,320 � 660 ft) in size. Major tree species included
balsam fir (Abies balsamea [L.] Mill.), black spruce (Picea
mariana [Mill.] BSP.), white spruce (Picea glauca
[Moench] Voss), and white pine (Pinus strobus L.). A total
of 6,881 trees were measured in 1967. The information
included tree location coordinates, diameters at breast
height (dbh), heights, and crown area (crown) for trees 	8.9
cm (3.5 in.). Pielou’s index of nonrandomness (Pielou
1959) was 1.35, indicating a clustered spatial distribution of
trees. The mapping and measurement methods were de-
tailed in Ek (1969).

An example plot was selected from the stand to reduce

computation time for the LMM, GAM, and GWR methods.
The example plot had 941 trees and was located in the right,
lower corner of the stand (100 � 100 m in size). It was a
close representation of the whole stand in terms of species
composition, tree attributes, and the spatial distributions of
trees. Balsam fir was the dominant tree species (59.1% in
number of trees), followed by black spruce (36.8%). Minor
species included white spruce, white pine, and white birch
(Betula papyrifera Marsh.). The average tree diameter was
15.9 cm (ranging from 8.9 to 74.2 cm), and the average
crown area was 5.1 m2 (ranging from 0 to 87.9 m2).

Regression Model

Based on the data for this study (Figure 1), we chose the
following linear regression model to fit the relationship
between tree crown and dbh:

crown � �0 � �1dbh � �2dbh2 � �, (16)

where crown is the tree crown area (m2), dbh is the tree dbh
(cm), �0–�2 are regression coefficients to be estimated, and
� is the model random error. This parabola model may result
in estimating smaller crown areas for larger tree sizes.
However, our objective was not necessarily to develop a
predictive model for the tree crown area. Rather, we at-
tempted to investigate the spatial heterogeneity of the model
errors for fitting the relationship by the four regression
methods.

Model-Fitting and Evaluation

Equation 16 was fitted to the example plot by OLS,
LMM, GAM, and GWR methods, respectively. Statistical
Analysis System 9.0 (SAS) (SAS Institute, Inc. 2002) was
used to fit the first three models. The GWR model was fitted
using a computer software program, GWR 2.0 (Fothering-
ham et al. 2002). Detailed information on the software is
available from A.S. Fotheringham, National Centre for
Geocomputation, National University of Ireland http://www.
nuim.ie/ncg/GWR/software.htm Mar. 22, 2005.

For the LMM model, different spatial covariance models

Figure 1. Scatterplot of tree crown area versus diameter (n � 941
trees).
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were tried to account for the spatial autocorrelations among
trees, including Gaussian, exponential, power, and spherical
functions (Littell et al. 1996, SAS Institute, Inc. 2002). The
exponential covariance structure was selected according to
model-fitting statistics such as Akaike’s information crite-
rion (AIC). Note that the PRED from the OUTP � option
under MODEL statement in PROC MIXED is based on
EBLUP in two cases: (1) the LMM model contains a RAN-
DOM statement, and (2) the response value for an observa-
tion is missing (SAS Institute, Inc. 2002). However, we
used only R to model the spatial autocorrelations among the
trees (i.e., no random effects). The following procedure was
used to obtain the appropriate predictions for crown based
on EBLUP. The trees in the example plot were duplicated,
resulting in 941 � 941 � 1,882 trees/observations. The
observed values of crown in the second half were then set to
missing. When Equation 16 was fit to the 1,882 trees, only
the first half of the data (941 trees) with observed crown
was used to estimate the LMM model coefficients. How-
ever, the predictions for these trees were not based on
EBLUP because of the absence of a RANDOM statement.
The second half of the data (i.e., the duplication of the same
941 trees) with missing values of crown was not used in
model-fitting, but the predictions of crown for these trees
were based on EBLUP, which were used to compute the
LMM model errors. One can easily detect whether the
predictions of the response variable are based on EBLUP or
not. The EBLUP predictions at two locations with identical
dbh values should differ depending on where the trees are
located, whereas the regular predictions (not based on
EBLUP) would be the same for a given value of dbh
regardless of the locations of trees (Schabenberger and
Pierce 2002).

The GAM model was fitted with different nonparametric
smoothers for both dbh and dbh2 in Equation 16, respec-
tively (SAS Institute, Inc. 2002). The GAM model with the
cubic smoothing spline was selected because it had a
smaller model deviance than the one with LOESS. For the
GWR model, the Gaussian kernel function (Equation 15)
was used to estimate the weights with the optimal band-

width h determined as 7.55 m by AIC minimization (Foth-
eringham et al. 2002).

The model error or residual was defined as the difference
between the observed and appropriately predicted crown
(e.g., EBLUP predictions in LMM). The absolute model
error was calculated by taking the absolute value of the
model error. To examine the model errors across tree sizes,
all trees in the example plot were grouped into diameter
classes, and average model error and absolute error were
calculated for each diameter class.

The spatial distributions of the model errors from the
four regression methods were investigated using the global
and local Moran coefficients (Anselin 1995, Tiefelsdorf
2000, Boots 2002). In this study we used the range of the
variogram for the OLS model errors (Figure 2) as the
predefined bandwidth (h � 7.27 m) for calculating the
Moran coefficients, because the range of a variogram indi-
cates there is no spatial autocorrelation among the OLS
model errors beyond this distance (Isaaks and Srivastava
1989).

The global Moran coefficient (MC) is defined by

MC �
n �k�1

n �l�1
n cij�h��ei � ē��ej � ē�

�k�1
n �l�1

n cij�h� �k�1
n

�ei � ē�2 , (17)

where ei and ej denote the model errors at locations i and j,
respectively, e� is the mean of ei over n locations, and cij(h)
is the spatial weight measure within the bandwidth. If lo-
cation j is a neighbor of the subject location i, then cij(h) �
1; otherwise cij(h) � 0. The expected mean of the MC is
�1/(n � 1). A positive global MC indicates that the ob-
served values of locations tend to be similar, whereas a
negative MC indicates that the locations tend to be dissim-
ilar in the observed values. The global MC is approximately
zero when the observed values are arranged randomly and
independently over space. The expected value and variance
of the MC for the sample size n can be calculated using two
sampling assumptions: normality or randomization (Cliff
and Ord 1981, Lee and Wong 2001). A Z-test for the null
hypothesis of no spatial autocorrelation between observed
values over the n locations can be conducted based on the
standardized MC.

Anselin (1995) showed that global MC of spatial auto-
correlation can be decomposed into local values as follows:

MCi � �ei � ē� �
k�1

n

cij�h��ej � ē�. (18)

The first component (ei � e�) is the difference between the
model error ei at the reference location i and the mean,
whereas the second component,

�
k�1

n

cij �h��ej � ē �,

is the sum of differences between the neighboring model
errors ej and the mean. A positive local MCi indicates aFigure 2. Variogram of the OLS model residuals (range � 7.27 m).
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cluster of error values around i with values similar to those
at i, and deviates strongly (either positively or negatively)
from e�. A negative local MCi describes a cluster of error
values around i with values dissimilar to those at i. If either
ei or the values of ej in the neighborhood of i are close to e�,
the local MCi will indicate no spatial autocorrelation (Tief-
elsdorf and Boots 1997, Boots 2002). When the local MCi

is standardized by division by the variance,

� �
k�1

n

�ej � ē �2	n� ,

a pseudosignificant level of MCi can be obtained by a
conditional randomization or permutation approach (Lee
and Wong 2001). A significant positive Z-test indicates that
location i is associated with the similar values of the sur-
rounding locations, whereas a significant negative Z-test
indicates that location i is associated with the dissimilar
values of the surrounding locations.

Most forest modelers are also interested in the perfor-
mance of a growth-and-yield model when it applies to an
independent data set. To validate the performance of the
four regression models, the example plot (n � 941 trees)
was split into two sets. A total of 800 trees (about 85%)
were randomly selected from the example plot as the model
development data. The remaining 141 trees (15%) of the
data, which were not used in model-fitting, served as the
model validation data. The two data sets had similar aver-
ages, dispersions, and ranges (see Table 6). Then the model
errors and absolute errors were computed for the model
validation data in the same way as mentioned above.

Results
Model-Fitting

The OLS model fitted the example plot reasonably well
with an error sum of squares (SSE) � 8,671.15, and AIC �
4,785.1 (Table 1). The model R2 was 0.83 and the two
coefficients for dbh (�̂1 � 0.4714) and dbh2 (�̂2 � 0.0059)
were significantly different from zero (both P-values 

0.0001). The LMM model, using the exponential covariance
structure, had much smaller SSE (5,748.80) and AIC
(4,770.8) than the OLS model. The null model likelihood
ratio test was statistically significant (P-value 
 0.0001),
indicating that the exponential covariance structure was
preferred to the simple diagonal covariance structure of the
OLS model (SAS Institute, Inc. 2002).

Similarly, both GAM and GWR models fitted the exam-

ple plot better than the OLS model (Table 1). The GAM
model’s SSE (6,557.49) was smaller than that of the OLS
model. The F-test (F � 10.10) for testing the improvement
of GAM over OLS (Hastie and Tibshirani 1990, Venables
and Ripley 1997) was highly significant (P-value 

0.0001). The GWR model’s SSE was 4,799.40, and AIC
was 4,523.4. The approximate goodness-of-fit likelihood
ratio test was used to investigate the improvement of the
GWR model over the OLS model (Fotheringham et al.
2002). The results indicated that the GWR model improved
model-fitting significantly (F � 4.90 and P-value 

0.0001) over the OLS model. Evidently, the relationships
between crown and dbh are not constant across the example
plot. For instance, the GWR slope coefficient �̂1 for dbh
ranged from �0.659 to 3.03, and the slope coefficient �̂2 for
dbh2 ranged from �0.072 to 0.029, indicating the spatial
heterogeneity or nonstationarity of the relationship between
crown and dbh. In general, spatial heterogeneity is related to
locations in space, missing variables, and functional mis-
specification (Anselin and Griffith 1988, Zhang and Shi
2004).

Global Analysis of Model Errors

Conventionally, the assessment of regression models is
conducted through the residual analysis such as the exam-
ination of overall (global) model errors and errors across
tree size classes (e.g., Moisen and Frescino 2002, Zhang et
al. 2004). The OLS model errors have larger range and are
more negatively skewed, the errors of LMM and GAM have
similar ranges, skewness, kurtosis, and quantiles, and the
GWR model produces much smaller range for the model
errors than the above three models (Figure 3). The four
models appear to produce similar model errors for trees up
to 40 cm in diameter (Figure 4). However, the OLS and
LMM models produce much larger negative residuals for
large-sized trees (40–60 cm in diameter). In general, LMM,
GAM, and GWR produce smaller absolute errors than OLS
across the diameter classes (Figure 5). The GWR model
consistently yields smaller absolute errors for larger trees,
except the GAM model is the best for trees in the diameter
class of 40–60 cm.

Spatial Assessment of Model Errors

The global MC was computed for the model errors from
the four regression models. Table 2 shows that the global
MC for the OLS and GAM model errors were significantly
positive (Z-values 	 1.96), indicating that the above two

Table 1. Model-fitting statistics for the four regression techniques.

Model SSE AIC Testa P-value

OLS 8671.15 4785.1 N.A. N.A.
LMM 5748.80 4770.8 
2 � 567.8 
0.0001
GAM 6557.49 F � 10.10 
0.0001
GWR 4799.40 4523.4 F � 4.90 
0.0001

n � 941 trees.
aThe hypothesis test for the improvement of alternative modeling methods over the OLS model.
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models produced model errors in clusters of similar values
(i.e., either positive or negative values) across the example
plot. Although the global MC for the LMM and GWR
model errors were significantly negative (Z-value 

�1.96), the magnitudes of the global MC were much
smaller than those of OLS and GAM. It was evident that
both LMM and GWR did account for the spatial autocor-
relations among the trees and, consequently, reduced the
autocorrelations among the model errors. The negative
global MC meant that the model errors from the LMM and
GWR models were clustered in dissimilar values across the
example plot.

Figure 6a and c illustrate that the spatial distributions of
the model errors derived from OLS and GAM have very
similar patterns. There are several clusters of positive or
negative errors. Figure 6b shows that the LMM model errors
are smaller in magnitude and have fewer numbers of clus-
ters of positive or negative errors across the example plot.

Figure 6d demonstrates that the GWR model errors are
much smaller and have different spatial patterns than the
last three models.

LISA has proven to be a useful tool to identify “hot
spots” (positive autocorrelation, or similarity) and “cold
spots” (negative autocorrelation, or dissimilarity) of values
(Boots 2002, Shi and Zhang 2003). Local Moran coefficient
(MCi) was computed for each model error from each of the
four models, and Z-value was also computed for each cor-
responding local MCi (Tables 3 and 4; Figure 7).

The local MCi for the model errors from the OLS and
GAM models had similar averages, standard deviations, and
percentiles (Table 3). The two models seemed to produce
more and larger positive local MCi values. There are several
“hot spots” of the model errors existing in the example plot,
meaning the clusters of either positive or negative errors
(Figure 7a and c). In contrast, the LMM and GWR models
had similar averages, standard deviations, and percentiles,
and more negative local MCi or more “cold spots” of
dissimilar model errors (Table 3; Figure 7c and d). The
Z-values of the local MCi had patterns similar to the local
MCi values for the four regression models (Table 4). Again,
the OLS and GAM models had more positive Z-values,
whereas the LMM and GWR models had more negative
Z-values. The spatial distributions of the local Z-values are
very similar to those of local MCi for the four models (not
shown).

Comparison of Four Regression Models

The local MCi is computed for each location in all the
data. However, the values of the statistic are correlated for

Figure 3. Box plot of the model errors from the four regression
models.

Figure 4. Model errors across tree diameter classes.

Figure 5. Model absolute errors across tree diameter classes.

Table 2. Global Moran coefficients (MC) of the model errors from the
four regression techniques.

Model Global MC Z-valuea Z-valueb

OLS 0.0458 4.03 4.07
LMM �0.0264 �2.17 �2.20
GAM 0.0645 5.64 5.67
GWR �0.0259 �2.14 �2.15
aStandard normal test based on the normality assumption.
bStandard normal test based on the randomization assumption.
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neighboring locations. The nature of the correlation is de-
pendent on how the neighbors are defined and how the
locations are arranged in the study area. Due to the problems
of multiple comparisons for the local MCi for all the data,
the significance levels should be adjusted when testing the
significance of the local MCi for each location. One possi-
bility is to apply Bonferroni adjustment in which the sig-
nificance level for each individual location is �/n, where n
is the sample size. However, this adjusted local significance

level is too conservative for a large sample size (i.e., n �
941 in this study), and may not be appropriate for testing
local LISA (Anselin 1995, Boots 2002). Therefore, the local
Z-values for the local MCi were evaluated for the signifi-
cance levels of 0.05 (Z�/2 � 1.96), 0.01 (Z�/2 � 2.58), and
0.001 (Z�/2 � 3.27) (Table 5).

For � � 0.05, the OLS and GAM models produced more
than 7% significant local Z-values of the 941 values,
whereas the LMM and GWR models yielded about 4%

Figure 6. Plot of model errors: (a) OLS, (b) LMM, (c) GAM, and (d) GWR. The size of the symbols (black dot and circle) is proportional to
the model errors/residuals. The black dots represent positive residuals, and the circles represent negative residuals.

Table 3. Local Moran coefficients of the model errors from the four regression techniques.

Model Mean Std Minimum 5% Q 25% Q Median 75% Q 95% Q Maximum

OLS 0.71 5.97 �78.00 �4.55 �0.73 0.10 1.53 6.83 95.60
LMM �0.41 4.15 �84.76 �4.36 �1.04 �0.06 0.51 2.91 15.76
GAM 0.99 5.86 �34.48 �3.96 �0.42 0.11 1.58 7.91 93.27
GWR �0.40 4.63 �97.72 �4.87 �0.99 �0.06 0.65 3.67 18.10

Respectively, 5% Q, 25% Q, 75% Q, and 95% Q are 5%, 25%, 75%, and 95% quantiles.
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significant Z-values (Table 5). Among the significant Z-
values there were about 60% positive Z-values and 40%
negative Z-values for the OLS and GAM models. This
implied that OLS and GAM tended to generate more clus-
ters of either positive or negative model errors in some
subareas of the example plot. Trees in those subareas were
either all underestimated (positive errors) or all overesti-
mated (negative errors) for the response variable. However,

there were about 40% positive Z-values and 60% negative
Z-values among the significant Z-values for the LMM and
GWR models (Table 5). If there are clusters of the model
errors or residuals existing, a large error tends to be sur-
rounded by smaller neighboring errors and a small error
tends to be surrounded by larger neighboring errors. Similar
trends can be seen for the other two significance levels in
Table 5. The LMM and GWR models produced relatively

Table 4. Z-value of the local Moran coefficient of the model errors from the four regression techniques.

Model Mean Std Minimum 5% Q 25% Q Median 75% Q 95% Q Maximum

OLS 0.18 1.58 �22.92 �1.21 �0.20 0.03 0.43 1.74 24.38
LMM �0.11 1.16 �24.95 �1.23 �0.26 �0.014 0.152 0.84 4.46
GAM 0.27 1.54 �10.09 �1.13 �0.10 0.03 0.46 2.32 23.69
GWR �0.10 1.15 �23.36 �1.40 �0.25 �0.01 0.17 0.96 4.46

Respectively, 5% Q, 25% Q, 75% Q, and 95% Q are 5%, 25%, 75%, and 95% quantiles.

Figure 7. Plot of the local Moran coefficient: (a) OLS, (b) LMM, (c) GAM, and (d) GWR. The size of the symbols (black dot and circle) is
proportional to the local Moran coefficient (MC) of the model errors/residuals. The black dots represent positive local MC, and the circles
represent negative local MC.
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fewer numbers of significant local MCi for smaller � levels
than the OLS and GAM models. The split between positive
and negative Z-values was about 30% (positive) and 70%
(negative) for LMM and GWR, and vice versa for OLS and
GAM at � � 0.01 and � � 0.001.

Model Validation
To validate model performance, we randomly split the

example plot (n � 941 trees) into the model development
data set (85%) and validation data set (15%) (Table 6).
Because the spatial continuity among the validation trees
was lost because of the random selection, we only computed
the descriptive statistics for the model errors and absolute
errors for the four regression techniques based on the vali-
dation data. The results showed that, on average, GWR and
GAM produced smaller model errors than OLS and LMM.
GAM yielded the smallest absolute model errors among the
four regression techniques. The performance of OLS and

LMM was similar for the model validation data in terms of
averages, dispersions, and ranges of the model errors and
absolute errors (Table 7).

Discussion

In this study, we investigated the spatial heterogeneity of
model performance for four regression methods, using a
case study of one small forest population. An exhaustive
comparison of estimation and diagnostic methods for larger
areas or simulated populations that encompass a wide range
of spatial variability would be difficult because of the com-
puter-intensive nature of the LMM, GAM, and GWR meth-
ods. Still, the results discovered here on a clustered plot of
trees may hold for other similar forested areas, because
spatial modeling techniques such as LMM and GWR are
able to account for the irregularity or heterogeneity in the
population.

Table 6. Descriptive statistics of the tree variables for the model development data (800 trees) and model validation data (141 trees).

Data Variable Mean Std Minimum Maximum

Model dbh (cm) 15.88 7.59 8.89 73.66
Development crown (m2) 5.03 6.96 0.00 70.98
Model dbh (cm) 16.13 8.71 8.89 74.17
Validation crown (m2) 5.35 9.13 0.00 87.88

Table 5. Comparison of the significant Z-values for the local Moran coefficients.

Model Number of 
Z
 	 1.96

Among the significant Z-values

Z � �1.96 (%) Z 	 1.96 (%)

OLS 67 (7.12%) 27 (40.3%) 40 (59.7%)
LMM 38 (4.04%) 22 (57.9%) 16 (42.1%)
GAM 78 (8.29%) 23 (29.5%) 55 (70.5%)
GWR 38 (4.04%) 24 (63.2%) 14 (36.8%)

Number of 
Z
 	 2.58 Z � � 2.58 (%) Z 	 2.58 (%)
OLS 44 (4.68%) 15 (34.1%) 29 (65.9%)
LMM 23 (2.44%) 16 (69.6%) 7 (30.4%)
GAM 56 (5.95%) 15 (26.8%) 41 (73.2%)
GWR 20 (2.13%) 12 (60.0%) 8 (40.0%)

Number of 
Z
 	 3.27 Z � �3.27 (%) Z 	 3.27 (%)
OLS 29 (3.08%) 9 (31.0%) 20 (69.0%)
LMM 12 (1.28%) 8 (66.7%) 4 (33.3%)
GAM 38 (4.04%) 11 (28.9%) 27 (71.1%)
GWR 12 (1.28%) 9 (75.0%) 3 (25.0%)

Numbers in parentheses are percentages; n � 941 trees.

Table 7. Descriptive statistics of the model residuals and absolute residuals based on model validation data (141 trees).

Model Variable Mean Std Minimum Maximum

OLS Residual 0.08 3.58 �14.25 27.70
Absolute residual 2.11 2.89 0.03 27.70

LMM Residual 0.09 3.53 �13.99 27.55
Absolute residual 2.06 2.86 0.01 27.55

GAM Residual �0.03 2.77 �18.17 6.53
Absolute residual 1.65 2.23 0.01 18.17

GWR Residual �0.02 3.18 �10.26 21.33
Absolute residual 2.11 2.37 0.03 21.33

Forest Science 51(4) 2005 343

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article/51/4/334/4617291 by guest on 05 April 2024



GWR, a local modeling technique, may hold some prom-
ise in forest growth modeling under an individual tree
distance-dependent paradigm. Each tree would have an as-
sociated set of locally calibrated coefficients for model
components that would be stored for subsequent prediction.
The complexity of the underlying growth model might
dictate several such individual tree equations. One unre-
solved question in such an approach would be whether these
local relationships stand the test of time; that is, given
several prediction cycles, do local coefficient estimates still
represent a given locality as well as smoothed global esti-
mates would? One could conjecture that, due to factors such
as tree senescence, mortality, canopy dynamics, and recruit-
ment, locally calibrated models might not continue to fit a
given tree or region over time and may require updating or
adjustment. Global models, however, having drawn from
the pool of larger variation in the overall dynamics and
states of the forest, might tend to represent these changes
with more robustness over time. Also, local models based
on techniques such as GWR are population-specific. One
could not estimate local models for trees on a forest and
hope to export them to another population with different
spatial-size interrelationships. Therefore, these methods are
of limited use in developing regional models.

One possible way to make local models, such as those
fitted under GWR, more robust to the changes in the neigh-
borhood might be to adopt a different strategy for weighting
observations in the parameter estimation stage. In this study,
the weight function used in GWR estimation took the form
of Gaussian decay. Although this weight function has cer-
tain desirable properties with regard to spatial continuity in
general, it probably has little biological justification, nor do
its competitors (Fotheringham et al. 2002). It would un-
doubtedly make more sense to use some form of competi-
tion index within a local neighborhood, either alone or
combined in concert with the Gaussian decay function, as
the weighting function in GWR for forest trees. In the latter
case, the competition index might be used as an adjustment
to the Gaussian weights, so that the competition potential of
nearby trees upweights their values.

Conclusion

Forest modelers have realized that the misspecification
of covariance structure for spatially correlated data will
produce biased standard error estimators, consequently af-
fecting hypothesis tests and confidence intervals of the
model. Generalized additive models (GAM) do not make
any assumptions on model errors, and fit the data nonpara-
metrically. Although it improves the model-fitting and pro-
duces better prediction due to its robustness and flexibility,
GAM is nonspatial in nature because it focuses on multidi-
mensional space of predictor variables. However, a linear
mixed model is able to characterize the spatial covariance
structures in the data with different geostatistics models.
More accurate predictions for the response variable can be
obtained by accounting for the effects of spatial autocorre-
lation through the empirical best linear unbiased predictors

(Littell et al. 1996, Schabenberger and Pierce 2002). GWR
is clearly a spatial model. Its kernel function is located in
two-dimensional geographical space, and takes spatial lo-
cations explicitly into account for estimating the model
coefficients at each tree in the example plot (Brunsdon et al.
1999). Therefore, GWR produces a different spatial distri-
bution for model errors than the ones from other regression
techniques.

Our results showed that the OLS and GAM models
yielded significant clusters of positive or negative residuals,
indicating that trees in some subareas of the study area were
either all underestimated or all overestimated for the re-
sponse variable. Since LMM and GWR were able to adjust
the estimation of the model coefficients according to the
local spatial autocorrelations, they produced more accurate
predictions for the response variable. The LMM and GWR
model residuals also had more desirable spatial distributions
(fewer clusters or clusters of dissimilar model errors) than
the ones from the OLS and GAM models.
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