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Abstract: A taper equation was developed for jack pine and black spruce trees growing at varying density using
a dimensional analysis approach. Data used in this study came from stem analysis on 1,135 jack pine (Pinus
banksiana Lamb.) and 1,189 black spruce (Picea mariana [Mill.] B.S.P.) trees sampled from 25 even-aged
monospecific plantations in the Canadian boreal forest region of Northern Ontario. About half of the trees were
randomly selected for model development, with the remainder used for model evaluation. A nonlinear mixed-
effects approach was applied in fitting the taper equation. The predictive accuracy of the model was improved
by including random-effects parameters for a new tree based on upper stem diameter measurements. Three
scenarios of using upper stem diameter measurements to predict random effects were examined for predictive
accuracy: one diameter at any height along the bole; two diameters, one each from below and above breast
height; and three diameters, one from below and the other two from above breast height. The upper height at
which the diameter was measured was limited to 65% of total tree height for practical reasons. For the first
scenario, the model calibrated using a diameter measurement from between 34 and 38% of total height provided
the best predictions of inside-bark diameters. For the second scenario, the model calibrated using one diameter
from near the stump and the other from close to 65% of total height produced the least bias in predicting
inside-bark diameters. For the third scenario, the model calibrated using the diameters from near the stump and
at approximately 35 and 65% of total height provided the highest prediction accuracy. FOR. SCI. 55(3):268–282.

Keywords: Picea mariana, Pinus banksiana, tree form, stem profile models, stand density, thinning, nonlinear
regression, fixed response, calibrated response, mixed-effects model

DEVELOPMENT OF TAPER EQUATIONS is a basic pre-
requisite to estimating individual tree volumes and
product yields. These equations are used to esti-

mate diameters along the bole at any given height. Individ-
ual tree volume can then be calculated based on these
diameters and corresponding heights. This is important be-
cause product recovery from different trees with the same
total volume could be substantially different. Two trees with
different shape, conic versus cylindrical, for example, will
have different product recoveries and hence significantly
different economic value.

The shape of a tree is influenced by stand density (Gray
1956, Larson 1963, Sharma and Zhang 2004). Similarly,
stem form may differ among tree species growing in the
same environment and the same stand conditions. For ex-
ample, Sharma and Zhang (2004) reported that taper pro-
files for jack pine (Pinus banksiana Lamb.), black spruce
(Picea mariana [Mill.] B.S.P.), and balsam fir (Abies bal-
samea [L.] Mill.) trees grown in natural stands in eastern
Canada differed significantly. They further reported that the
stem form also differed for black spruce trees grown in
natural stands at different stand densities.

Stand density can be regulated either by planting trees at
different initial spacings or by thinning stands to different
densities. However, trees of a particular species grown in a
plantation versus those grown in a natural stand thinned to

the same density may not have the same form, especially if
the thinning occurs at a later age (Sharma and Zhang 2004).
As a result, tree boles cannot be completely described in
simple mathematical terms. In attempts to describe tree
taper, numerous models of varying complexity have been
advanced. Three main approaches are applied in advancing
these models. Under the first approach, tree taper is de-
scribed by a simple mathematical function. Examples of
such simple taper functions are those presented by Kozak et
al. (1969), Ormerod (1973), Amidon (1984), Reed and
Byrne (1985), Sharma and Oderwald (2001), and Sharma et
al. (2002).

Under the second approach, segments of a tree stem are
approximated by various geometric solids. The lower bole
portion is assumed to be a neiloid frustum, the middle
portion a paraboloid frustum, and the upper portion a cone
(Avery and Burkhart 2002, p. 101). Examples of this ap-
proach are the segmented polynomial taper models devel-
oped by Max and Burkhart (1976), Demaerschalk and
Kozak (1977), Cao et al. (1980), and Fang et al. (2000).

In the third approach, tree form is allowed to vary from
one point to another along the bole, and the variable form
is described by a single continuous function. Examples of
this approach are the variable-exponent taper models elab-
orated by Kozak (1988) and the variable-form taper model
presented by Newnham (1992). In these models, a single
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continuous function with an exponent changing from stump
to top describes the neiloid, paraboloid, and several inter-
mediate forms (Kozak 1997). Sharma and Zhang (2004)
also presented a variable exponent taper equation derived
using dimensional analysis. Flewelling and Raynes (1993)
developed a variable-form taper model based on a system of
three equations.

In most of these equations, taper is modeled in terms of
dbh and total height. A few researchers have considered
using crown dimensions (e.g., crown height, ratio, and di-
ameters) as covariates (e.g., Newnham 1992), but most
reported little or no improvement in resulting model perfor-
mance (Burkhart and Walton 1985, Valenti and Cao 1986,
Muhairwe et al. 1994). Furthermore, Leites and Robinson
(2004) concluded that operational costs involved in measur-
ing crown dimensions of standing trees might limit their
use. Additional terms based on upper stem diameter mea-
surements have been included in models in other studies
(Czaplewski and McClure 1988, Rustagi and Loveless
1991, Flewelling and Raynes 1993, Kozak 1998). However,
improvements in estimates were minor and dependent on
the precision of the upper stem diameter measurement
(Kozak 1998).

Foresters know that individual tree crown dynamics and
stem form are influenced by site and stand conditions.
Therefore, it makes sense that including stand density in-
formation in taper equations should improve model perfor-
mance. Stand density is also more easily obtained than
individual tree crown dimensions. In fact, Sharma and
Zhang (2004) included stand density (trees ha�1) informa-
tion in modeling the taper of black spruce trees and reported
improved fit statistics and predictive accuracy. However,
the stand density information available to them was insuf-
ficient (three stand densities only) for making a general
inference.

Data required to develop taper equations generally orig-
inate from stem analysis. These data are commonly hierar-
chical, with multiple measurements from individual trees
resulting in a correlation among data points that is typically
not removed by model fitting. As a result, residuals within
a tree may be correlated in a predictable way (Leites and
Robinson 2004). This correlation violates the assumption of
independent observations that is the key to obtaining an
unbiased estimate of the covariance matrix in regression
(Valentine and Gregoire 2001).

To address this problem, recent studies have used a
mixed-effects modeling technique (Fang and Bailey 2001,
Leites and Robinson 2004, Trincado and Burkhart 2006).
This technique has the advantage of correctly estimating the
covariance matrix of correlated data and contains both
fixed- and random-effects parameters in the model (Scha-
benberger and Pierce 2001). Fixed-effects parameters are a
population average response common to all sampling units
(trees) and random-effects parameters are localized re-
sponses that are specific to each sampling unit. Thus,
mixed-effects models will have improved predictive accu-
racy when the random-effects parameters can be estimated
for an unsampled location (Calama and Montero 2004). The
objectives of this study were to examine the effect of stand
density on taper of plantation grown jack pine and black

spruce trees and to develop taper equations that incorporate
stand density information for these tree species using
mixed-effects modeling techniques.

Data

The data used in this study came from stem analysis of
plantation-grown jack pine and black spruce trees. For both
species, 25 even-aged monospecific plantations from
throughout the Canadian boreal forest region of Northern
Ontario were sampled. Within each plantation, three vari-
able size circular temporary sample plots were established.
The minimum plot size was set at 400 m2 but was increased
if necessary to obtain a minimum of 80 trees of the target
species.

All live trees in the plot were measured, regardless of
species, using Ontario’s growth and yield standards (Hay-
den et al. 1995). Total basal area (BA/ha) and density
(trees/ha) were then calculated for the plot for each species.
All target species trees were sequentially numbered, and the
cumulative basal area for this species was determined. Total
cumulative basal area of target species trees was then di-
vided into five BA/ha classes. Three trees that were classi-
fied as planted and did not exhibit any visible deformities,
such as forks, major stem injuries, or dead or broken tops,
were randomly selected from each basal area class for
destructive sampling. In addition, the largest diameter tree
was also selected from most of the plots. Thus, a minimum
of 15 trees were sampled from each plot (temporary sample
plot), which resulted in 45 to 48 trees per species from each
site. In all, 1,135 jack pine and 1,189 black spruce trees
were sampled from 25 sites across northern Ontario. Sum-
mary statistics for tree and stand characteristics are pre-
sented in Table 1.

Disks were cut at 0.15, 0.5, 0.9, and 1.3 m (breast height)
from each sample tree. The remaining height of the tree was
then divided based on one of two sampling schemes: 5 and
10% of relative height. For the 5% of relative height
scheme, the remaining height was divided by 20 and the
disks were cut at that interval from the breast height; sim-
ilarly, for the 10% of relative height sampling scheme, the
remaining height was divided by 10 and the disks were cut
at the resulting interval. Twenty percent of sampled trees
from each site were selected for disk sampling at 5% of
relative height; the remainder were cut using the 10% of
relative height sampling scheme. For each tree, this resulted
in 23 disks for the 5% and 13 disks for the 10% sampling
scheme.

Each sampled tree and disk were given a unique code.
All disks from a tree were placed in a large breathable bag,
transported, and stored at –10°C until 24 hours before
preparation. Geometric mean radius was then calculated
from the diameters obtained from the major (r1) and minor
(r2) axes on each disk [i.e., r � (r1 � r2)0.5]. This resulted in
18,002 observations for jack pine and 18,852 observations
for black spruce trees.

Of the 1,135 jack pine and 1,189 black spruce trees,
about half (568 and 600 trees from jack pine and black
spruce, respectively) were randomly selected for model
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development (model data set) and the rest were reserved for
model evaluation (evaluation data set).

Taper Equations

Sharma and Zhang (2004) derived a variable exponent
taper equation based on a dimensionally compatible taper
equation originally presented by Sharma and Oderwald
(2001). They calibrated this model for jack pine, black
spruce, and balsam fir trees grown in natural stands in
eastern Canada and reported that this model was superior to
the segmented polynomial, variable-exponent, and variable-
form taper equations by Max and Burkhart (1976), Kozak
(1988), and Zakrzewski (1999), respectively, in estimating
tree diameters along the bole of these tree species. Their
model was

� d

D� 2

� �0� h

hD
� 2���1��2x��3x2�� H � h

H � hD
� , (1)

where d is diameter inside bark at any given height h (m),
D is dbh outside bark (cm), H is total tree height from
ground to tip (m), hD is breast height (m), x is h/H, and �i

(i � 0, 1, 2, and 3) are parameters.
Similarly, Newton and Sharma (2008) evaluated this

equation for the sensitivity of different disk selection pro-
tocols using jack pine tree data collected for this study along
with the equations by Max and Burkhart (1976) and Kozak
(1988). They found that Equation 1 was invariant to disk
selection protocols for estimating inside bark diameters and
total volume of plantation jack pine trees. Therefore, this
equation was fitted first to the stem analysis data collected
from plantation jack pine and black spruce trees and exam-
ined for fit statistics (R2 and mean square error) and pre-
dictive accuracy. The coefficient of determination (R2) was
0.97 for both species and the mean square error was 0.00387
for jack pine and 0.00413 for black spruce trees. However,
when these models were used to predict the diameters of the
trees set aside for validation, diameters at �75% of total
heights were slightly overpredicted.

The taper of trees grown in plantations was then com-
pared with that of trees from natural stands. Results indi-
cated that trees in plantation stands tapered more than those

in natural stands. Similarly, the tree form was less parabolic
in plantations than in natural stands. Therefore, the original
assumption about the shape of a tree made by Sharma and
Oderwald (2001) in developing a dimensionally compatible
taper equation was modified and a new taper equation was
developed using dimensional analysis.

Sharma and Oderwald (2001) assumed the following
mathematical form to describe the overall shape of a tree:

d2 � �D��1 �
h

H�h� ,

where, �, �, and � are parameters and other variables are as
defined for Equation 1. To make tree shape less parabolic,
the following mathematical form was assumed:

d

D
� ��1 �

h

H�� h

H� �

, (2)

where � � f(h) so that the taper equation becomes the
variable exponent as the height changes from the ground to
the tip of the tree and describes the various shapes along the
bole. The equation is dimensionless because the dimensions
of the numerator cancel those in the denominator on both
sides of the equation. The constant, �, ensures that if h is
breast height, hD, then d � D. The term (1 � h/H) ensures
that if h � H, then d � 0. The constant, �, in Equation 2 can
be calculated by applying the constraint; d � D when h �
hD, where both d and D are inside or outside bark. This
results in

� � � H

H � hD
�� H

hD
� �

.

Substituting this value of � in Equation 2 and rearranging
the terms we obtain

d

D
� � H � h

H � hD
�� h

hD
� �

.

As mentioned earlier, both d and D in this equation are
inside or outside bark. As a result, this equation cannot be

Table 1. Summary statistics for measured characteristics of plantation jack pine and black spruce trees from boreal Ontario used
in this study

Variable Frequency Mean SD Minimum Maximum

Jack pine
BA (m2 ha�1) 75 27.46 5.78 15.28 42.25
Density (trees ha�1 75 1773 647 884 3302
QMD (cm) 75 14.46 2.01 10.62 19.14
dbh (cm) 1,135 17.34 4.46 6.10 34.30
Height (m) 1,135 15.47 2.54 7.93 23.17
CR 1,135 0.430 0.113 0.099 0.845

Black spruce
BA (m2 ha�1) 75 29.84 8.79 12.00 48.87
Density (trees ha�1) 75 2,919 896 1,471 5,579
QMD (cm) 75 11.67 2.41 6.37 16.00
dbh (cm) 1,189 13.35 3.70 2.50 24.80
Height (m) 1,189 10.85 2.47 2.98 17.85
CR 1,189 0.600 0.155 0.222 0.977

QMD, quadratic mean diameter; CR, crown ratio.
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used to estimate inside bark diameter using the dbh-
measured outside bark. However, the equation can be mod-
ified to estimate the inside bark diameters using outside
bark dbh by including a constant � as

d

D
� �� H � h

H � hD
�� h

hD
� �

. (3)

The constant � can be calculated as

� �
Di

D
,

where Di is the inside bark dbh. Equation 3 is still dimen-
sionless if � � f(h) is dimensionless. Sharma and Zhang
(2004) expressed � as a quadratic function of h/H in their
taper equation and reported that the equation with this
function accurately described the taper of natural stand jack
pine, black spruce, and balsam fir trees. This function, i.e.,

� � f�h� � �1 	 �2�h/H� 	 �3�h/H�2,

where �1, �2, and �3 are parameters, was also considered in
this study. Because all terms in the expression are dimen-
sionless, � is also a dimensionless quantity. By substituting
this value of � with x � h/H and replacing � by �0, Equation
3 becomes

d

D
� �0� H � h

H � hD
�� h

hD
��1��2x��3x2

. (4)

In this equation, the exponent � � �1 � �2x � �3x2 is
the only term that determines the change in taper from one
point to another as h increases along the bole. Therefore, the
density effect on taper can be determined by incorporating
the stand density information into the exponent as

d

D
� �0� H � h

H � hD
�� h

hD
��1��2x��3x2��4f(sd)

. (5)

where f(sd) is a function of stand density and �4 is a
parameter. To preserve the dimensionless property, the
function f(sd) in Equation 5 should be dimensionless. Some
options are to use (1) quadratic mean diameter (QMD)/D
because QMD is determined by BA (BA/ha) and trees/ha,
(2) BA/D2, (3) �BA/D, (4) trees/ha, and functions associ-
ated with these terms. Because all of these terms are dimen-
sionless, substituting any function of these terms in Equa-
tion 5 will ensure dimensional compatibility with the model
(see Sharma and Oderwald 2002 for details on dimensional
analysis applied to developing taper equations). A prelimi-
nary analysis indicated that f(sd) � �BA/D best described
the density effect on taper using Equation 5. Thus, the final
taper equation that includes stand density information can
be written as

d

D
� �0� H � h

H � hD
�� h

hD
��1��2x��3x2��4��BA / D�

. (6)

It should be noted here that if outside bark diameter predic-
tions are of interest �0 should equal 1.

Nonlinear Mixed-Effects Variable Exponent
Taper Equation

As Trincado and Burkhart (2006) pointed out, a nonlin-
ear mixed-effects model can be written in the form of a
two-stage model explicitly specifying within- and between-
tree variations. An expression for the taper equation repre-
senting systematic and random within-tree variation associ-
ated with the jth (j � 1, …, ni) observation (diameter
measurement) along the bole for the ith individual (i � 1,
…, n) is

yij � �0i�Hi � hij

Hi � hD
�� hij

hD
��1i��2ixij��3ixij2��4i��BA / Di�

	 eij,

(7)

where yij � dij/Di, xij � hij/Hi, E(eij) � 0, and �0i � �4i are
parameters for the ith individual. Similarly, hD is the breast
height that is always constant (1.3 m) and does not change
from one tree to another. This model can be generalized into
a vector form as

yi � �0i�Hi � hi

Hi � hD
��hi

hD
��1i��2ixi��3ixi2��4i��BA/Di�

	 ei, (8)

where yi � [yi1, i2, …, yini
]T, xi � [xi1, xi2, …, xini

]T, hi �
[hi1, hi2, …, hini

]T, and the conditional distribution of ei

given �i is assumed to be multivariate normally distributed
with E(ei) � 0 and variance-covariance matrix Ri(�i, �).
The vector � represents a vector of unknown parameters [
,
��, ��]T common for all individuals. In this case, within-tree
systematic variation is characterized through the equation,
and random variation is described by the distribution of the
error term. If needed, the variance-covariance matrix can be
expanded in a more general form to account for within-tree
variance and autocorrelation (Trincado and Burkhart 2006)
as

Ri��i, �� � 
2Gi
1/ 2�iGi

1/ 2, (9)

where Gi is an (ni 	 ni) diagonal matrix that describes
nonhomogeneous variance for a given tree i with ni height-
diameter measurements (SDs of the residual errors are its
components), �i is an (ni 	 ni) matrix that shows the
structure of the correlation among observations for tree i,
and 
2 is a scaling factor for the error dispersion (Gregoire
et al. 1995), which is the value of the residual variance of
the model. If we assume that within-tree variance is homo-
geneous and residuals are uncorrelated, Equation 9 can be
simplified as

Ri��i, �� � 
2Ini,

where Ini is the identity matrix of dimensions (ni 	 ni).
Errors resulting from Equation 7 will be analyzed and a
more general structure, if required, will be used by incor-
porating the effects of within- and between-tree heteroge-
neous variance and correlation between residuals.

In the case of between-tree variation, the parameter vec-
tor �i varies from tree to tree and hence accounts for this
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variation. Systematic and random variation in the vector
canbe expressed explicitly (Pinheiro and Bates 1995,
Vonesh and Chinchilli 1997, p. 319, Calama and Montero
2004, Trincado and Burkhart 2006) as

�i � Ai� 	 Bibi,

where � is the 5 	 1 vector of fixed population param-
eters, bi is the 5 	 1 vector of random effects associated
with the ith tree, and Ai and Bi are design matrices for the
fixed and random effects specific to each tree, respec-
tively. The vector of random effects bi is assumed to be
multivariate normally distributed with E(bi) � 0 and
variance-covariance matrix D, i.e., bi 
 N(0, D). If we
assume all parameters have both fixed- and random-ef-
fects components, the vector �i for the ith individual can

be written as

�i � �
�0

�1

�2

�3

�4

� 	 �
b0i

b1i

b2i

b3i

b4i

� � �
�0 	 b0i

�1 	 b1i

�2 	 b2i

�3 	 b3i

�4 	 b4i

� � �
�0i

�1i

�2i

�3i

�4i

�.

To examine the effect of stand density on taper and to
determine the number of random-effects parameters needed
in the model, Equation 7 was initially fitted without the
density term and random-effects parameters using the NL-
MIXED procedure in SAS (SAS Institute, Inc. 2004). This
was performed by assuming that within-tree variance is
homogeneous and residuals are uncorrelated. Random-ef-
fects parameters were then added sequentially starting at �0.
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Eq. 1 Eq. 7

Figure 1. Tree profiles generated based on the same dbh (17.0 cm) and total height (15.0 m) values
for jack pine trees using Equation 1 and Equation 7 without stand density term.

Table 2. Fit statistics for the variable exponent taper equation 7 for different combinations of random-effects parameters without
and with stand density term (�4) for jack pine and black spruce trees from boreal Ontario

Parameters No. parameters (k) 
̂2 �2 ln(L)1 AIC1

Jack pine
�0, �1, �2, �3 5 0.001847 �31023 �31013
�0, �1, �2, �3, �4 6 0.001709 �31721 �31709
�0i, �1, �2, �3 6 0.001315 �32945 �32933
�0i, �1i, �2, �3 8 0.000866 �35288 �35272
�0i, �1i, �2i, �3 11 0.000559 �37746 �37724
�0i, �1i, �2i, �3i 15 0.000390 �39503 �39473
�0i, �1i, �2i, �3i, �4 16 0.000390 �39614 �39582

Black spruce
�0, �1, �2, �3 5 0.001723 �33655 �33645
�0, �1, �2, �3, �4 6 0.001552 �34658 �34646
�0i, �1, �2, �3 6 0.001081 �36695 �36683
�0i, �1i, �2, �3 8 0.000562 �40942 �40926
�0i, �1i, �2i, �3 11 0.000343 �43880 �43858
�0i, �1i, �2i, �3i 15 0.000255 �45184 �45154
�0i, �1i, �2i, �3i, �4 16 0.000255 �45334 �45302

�0i � �0 � b0i, �1i � �1 � b1i, �2i � �2 � b2i, and �3i � �3 � b3i .
1 Smaller is better.
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Finally, the density term (�4) was added in the presence of
all four random-effects parameters (�0–�3). Models with
different numbers of random-effects parameters and the
density effects were evaluated based on goodness-of-fit
criteria: i.e., twice the negative log-likelihood [�2 ln(L)]
and Akaike’s information criterion (AIC) defined as

AIC � �2 ln�L� 	 2k,

where L is the likelihood function and k is the number of
parameters in the model. The model with the smallest values
for the goodness-of-fit criteria was considered to be the best.

Prediction of Upper Stem Diameters for a New
Tree

The main purpose in developing a model is to predict the
dependent variable (in this case diameter along the bole) in
terms of independent variables (in this case dbh, H, and
stand density) through the relationship specified in the
model. In the mixed-effects modeling approach, diameter
can be predicted by assuming that the random parameters
are zero if no prior information is available (fixed-effects
response) and predicting the random parameters for the tree
for which upper stem diameter information is available for
a subsample of disks (calibrated response).

For a fixed-effects response, the predicted diameter rep-
resents the mean behavior of the pattern of variation in
diameter for given dbh, H, and stand density. Therefore, the
diameters are predicted using the expression

d̂ij � f�Ai�̂, xij�,

where Ai and �̂ are design matrix and the estimated vector
for the fixed effects, respectively; and xij and d̂ij are the
vector of the independent variables and the predicted diam-
eter, respectively, for the jth diameter in the ith tree.

For the calibrated response, however, model parameters
are localized first by using the predicted values of the
random parameters for each tree. Height-diameter pairs
from a subsample of a tree are used along with stand density

(i.e., independent variables in Equation 7) to predict the
random parameters for that tree. The following expression
can be used to predict the random parameters (Vonesh and
Chinchilli 1997, p. 362):

b̂i � D̂ẐT
i�R̂i 	 ẐiD̂ẐT

i�
�1êi, (10)

where D̂ is the q 	 q variance–covariance matrix (q is the
number of random-effects parameters included in model, 4
in this case) for the among-tree variability, R̂i is the k 	 k
variance–covariance matrix for tree i, êi is the residual
vector k 	 1 with components êij defined as

êij � dij � f�Ai�̂, xij�,

where dij � observed diameter at the jth height in the
subsample from tree i, Ẑi is the k 	 q matrix evaluated at �̂
as

�
�f�xi1, �̂i�

��1

�

�f�xik, �̂i�

��1

� ...

... �
�f�xi1, �̂i�

��q

�

�f�xik, �̂i�

��q

� ,

where �̂i � Ai�̂, �1, …, �q are the fixed part of the mixed
coefficients components of the vector for estimated fixed-
effects �̂, and xij is the vector of independent variables
corresponding to the jth diameter in the subsample of the ith
tree. The predicted random effects are added to the fixed
parameters to obtain localized parameters. Upper stem di-
ameters are then predicted in terms of dbh, H, stand density,
and localized parameters. Details on the prediction of ran-
dom-effects parameters in a forestry context can be found in
studies by Calama and Montero (2004) and Trincado and
Burkhart (2006).

Prediction accuracies of the models with and without the
random effect were compared by examining the bias and its
SD for fixed-effects and calibrated responses along the

Table 3. Parameter estimates and fit statistics for equation 7 fitted for jack pine and black spruce trees from boreal Ontario

Jack pine Black spruce

Estimates SE Estimates SE

Parameters
�0 0.92230 0.00108 0.90880 0.00127
�1 �0.05997 0.00251 �0.06670 0.00266
�2 0.51560 0.00746 0.54100 0.00741
�3 �0.22650 0.01026 �0.36360 0.00996
�4 0.08383 0.00756 0.07549 0.00578

Variance components

2 0.000390 0.000006 0.000255 0.000004
var (b0) 0.000558 0.000040 0.000900 0.000056
var (b1) 0.000314 0.000024 0.000442 0.000029
var (b2) 0.025240 0.001879 0.026450 0.001929
var (b3) 0.049940 0.003568 0.048390 0.003525
cov(b0, b1) �0.00007 0.000022 �0.00006 0.000030
cov(b0, b2) 0.000397 0.000194 0.000181 0.000244
cov(b0, b3) �0.00059 0.000266 �0.00036 0.000325
cov(b1, b2) �0.00138 0.000169 �0.00142 0.000182
cov(b1, b3) 0.001393 0.000221 0.001338 0.000235
cov(b2, b3) �0.03211 0.002476 �0.03122 0.002460
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boles of trees in the validation data set. Unless otherwise
specified, the level of significance used throughout this
article is 0.05 (� � 5%).

Results and Discussion

To examine whether the taper equation derived here
describes the shape of plantation-grown jack pine and black
spruce trees, Equation 7 was initially fitted without the stand
density term and random-effects parameters to compare
with results using Equation 1. Taper profiles were generated
using these equations and identical values for dbh (17 cm)
and total height (15 m) for jack pine trees (Figure 1).
Diameters estimated by Equation 7 were smaller than those
estimated by Equation 1 at �70% of total tree height.
Similar results were obtained for black spruce trees (not
shown). This finding indicates that Equation 7 adequately

describes the shape of the trees used in this study. As
mentioned above, Equation 1 overestimated diameters at
�75% of total tree height for both species.

Equation 7 was then fitted, including random-effects
parameters in the model. Initially, the model was fitted
without the stand density term and was assumed to have
�0 as the only parameter associated with random effects
(i.e., �0i � �0 � b0i). In the second step, �1 was also
assumed to be associated with the random-effects param-
eter (i.e., �1i � �1 � b1i) in addition to �0i. Next, �2 was
associated with the random effects (i.e., �2i � �2 � b2i)
in addition to �0i and �1i and so on. Finally, the stand
density term was added with its coefficient (�4) as a
fixed-effects parameter. Table 2 displays the goodness-
of-fit statistics for Equation 7 for all these scenarios
including the model with all the parameters (�0–�4) as
fixed effects for both species, illustrating the extent to
which inclusion of random-effects parameters improved
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Figure 2. Bias (observed � predicted) in predicting diameters inside bark of (a) jack pine (b)
black spruce trees using Equation 7.
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the fit statics. An attempt to associate �4 with a random-
effects parameter was not successful as the model could
not be fitted with five random-effects parameters.

Other models with four random-effects parameters ob-
tained from different combinations of �i values (i � 0, 1, 2,
3, and 4) associated with random effects were also fitted.
However, the model with the random effects associated with
�0–�3 resulted in the best model in terms of fit statistics for
both tree species. Estimates for parameters for this model
along with fit statistics are presented in Table 3. Parameter
estimates including variance components for black spruce
were consistent with their counterparts for jack pine. The
estimates were consistent in the sense that negative values
for one species were also negative for the other species. In
addition, the magnitudes of these estimates for one species
were very close to those for the other species. All the

variance components were significant except cov(b0, b3)
and cov(b1, b2) for black spruce trees. ‘

To determine whether the error structure resulting from
Equation 7 with four random-effects parameters was homo-
geneous and uncorrelated, inside bark values were predicted
for the model data set. Bias (observed � predicted) in
predicting these diameters was calculated for all diameters
from each tree for both species. The bias was then plotted
against the predicted diameters (Figure 2). Trends in the
error structure did not suggest heterogeneous variance or
correlation. This implies that the within-tree variance-
covariance matrix (Equation 9) can be written as

Ri��i, �� � 
2Ini,

where Ini is the identity matrix of dimensions (ni 	 ni).
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Figure 3. Tree profiles for three randomly selected jack pine trees, one from each of three classes
(dominant, intermediate, and suppressed) generated using fixed-effects and mixed-effects models
with �0, �1, �2, and �3 having random effects in Equation 7.
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Estimates for 
2 were 0.00039 and 0.000255 for jack pine
and black spruce, respectively (Table 3).

For between-tree variation, the parameter vector �i for
the ith individual tree can be expressed as

�i � Ai� 	 Bibi � �
�0 	 b0i

�1 	 b1i

�2 	 b2i

�3 	 b3i

�4

� � �
�0i

�1i

�2i

�3i

�4

�
bi � N(0, D),

where � is a [�0, �1, �2, �3, �4]T vector of fixed effects, bi

is a [b0i, b1i, b2i, b3i]
T vector of random effects, Ai � I5 is

a (5 	 5) identity matrix (design matrix) for the fixed
effects, and Bi is a [1000, 0100, 0010, 0001, 0000]T design
matrix for the random effects. As mentioned above, the

vector of random effects, bi, is assumed to be multivariate
normally distributed with E[bi] � 0 and variance covariance
matrix D. These matrices are:

for jack pine

D � �
0.000558

�0.000070
0.000397

�0.000590

�0.000070
0.000314

�0.001380
0.001393

0.000397
�0.001380

0.025240
�0.032110

�0.000590
0.001393

�0.032110
0.049940

�
for black spruce

D � �
0.000900

�0.000060
0.000181

�0.000360

�0.000060
0.000442

�0.001420
0.001338

0.000181
�0.001420

0.026450
�0.031220

�0.000360
0.001338

�0.031220
0.048390

�.

Even though E[bi] � 0, the vector of random-effects pa-
rameters (bi � [b0i, b1i, b2i, b3i]

T) for an individual tree
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Figure 4. Tree profiles for three randomly selected black spruce trees, one from each of three
classes (dominant, intermediate, and suppressed) generated using fixed-effects and mixed-effects
models with �0, �1, �2, and �3 having random effects in Equation 7.
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could be different from zero. It can be predicted for each
tree using stem diameter information if available for a
subsample of disks along the bole (see Appendix). These
predicted values, in combination with the fixed effects pa-
rameters displayed in Table 3, will result in a unique num-
ber for each coefficient (except for �4) for each tree.

To visually examine the model fit, three trees from each
species were randomly selected, one from each of three
classes (dominant, intermediate, and suppressed). Predicted
diameters from the regression (random-effects parameters
b0, b1, b2, and b3 included in the model) were plotted against
height along with their corresponding observed values (Fig-
ures 3 and 4). Diameters predicted without the random-ef-
fects parameters in the models were also plotted for com-
parison. This shows that the mixed-effects model better fits
the taper data than the model using only fixed effects.

Equation 7 was further evaluated using the validation
data sets. Four random-effects parameters (b0i, b1i, b2i, and
b3i) were predicted for each tree from evaluation data sets
using stem diameters. Disks from the stump to 65% of total
height were used. Because disk 4 was sampled at the breast
height (1.3 m) for all trees, diameters measured from disks
1, 2, and 3 (at heights 0.15, 0.5, and 0.9 m from the ground,
respectively) and from 5, 6, 7, 8, 9, and 10 (at 10, 20, 30, 40,
50, and 60% of the section between 1.3 m and the tip of the
tree, respectively) were used to predict the random-effects
parameters. For the rest of the article, these diameters will
be referred to as diameters 1, 2, 3, 5, 6, 7, 8, 9, and 10,
respectively.

Using all nine diameter measurements from a tree as
prior information for predicting random-effects parameters
was not practical. Therefore, to determine the minimum

number of diameters and their optimum location along the
bole to accurately predict the desired parameters, three
scenarios were evaluated. The first scenario used a single
diameter measurement. This resulted in nine sets of random
parameters predicted using one diameter measured at each
height along the stem. The second scenario used two diam-
eters, one from below and one from above breast height.
This resulted in 18 sets of random parameters predicted
using diameter combinations (1, 5), (1, 6), (1, 7), (1, 8),
(1, 9), (1, 10), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10),
(3, 5), (3, 6), (3, 7), (3, 8), (3, 9), and (3, 10).

Finally, three diameters were used by combining one
from below and two from above breast height in the third
scenario. This resulted in 42 sets of random parameters
predicted using diameter combinations (1, 5, 7), (1, 5, 8),
(1, 5, 9), (1, 5, 10), (1, 6, 7), (1, 6, 8), (1, 6, 9), (1, 6, 10),
(1, 7, 8), (1, 7, 9), (1, 7, 10), (1, 8, 9), (1, 8, 10), (1, 9, 10),
(2, 5, 7), (2, 5, 8), (2, 5, 9), (2, 5, 10), (2, 6, 7), (2, 6, 8),
(2, 6, 9), (2, 6, 10), (2, 7, 8), (2, 7, 9), (2, 7, 10), (2, 8, 9),
(2, 8, 10), (2, 9, 10), (3, 5, 7), (3, 5, 8), (3, 5, 9), (3, 5, 10),
(3, 6, 7), (3, 6, 8), (3, 6, 9), (3, 6, 10), (3, 7, 8), (3, 7, 9),
(3, 7, 10), (3, 8, 9), (3, 8, 10), and (3, 9, 10). Proc IML in
SAS was implemented to predict the random-effects param-
eters for each tree for each prior information combination
scenario using Equation 7 for both species.

Random parameters predicted using each diameter com-
bination under each scenario were combined with their
fixed effects counterparts in Equation 7, and diameters
along the bole for each tree for each species were estimated
for the validation data sets. To evaluate the predictive ability
of the models over the entire length of the stem, the relative
height of each tree was divided into 10 sections. Within

Table 4. Smallest values of mean biases (cm) (observed � predicted) and their SDs in predicting diameters along the bole of the
trees from among the models that used one, two, and three diameters as prior information along with the corresponding values from
the model without any prior information for jack pine and black spruce trees from validation data sets

Relative height

Diameter 7 Diameters 1 and 10 Diameters 1, 7, and 10 No prior

Bias SD Bias SD Bias SD Bias SD

Jack pine
0.0  h/H  0.1 0.0104 0.7394 �0.1222 0.4092 �0.1060 0.3945 0.0073 0.7493
0.1 � h/H  0.2 0.1733 0.4654 0.1277 0.5112 0.1742 0.4700 0.1776 0.5534
0.2 � h/H  0.3 0.1155 0.3923 0.0785 0.5448 0.1211 0.4112 0.1340 0.6372
0.3 � h/H  0.4 �0.0187 0.0381 �0.0943 0.5780 �0.0177 0.0418 �0.0211 0.7396
0.4 � h/H  0.5 �0.1015 0.4447 �0.1911 0.5592 �0.1254 0.4024 �0.0981 0.7801
0.5 � h/H  0.6 �0.0194 0.5669 �0.1178 0.5481 �0.0760 0.4644 �0.0198 0.8434
0.6 � h/H  0.7 0.0717 0.6764 �0.0348 0.0595 �0.0346 0.0531 0.0743 0.8615
0.7 � h/H  0.8 0.1649 0.8111 0.0645 0.5871 0.0101 0.6321 0.1657 0.9074
0.8 � h/H  0.9 0.0987 0.9101 0.0191 0.7360 �0.0805 0.7829 0.1014 0.9430
0.9 � h/H  1.0 �0.0206 0.7744 �0.0650 0.7083 �0.1701 0.7660 �0.0189 0.7824

Black spruce
0.0  h/H  0.1 �0.0737 0.6869 �0.0729 0.3133 �0.0685 0.3093 0.0781 0.7059
0.1 � h/H  0.2 0.0786 0.3094 0.0520 0.3241 0.0607 0.3002 0.0769 0.3714
0.2 � h/H  0.3 0.1174 0.2896 0.1044 0.3741 0.1121 0.2960 0.1328 0.4466
0.3 � h/H  0.4 0.0082 0.1472 0.0057 0.3641 0.0060 0.1502 0.0279 0.4443
0.4 � h/H  0.5 �0.0504 0.2623 �0.0528 0.3571 �0.0484 0.2358 �0.0343 0.4707
0.5 � h/H  0.6 �0.0513 0.3619 �0.0664 0.3352 �0.0554 0.2841 �0.0350 0.5134
0.6 � h/H  0.7 �0.0089 0.4277 �0.0212 0.0561 �0.0201 0.0519 0.0062 0.5512
0.7 � h/H  0.8 0.0418 0.4541 0.0247 0.2923 0.0156 0.3349 0.0602 0.5436
0.8 � h/H  0.9 0.0606 0.4401 0.0442 0.3381 0.0246 0.3954 0.0715 0.4814
0.9 � h/H  1.0 0.0568 0.3281 0.0447 0.3036 0.0221 0.3311 0.0612 0.3371

Diameter 1 was measured at heights 0.15 m from the ground. Diameters 7 and 10 corresponded to heights at 30 and 60% of the section between 1.3 m
and the tip of the tree, respectively.
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each section, the diameters measured were compared with
the diameters predicted from these models by calculating
bias (observed � predicted) in predicting diameters along
the bole. Mean bias and its SD were calculated for each
section using all trees for each prior information combina-
tion under each scenario for each species. The model
resulting in the smallest values of mean bias and its SD
across the length of a tree was considered to be the best.

Mean bias and its SD within each section were also
computed for the model without any prior information
(mean response model). To compare models resulting from

different prior information, the model with the smallest
values of bias and SD across the length of a tree was
selected for each scenario for each species. These values
were also calculated for the mean response model (Table 4).
Interestingly, the same prior information resulted in the best
model for both species under the same scenario.

The magnitudes of average bias that resulted from the
best models under all prior information scenarios and from
the model with no prior information are very similar along
the length of the trees (Table 4). However, SDs of the bias
for the model with no prior information are consistently
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Figure 5. Calibrated responses for the trees that were closest to the average dbh and total heights
for (a) jack pine (dbh � 17.5 cm and height � 15.65 m) and (b) black spruce (dbh � 13.3 cm and
height � 10.71 m) using models with one, two, and three diameters (i.e., diameters corresponding to
disks 7, 1 and 10, and 1, 7, and 10, respectively) as prior information, with the mean responses and
observed diameters.
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larger than their corresponding values for the models with
prior information for all scenarios. Thus, increasing the
number of diameters used in predicting random parameters
results in smaller SDs for up to 70% of total tree height for
both species. Above this point, the SD of the bias is larger
for the third scenario than for the second.

Because the model that uses two diameters resulted in
the smaller SD than the one using three diameters above
70% of total tree height, a model that uses three diameters
in predicting its random parameters and results in smaller
SDs than the one that uses two diameters across the length
of the trees was also investigated. In this model, one diam-
eter below breast height was combined with two diameters
at different points above breast height. The model with
diameters 1, 8, and 12 as prior information resulted in

consistently smaller SDs across tree height than the best
model using two diameters for both species. The magni-
tudes of average bias from this model, however, were very
similar to their corresponding values using the best model
with two diameters.

The best models that used one, two, and three diameters
[i.e., models with diameters 7, (1, 10), and (1, 7, 10) as
priors] in predicting random-effects parameters were further
evaluated by producing the associated taper profiles. These
profiles (calibrated responses) were generated for the trees
that were closest to the average trees in terms of dbh and
total heights for both species (i.e., dbh � 17.5 cm and
height � 15.65 m for jack pine and dbh � 13.3 cm and
height � 10.71 m for black spruce); mean responses and
observed diameters are also shown (Figure 5). Even though
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Figure 6. Tree profiles (mean responses) generated from Equation 7 using dbh � 17.0 cm and total
height � 15.0 m at different stand densities (BA � 10, 30, and 50 m2 ha�1) for (a) jack pine and (b)
black spruce.
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the model calibrated using diameters 1, 8, and 12 resulted in
smaller SDs of bias in predicting diameters, taper profiles
for this model were not produced here as this model would
not be practically realistic.

Relying on two diameters (1 and 10) to predict random-
effects parameters is sufficient to capture the taper profile
for this particular jack pine tree (Figure 5). On the other
hand, a calibrated response using only one diameter is even
better than the one using two diameters for black spruce
trees. These results indicate that two diameters (near the
stump and between 60 and 65% of total tree height) are
required to accurately calibrate the taper equation for jack
pine but one diameter near stump height could be enough to
calibrate the model for black spruce trees. The diameters
used to predict random-effects parameters should be mea-
sured accurately. Otherwise, the resulting bias using mixed-
effects models (calibrated response) could be worse than
just using fixed-effects models (mean response).

Finally, the effect of stand density was analyzed visually
by producing tree profiles (mean responses) using Equation
7 for dbh � 17.0 cm and H � 15.0 m at different stand
densities (BA � 10, 30, and 50 m2/ha) (Figure 6). These
results show that the trees have larger butt diameters and
more taper at lower than at higher stand density. However,
the difference in bole diameter between trees at lower and
higher stand densities diminishes as stand density increases.
In addition, density affected the taper of jack pine more than
that of black spruce.

The taper equation presented here has a unique feature. It
has the flexibility that a diameter at any point along the bole
can be used in place of dbh as assumed by other models,
allowing the reference diameter to be measured at any
convenient point on the stem. This feature is especially
useful when the diameter of a tree cannot be measured at
breast height because of an irregular stem (swelling, bump,
depression, branch, and so on). In this case, breast height
(hD) in the equation must be replaced by the height at which
the reference diameter was measured. This can be easily
applied if the outside bark diameter predictions are of in-
terest. In the case of inside bark diameters, however, the
bark thickness at the point where the reference diameter was
measured should be closed to the one at the breast height
because the models were fitted using the ratio of inside bark
diameters to outside bark dbh.

As mentioned earlier, the data used in this study were
from trees that did not exhibit any visible deformities.
Therefore, caution should be applied when these models are
used. For example, if a stand has many trees with visible
deformities, such as forks, major stem injuries, or dead or
broken tops, stand volume calculated based on these equa-
tions could be overestimated.

Conclusions

A taper equation was developed for jack pine and black
spruce plantations growing at varying densities. The equa-
tion was derived using a dimensional analysis approach by
incorporating stand density. Different aspects of stand den-
sity (e.g., BA/ha, trees/ha, QMD, and their derivatives) were
examined, but BA/ha proved most significant in describing

taper. The density effect on taper was more pronounced for
jack pine than for black spruce trees. A nonlinear mixed-
effects approach was applied in fitting the taper equations
for both species. Assuming random effects for four of the
five parameters significantly improved the fit statistics (AIC
and mean square error).

Inclusion of random-effects parameters for a new tree
based on upper stem diameter measurements improved the
predictive accuracy of the model. Three scenarios were
examined: one diameter at any height along the bole; two
diameters, one from below and another from above breast
height; and three diameters, one from below and the other
two from above breast height. The upper height at which the
diameter to be measured for calibration was limited to 65%
of total tree height because it is generally not practical to
measure diameters above this point.

Under the first scenario, the model calibrated using a
diameter measurement from between 34 and 38% of total
height resulted in the best model for predicting inside bark
diameters. Under the second scenario, the model calibrated
using one diameter measured near the stump and the other
near 65% of total height produced the least bias in predict-
ing inside bark diameters. In the third scenario, the model
calibrated using diameters measured near the stump and at
approximately 35 and 65% of total height provided the best
predictive accuracy. In our opinion, the improvement ob-
tained by including a third diameter is insufficient to justify
the additional costs of acquiring these measurements.
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Appendix

The following SAS codes can be used to calculate four random-effects parameters (b0i, b1i, b2i, and b3i) in Equation 7.
Values of parameter estimates used in this example are from jack pine trees.

DATA one;
input Tree dbh THT Disk ht DIB Density;

/* tht � total height, Disk � disk number, ht � height from ground, dib � inside bark
diameter at height ht, density � sqrt(baph)/dbh; */

data one; set one;
%macro predict(nd); *nd � number of disks to be used from a tree to calculate random
effect parameters;
z1 � ht/tht; z2 � z1**2;

a0 � 0.9,223; a1 � -.05,997; a2 � .5,156; a3 � -.2,265; a4 � .08,383;
*for jack pine from table 3;

pred � dbh*a0*((ht/1.3)**(a1�a2*z1�a3*z2�a4*density))*(tht-ht)/(tht-1.3);
da0 � pred/a0; da1 � pred*log(ht/1.3); da2 � pred*z1*log(ht/1.3);
da3 � pred*z2*log(ht/1.3);

resid � dib-pred; run;

proc iml;

create ranvars var {b0 b1 b2 b3};

vcov � {0.000558 -0.00007 0.00307 -0.00059,
-0.00007 0.000314 -0.00138 0.001393,
0.00397 -0.00138 0.025420 -0.03211,
-0.00059 0.001393 -0.03211 0.049490};
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*vcov � variance covariance matrix (D) for jack pine trees presented in the text;

mse � .00,039; G � mse*I(&nd); *mse � sigma**2 from table 3;

do i � 1 to k; *k � number of trees;

p � i;

use one var {Tree dbh tht ht dib da0 da1 da2 da3 resid} where (Tree � p);
read next &sub var {da0 da1 da2 da3} into Z;
use one var {Tree dbh tht ht diameter inside bark da0 da1 da2 da3 resid} where (Tree � p);
read next &sub var {resid} into E;

ZT � T(Z);

R � G;

M � Z*vcov*ZT � R; N � inv(M);

RANDOM � vcov*ZT*N*E;

RANDOMT � T(RANDOM);

edit ranvars;
append from randomt;
close;
end;

abort;

run;

%end;
mend predict;

%predict(nd);

proc print data � ranvars; run;

quit;
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