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Abstract

Whole-genome duplications (WGDs) have occurred multiple times during animal evolution, including in lineages leading to vertebrates,
teleosts, horseshoe crabs, and arachnopulmonates. These dramatic events initially produce a wealth of new genetic material, generally fol-
lowed by extensive gene loss. It appears, however, that developmental genes such as homeobox genes, signaling pathway components
and microRNAs are frequently retained as duplicates (so-called ohnologs) following WGD. These not only provide the best evidence for
WGD, but an opportunity to study its evolutionary consequences. Although these genes are well studied in the context of vertebrate
WGD, similar comparisons across the extant arachnopulmonate orders are patchy. We sequenced embryonic transcriptomes from two spi-
der species and two amblypygid species and surveyed three important gene families, Hox, Wnt, and frizzled, across these and 12 existing
transcriptomic and genomic resources for chelicerates. We report extensive retention of putative ohnologs, further supporting the ancestral
arachnopulmonate WGD. We also found evidence of consistent evolutionary trajectories in Hox and Wnt gene repertoires across three of
the six arachnopulmonate orders, with interorder variation in the retention of specific paralogs. We identified variation between major
clades in spiders and are better able to reconstruct the chronology of gene duplications and losses in spiders, amblypygids, and scorpions.
These insights shed light on the evolution of the developmental toolkit in arachnopulmonates, highlight the importance of the comparative
approach within lineages, and provide substantial new transcriptomic data for future study.
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Introduction
The duplication of genetic material is an important contributor
to the evolution of morphological and physiological innovations
(Ohno 1970; Zhang 2003). The most dramatic example of this is
whole-genome duplication (WGD), when gene copy numbers are
doubled and retained paralogs (ohnologs) can then share ances-
tral functions (subfunctionalization) and/or evolve new roles
(neofunctionalization; Ohno 1970; Force et al. 1999; Lynch and
Conery 2000). The occurrence of two rounds (2R) of WGD in the
early evolution of vertebrates has long been associated with their
taxonomic and morphological diversity (e.g., Ohno 1970; Holland
et al. 1994; Dehal and Boore 2005; Holland 2013a), and a subse-
quent 3R in teleosts is frequently linked to their success as the
most diverse vertebrate group (e.g., Meyer and Schartl 1999;
Glasauer and Neuhauss 2014). However, this remains controver-
sial and difficult to test (Donoghue and Purnell 2005) and in

several animal lineages, there is no clear association between
WGD and diversification (Mark Welch et al. 2008; Flot et al. 2013;
Havlak et al. 2014; Kenny et al. 2016; Nong et al. 2020). Along with
vertebrates, chelicerates also appear to be hotspots of WGD, with
up to three rounds reported in horseshoe crabs (Havlak et al.
2014; Kenny et al. 2016; Nong et al. 2020; Shingate et al. 2020), and
potentially two further rounds within the spider clade
Synspermiata (Král et al. 2019). Chelicerates demonstrate a highly
variable body plan, occupy a wide range of habitats and ecologi-
cal niches, and have evolved a variety of biologically important
innovations such as venoms and silks (Schwager et al. 2015). They
therefore offer an excellent opportunity for comparison with ver-
tebrates concerning the implications of WGD for morphological
and taxonomic diversity, and genome evolution in its wake.

The house spider Parasteatoda tepidariorum has emerged as a
model species to study the impacts of WGD on arachnid
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evolution and development. Genomic and functional develop-
mental studies have found retained ohnologs of many important
genes, with evidence for neo- and subfunctionalization compared
to single-copy orthologs in arachnids lacking WGD (Janssen et al.
2015; Leite et al. 2016; Turetzek et al. 2016, 2017; Schwager et al.
2017; Leite et al. 2018; Baudouin-Gonzalez et al. 2021). Work on
the scorpions Centruroides sculpturatus and Mesobuthus martensii
has consistently complemented findings in P. tepidariorum, with
genomic studies recovering many ohnologs retained in common
with spiders (Sharma et al. 2014b; Di et al. 2015; Sharma et al.
2015; Schwager et al. 2017; Leite et al. 2018). In the past few years,
several additional spider genomes have become available, provid-
ing an opportunity to get a more detailed view of genome evolu-
tion following WGD. Although synteny analysis remains the gold
standard for the identification of ohnologs, the required
chromosome-level genomic assemblies remain relatively scarce.
Work on the P. tepidariorum, C. sculpturatus, and M. martensii
genomes has been complemented by targeted studies of individ-
ual gene families and transcriptomic surveys (Schwager et al.
2007; Sharma et al. 2012; Janssen et al. 2015; Leite et al. 2018;
Gainett and Sharma 2020; Baudouin-Gonzalez et al. 2021).
Combined with phylogenetic analyses, the identification of dupli-
cations can provide support for WGD events and their timing in
arachnid evolution. Although transcriptomes can yield variant
sequences of individual genes, from different alleles or individu-
als in mixed samples, these are generally straight-forward to fil-
ter out from truly duplicated loci owing to substantial sequence
divergence in the latter. They also offer the double-edged sword
of capturing gene expression, rather than presence in the ge-
nome; pseudogenized or silenced duplicates are not detected, but
neither are functional genes if they are not expressed at the sam-
pled timepoint or tissue. Such studies have produced strong addi-
tional evidence for an ancestral WGD, with patterns of
duplication coinciding with our expectations for arachnopulmo-
nate ohnologs (Clarke et al. 2014; 2015; Sharma et al. 2015;
Turetzek et al. 2017; Bonatto Paese et al. 2018; Leite et al. 2018;
Gainett et al. 2020; Gainett and Sharma 2020; Baudouin-Gonzalez
et al. 2021).

Comparison of WGD events among arachnopulmonates,
horseshoe crabs, and vertebrates indicates that despite extensive
gene loss following duplication events, certain gene families are
commonly retained following duplication (Holland et al. 1994;
Schwager et al. 2007; Kuraku and Meyer 2009; Di et al. 2015;
Sharma et al. 2015; Kenny et al. 2016; Leite et al. 2016, 2018;
Schwager et al. 2017). These typically include genes from the con-
served developmental “toolkit” of transcription factors (TFs), cell
signaling ligands and receptors, and microRNAs (Erwin 2009).
Among these, several have stood out as focal points in the study
of gene and genome duplications. The Hox group of homeobox
genes regulate the identity of the body plan along the antero-
posterior axis of all bilaterian animals (McGinnis and Krumlauf
1992; Abzhanov et al. 1999; Carroll et al. 2005; Pearson et al. 2005;
Hueber and Lohmann 2008; Holland 2013b). Four clusters of
these key developmental genes were partially retained after 1R
and 2R in vertebrates (Holland et al. 1994; Meyer and Schartl
1999; Kuraku and Meyer 2009; Pascual-Anaya et al. 2013), and the
arachnopulmonate WGD is evident in the almost universal reten-
tion of Hox gene duplicates in sequenced genomes, with two
ohnologs of all 10 arthropod Hox genes in the scorpion M. marten-
sii (Di et al. 2015; Leite et al. 2018), all except Hox3 being repre-
sented by two copies in C. sculpturatus (Leite et al. 2018), and all
except fushi tarazu (ftz) in P. tepidariorum (Schwager et al. 2017).
Systematic studies of Hox gene expression patterns in the latter

demonstrated that all nine pairs of Hox paralogs exhibit signs of
sub- or neofunctionalization (Schwager et al. 2017). This high
level of retention and expression divergence lends strong support
to the importance of Hox gene duplication in the evolution of the
arachnopulmonate body plan, and further consolidates the posi-
tion of this gene family as a key indicator of WGD. Additionally,
arachnids lacking WGD, such as ticks, mites, and harvestmen,
exhibit single copies of the Hox genes, with no evidence for dupli-
cation via other mechanisms (Grbi�c et al. 2011; Pace et al. 2016;
Leite et al. 2018; Gainett et al. 2021).

In addition to TFs, the ligands and receptors of some signaling
pathways of the developmental toolkit (e.g., Hedgehog, Wnt, TGF-
ß, NHR) also demonstrate higher copy numbers in vertebrates
and other groups subject to WGD, including arachnopulmonates
(Holland et al. 1994; Meyer and Schartl 1999; Shimeld 1999; Pires-
daSilva and Sommer 2003; Cho et al. 2010; Janssen et al. 2010;
Hogvall et al. 2014; Janssen et al. 2015). The Wnt signaling path-
way plays many important roles during animal development, in-
cluding segmentation and patterning of the nervous system,
eyes, and gut (Erwin 2009; Murat et al. 2010). In the canonical
pathway, Wnt ligands bind to transmembrane receptors, such as
Frizzled, to trigger translocation of ß-catenin to the nucleus and
mediate regulation of gene expression (Cadigan and Nusse 1997;
Hamilton et al. 2001; Logan and Nusse 2004; van Amerongen and
Nusse 2009). There are 13 subfamilies of Wnt genes found in
bilaterians, as well as multiple receptor families and downstream
components. In contrast to the extensive retention of Hox ohno-
logs following WGD, Wnt duplicates in P. tepidariorum appear to be
restricted to Wnt7 and Wnt11, with the remaining eight subfami-
lies represented by single genes (Janssen et al. 2010). However,
these are the only reported Wnt gene duplications in arthropods
despite several recent surveys (Bolognesi et al. 2008; Murat et al.
2010; Hayden and Arthur 2013; Meng et al. 2013; Chipman et al.
2014; Hogvall et al. 2014; Janssen and Posnien 2014; Kao et al.
2016; Holzem et al. 2019), and beyond P. tepidariorum no other
arachnopulmonates have been systematically searched.

Several Wnt families have also been retained after the 1R and
2R events in vertebrates, for example there are two copies each of
Wnt2, Wnt3, Wnt5, Wnt7, Wnt8, Wnt9, and Wnt10 in humans
(Miller 2001; Janssen et al. 2010). However, no subfamilies are rep-
resented by three or four copies in humans and so there is some
consistency with arachnopulmonates in that the Wnts may be
more conservative markers of WGD, to be used in combination
with Hox and other homeobox genes.

Similarly, duplications within the four frizzled gene subfamilies
appear to be restricted to arachnopulmonates among arthropods,
wherein only fz4 is duplicated in both P. tepidariorum and M. mar-
tensii (Janssen et al. 2015).

The extensive and consistent retention of key developmental
genes, like Hox genes apparent in P. tepidariorum and C. sculptura-
tus, and Wnt genes in P. tepidariorum, strongly support the occur-
rence of an ancestral WGD in arachnopulmonates. However,
data are only available for a handful of species so far, resulting in
very patchy taxonomic sampling. For example, only P. tepidario-
rum, Pholcus phalangioides and recently, Aphonopelma hentzi, have
been comprehensively surveyed for homeobox genes among spi-
ders (Leite et al. 2018; Ontano et al. 2021), omitting the large and
derived retrolateral tibial apophysis (RTA) clade, which includes
jumping spiders, crab spiders, and other free hunters, and the
systematic identification of Wnt genes has been restricted to only
P. tepidariorum. Spiders and scorpions are by far the most speciose
of the arachnopulmonates, and there may be additional diversity

2 | G3, 2021, Vol. 11, No. 12

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/12/jkab299/6364898 by guest on 25 April 2024



in their repertoires of these important developmental gene fami-
lies of which we are not yet aware.

In addition, and perhaps more urgently, only two of the six
arachnopulmonate lineages have dominated the field thus far;
sufficient genomic information for comparison is lacking beyond
spiders and scorpions. Also represented in Arachnopulmonata
are the amblypygids (whip spiders), relatively understudied and
enigmatic animals comprising around 190 extant species. They
exhibit highly derived pedipalp morphology, which are adapted
to form raptorial appendages, and of the first pair of walking legs,
which are antenniform and can comprise more than 100 seg-
ments (Weygoldt 2009). Despite the scarcity of transcriptomic or
genomic data for amblypygids [see Gainett et al. (2020) for recent
advances; Gainett and Sharma (2020)], their widely accepted po-
sition within Arachnopulmonata implies that they were also sub-
ject to an ancestral WGD. A recent survey of the Phrynus
marginemaculatus transcriptome supported this in the recovery of
multiple duplicate Hox and leg gap genes (Gainett and Sharma
2020). Particularly given the derived nature of their appendages,
this group could shed substantial light on genomic and morpho-
logical evolution following WGD. The position of pseudoscor-
pions was also recently resolved within Arachnopulmonata,
complemented by widespread homeobox gene duplication
(Ontano et al. 2021).

To better understand the genomic consequences of WGD in a
greater diversity of arachnopulmonate lineages, we sequenced de
novo embryonic transcriptomes from two spiders belonging to the
derived RTA clade and two amblypygids. We surveyed Hox, Wnt,
and frizzled genes in these species and existing genomic and tran-
scriptomic resources for comparison with other arachnids, both
with and without an ancestral WGD, improving sampling at both
the order and suborder levels.

Materials and methods
Embryo collection and fixation
Embryos of mixed ages were collected from captive females of
the amblypygids Charinus acosta (Charinidae; parthenogenetic,
collected at 1 day, 1 month, and 2 months after laying; equivalent
to approximately 1%, 30%, and 60% of development) and
Euphrynichus bacillifer (Neoamblypygi: Phrynichidae; mated, col-
lected at approximately 30% of development), the wolf spider
Pardosa amentata (collected in Oxford, UK, equivalent to stages 11/
12 in P. tepidariorum) and mixed-stage embryos of the jumping
spider Marpissa muscosa (kindly provided by Philip Steinhoff and
Gabriele Uhl, University of Greifswald) and stored in RNAlater.
Phalangium opilio were collected in Uppsala, Sweden, and develop-
mental series of embryos ranging from egg deposition to the end
of embryogenesis were collected for sequencing.

Transcriptomics
We extracted total RNA from embryos, pooled by species, of C.
acosta, E. bacillifer, P. amentata, and M. muscosa using QIAzol lysis
reagent and following the manufacturer’s instructions (Qiagen).
Libraries were prepared using a TruSeq RNA kit (including polyA
selection) and sequenced on the NovaSeq platform (100 bp PE,
Edinburgh Genomics). Following quality assessment using
FastQC v0.11.9 (Andrews 2010), erroneous k-mers were removed
(rCorrector, default settings; Song and Florea 2015), and unfixable
read pairs (from low-expression homolog pairs or containing too
many errors) were discarded using a custom Python script (avail-
able at https://github.com/harvardinformatics/Transcriptome
AssemblyTools/blob/master/FilterUncorrectabledPEfastq.py

courtesy of Adam Freeman). Adapter sequences were identified
and removed and low-quality ends (phred score cutoff ¼ 5)
trimmed using TrimGalore! v0.6.5 (available at https://github.
com/FelixKrueger/TrimGalore). De novo transcriptome assembly
was performed using only properly paired reads with Trinity
v2.10.0 (Haas et al. 2013) using default settings. Transcriptome
completeness was assessed on the longest isoform per gene using
BUSCO v4.0.2 (Seppey et al. 2019), the arachnid database (arachni-
da_odb10 created on 2019-11-20; 10 species, 2934 BUSCOs), and
the arthropod database (arthropoda_odb10 created on 2019-11-
20; 90 species, 1013 BUSCOs). Reads and assembled transcrip-
tomes are available on SRA and TSA, respectively, under
BioProject PRJNA707377.

Identification of gene candidates
To identify Hox, Wnt, and frizzled gene candidates across chelicer-
ates, we performed BLAST searches (P-value 0.05) against existing
genomic and transcriptomic resources and the four new embry-
onic transcriptomes generated in this study. Hox, Wnt, and
Frizzled peptide sequences previously identified in P. tepidariorum
and Ixodes scapularis were reciprocally blasted against the respec-
tive NCBI proteomes to confirm their identity and the top hit was
selected (Supplementary File S1; Janssen et al. 2010, 2015;
Schwager et al. 2017; Leite et al. 2018). Hox protein sequences pre-
viously identified in C. sculpturatus (Schwager et al. 2017) and P.
opilio (Leite et al. 2018) were reciprocally blasted against the re-
spective NCBI proteomes to confirm their identity and the top hit
was selected (Supplementary File S1). These sequences, along
with the Hox and Fz peptide sequences identified in the M. mar-
tensii genome, were used as query sequences in our analysis (Di
et al. 2015; Janssen et al. 2015).

BLASTP searches were performed against the NCBI pro-
teomes of Stegodyphus dumicola, C. sculpturatus, Tetranychus urti-
cae, and Limulus polyphemus. TBLASTN searches were performed
against C. acosta, E. bacillifer, P. amentata, and M. muscosa (this
study); the transcriptomes of P. phalangioides (Turetzek, Torres-
Oliva, Kaufholz, Prpic, Posnien, in preparation), Phoxichilidium
femoratum (Ballesteros et al. 2021) and P. opilio (PRJNA236471);
and the genomes of Pardosa pseudoannulata (PRJNA512163),
Acanthoscurria geniculata (PRJNA222716), and M. martensii (CDS
sequence file; Cao et al. 2013). We then predicted the peptide
sequences using the Translate ExPASy online tool (https://web.
expasy.org/translate/; default settings). Protein sequence iden-
tity was confirmed by reciprocal BLAST against the NCBI data-
base and the construction of maximum-likelihood trees. Where
more than one sequence was identified as a potential candidate
for a single gene, nucleotide, and protein alignments were
inspected to eliminate the possibility that they were isoforms,
individual variants, or fragments of the same gene. Only the
longest isoforms and gene fragments were selected for phyloge-
netic analysis (Supplementary File S1). All Hox sequences iden-
tified contain a complete or partial homeodomain
(Supplementary Files S2 and S3). The TBLASTN search in P. pha-
langioides identified a Ubx gene not reported previously by Leite
et al. (2018). Our BLAST searches did not recover Cs-ftz-a
(Schwager et al. 2017), Tu-Antp-2 (Grbi�c et al. 2011) or Is-Wnt8
(Janssen et al. 2010) but we included the previously identified
sequences in our subsequent phylogenetic analysis. The Trinity
transcript accession numbers of all identified sequences, NCBI
protein accession and other sequence identifiers used in the
subsequent phylogenetic analysis are found in Supplementary
File S1.
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Due to high levels of fragmentation in the P. opilio transcrip-
tome, multiple nonoverlapping fragments were found to align
with query Wnt sequences. To verify the identity and relationship
of these fragments, primers were designed against the 50-most
and 30-most ends of the aligned series (see Supplementary File
S1). Total RNA was extracted using Trizol (Invitrogen) according
to the manufacturer’s instructions and cDNA produced using the
SuperScriptII first-strand synthesis system (Invitrogen) for RT-
PCR using the designed primer pairs. PCR products were se-
quenced by Macrogen Europe to confirm predicted combinations
of fragmented transcripts (see Supplementary File S1).

Phylogenetic analysis
Hox, Wnt, and Frizzled protein predictions were retrieved from
NCBI for the insects Drosophila melanogaster, Bombyx mori,
Tribolium castaneum; the crustacean Daphnia pulex; and the ony-
chophoran Euperipatoides kanangrensis (Supplementary File S1).
The Hox, Wnt, and Frizzled peptide sequences for the myriapod
Strigamia maritima were retrieved from Chipman et al. (2014;
Supplementary File S1). Alignments were performed in Clustal
Omega using default parameters (Larkin et al. 2002; Sievers et al.
2011), with the exception of the full Hox protein sequences,
which were aligned using COBALT (Papadopoulos and Agarwala
2007). Maximum-likelihood trees were generated from whole-
sequence alignments to assign sequences to families and study
the relationship between candidate duplicates. Phylogenetic
analyses were performed in IQ-Tree (v2.0.3, Nguyen et al. 2015)
using ModelFinder to identify optimal substitution models (JTT þ
F þ R9 for full Hox sequences, LG þ G4 for Hox homeodomain
sequences, GTR þFþ Iþ G4 for Hox homeobox sequences, LG þ
R8 for Wnt, JTTþR8 for Fz; Kalyaanamoorthy et al. 2017) and
100,000 bootstrap replicates. Trees were visualized in FigTree
v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and tidied in
Adobe Illustrator. Hox sequences were additionally analyzed us-
ing RaXML v8 (Stamatakis 2014), using the same substitution
models chosen by Iqtree and the automatic bootstopping algo-
rithm (Pattengale et al. 2009). Alignments are provided in
Supplementary Files S2–S4 and S9–S11.

Results
Transcriptome assemblies
To further study the outcomes of WGD in the ancestor of arach-
nopulmonates, we carried out RNA-Seq on embryos of two fur-
ther spider species, P. amentata and M. muscosa, and two species
of amblypygids, C. acosta and E. bacillifer.

RNA-Seq for the four species produced between 222,479,664
and 272,844,971 raw reads, reduced to between 95% and 96.2% af-
ter processing. Trinity assembled between 184,142 and 316,021
transcripts in up to 542,344 isoforms (Table 1). Contig N50 ranged
from 592 bp in M. muscosa to 978 bp in E. bacillifer, and from
1461 bp (M. muscosa) to 2671 bp (E. bacillifer) in the most highly
expressed genes (representing 90% of total normalized expres-
sion; Table 1).

Transcriptomes were found to be between 83.7% (C. acosta)
and 89.4% (E. bacillifer) complete according to BUSCO scores com-
pared to the arthropod database, with between 3.5% and 9.5% du-
plicated BUSCOs. Compared to the arachnid databases,
transcriptomes were 82–90.1% complete for single-copy BUSCOs
and contained between 5.3% and 12.9% duplicated BUSCOs
(Table 1).

To explore the extent of duplication in these arachnopulmo-
nates, we then surveyed the copy number of Hox, Wnt, and frizzled

genes represented in their transcriptomes in comparison to other
arachnids. It is important to note that the absence of genes recov-
ered from transcriptomes does not eliminate the possibility that
they are present in the genome, as the transcriptomes will only
capture genes expressed at the surveyed stages of development.
Mixed-stage embryonic samples (all except E. bacillifer) may
therefore yield more transcripts. See Table 2 for a summary of
these details for each species.

Hox repertoires and their origins
Spider Hox gene repertoires are largely consistent with P. tepidario-
rum, which has two copies of all except ftz (Figure 1). There are
several exceptions: single copies of Hox3 in M. muscosa, P. amen-
tata, and P. pseudoannulata, of Sex combs reduced (Scr) in A. genicu-
lata and S. dumicola, of proboscipedia (pb) in A. geniculata, and of
labial (lab) in P. phalangioides (Figure 1). Although we found two
AbdB candidates in P. pseudoannulata, one did not contain a home-
odomain and was excluded from phylogenetic analyses.

Both amblypygids exhibit extensive duplication of Hox genes,
with two copies recovered for all except for pb in C. acosta and pb
and Ubx in E. bacillifer (Figure 1).

The scorpions M. martensii and C. sculpturatus exhibited similar
Hox repertoires, with two copies recovered for all 10 genes, except
for a single copy of Hox3 in C. sculpturatus.

Among the nonarachnopulmonate arachnids, I. scapularis and
P. opilio exhibited no duplication of any Hox genes, in line with
previous genomic surveys (Leite et al. 2018; Gainett et al. 2021). In
the mite T. urticae, we did not identify Hox3 and abdA candidates,
consistent with Grbi�c et al. (2011) and Ontano et al. (2021). The res-
olution of several sequences from T. urticae was variable; for ex-
ample, previously identified Tu-ftz-1, Tu-ftz-2, Tu-AbdB, and Tu-
Ubx sequences (Grbi�c et al. 2011) did not resolve correctly in the
full Hox tree (Figure 2) but did in the homeodomain and homeo-
box trees (Supplementary Files S5–S8).

We also surveyed two nonarachnid chelicerates, a pycnogonid
P. femoratum and the horseshoe crab L. polyphemus, the latter of
which has undergone multiple rounds of WGD independently of
the arachnopulmonates (Kenny et al. 2016; Nong et al. 2020) we re-
covered single copies of all Hox genes except Ubx and abdA, which
were not found, in P. femoratum, consistent with Ballesteros et al.
(Ontano et al. 2021; Figure 1). Limulus polyphemus returned multi-
ple copies of all Hox genes except ftz and Ubx, including three cop-
ies of lab, pb, Hox3, Scr, and AbdB, five potential copies of Dfd, and
two copies of Antp and abdA (Figure 1).

Full protein sequences produced the best-supported phylog-
eny: six nodes returned support <50%. Two of these concerned
the placement of outgroup (nonchelicerate) sequences and one
concerned the deeper relationship of the Hox3 and Pb clades,
which is beyond the scope of this study. The remaining three re-
flect uncertainty in the within-clade placement of chelicerate
sequences (Figure 2). An additional 10 nodes returned support of
50–60%, which we consider too weak to justify interpretation.
Analyses using protein sequences from homeodomains only con-
tained insufficient phylogenetic information to resolve within-
clade relationships, but confirmed gene identity (Supplementary
Files S5 and S6). Nucleotide sequences of homeodomains pro-
vided more within-clade resolution, but with lower support than
full protein sequences (Supplementary Files S7 and S8). Using full
protein sequences, we recover Antp as a paraphyletic group, al-
beit with low support (61%). The homeodomain phylogenies
(both protein and nucleotide) confirm the identity of these
sequences, indicating substantial sequence divergence outside of
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this conserved region in several species. The following discussion
is based on the phylogeny of the full protein sequences (Figure 2).

Overall, the resolution of duplicate Hox sequences indicates
that the majority are likely to be ohnologs. In many cases, dupli-
cates form well-supported clades of orthologs, containing
sequences from multiple orders, suggesting a shared origin for
duplication. The majority of Hox genes are present in duplicate
across the arachnopulmonates, strengthening this pattern. Few
duplicates form paralogous pairs within species, or paired clades
of paralogs within lineages, as would be expected from lineage-
specific duplications (although there are exceptions, such as
scorpion Lab and Antp, Figure 2).

For both AbdA and AbdB, sequences broadly formed two over-
all clades; although these were not well supported for AbdB (49–
51%), relationships within them are still informative. In both
cases, spider sequences formed two distinct and well-supported
(>97%) clades that reflect overall phylogenetic relationships in
their topology. The amblypygid sequences resolved as two ortho-
log pairs, one in each of the two overall clades. These are there-
fore strong candidates for ohnologs. Scorpion AbdB and AbdA
were not consistent with this pattern; in both cases, one pair of
orthologs resolved together and one pair separately (Figure 2).
Although this reflects a low likelihood of a lineage-specific dupli-
cation of abdA and AbdB in scorpions, it does not further clarify
possible ohnolog relationships. Spider and scorpion Pb duplicates
are candidate ohnologs, resolving in two well-supported (>99%)
clades of orthologs whose topologies reflect phylogenetic rela-
tionships. Ftz duplicates in scorpions and amblypygids also re-
solved with orthologs of other arachnopulmonates, but one set of
scorpion paralogs was placed with substantial uncertainty (sup-
port <60%). Most spider and amblypygid Antp sequences follow
the pattern expected of ohnologs, forming two clades of ortho-
logs, but three of the scorpion sequences formed a well-
supported clade (91%) while the fourth resolved within a small
group of sequences that fall outside the main Antp clade.

The origin of Ubx, Dfd, Lab, Hox3, and Scr duplicates in arach-
nopulmonates is not clear from our phylogenetic analysis alone,
with neither orthologs nor paralogs resolving together consis-
tently, and topology that is a poor reflection of phylogeny.
However, spider sequences broadly formed two clades with other
arachnopulmonates, and synteny analysis in both P. tepidariorum
(Schwager et al. 2017) and Trichonephila antipodiana (Fan et al. 2021)
demonstrate clearly that Hox cluster duplications therein are the
result of WGD. The placement of the amblypygid and scorpion
duplicates was more variable. In some cases, these also appear to
resolve as expected of ohnologs (e.g., amblypygid Hox3), but in
others, their placement could indicate lineage-specific duplica-
tion, although usually with low support (e.g., amblypygid Ubx).

Wnt repertoires and their origins
Consistent with P. tepidariorum (Janssen et al. 2010), we found rep-
resentatives of 10 Wnt subfamilies in all surveyed spiders. The
absence of Wnt9 and Wnt10 indicates their likely absence in the
spider ancestor, while the absence of Wnt3 is consistent with all
other protostomes (Janssen et al. 2010; Murat et al. 2010; Hogvall
et al. 2014). Two copies of Wnt7 were retrieved from M. muscosa, P.
amentata, A. geniculata, P. phalangioides, P. tepidariorum, P. pseudoan-
nulata, and S. dumicola. All spiders except A. geniculata also yielded
two copies of Wnt11. A second copy of Wnt4, which is absent in P.
tepidariorum, was recovered from P. amentata, M. muscosa, A. geni-
culata, S. dumicola, and P. pseudoannulata. We also found duplicates
of Wnt1/wg in both A. geniculata and P. pseudoannulata, and a du-
plicate of WntA in P. pseudoannulata.

Representation of the Wnt subfamilies in the amblypygids is
higher than any other chelicerate studied to date, including those
with high-quality genome assemblies (Janssen et al. 2010; Hogvall
et al. 2014; Holzem et al. 2019). We recovered transcripts from 12
out of 13 subfamilies (missing Wnt3) and duplicates of Wnt1/wg,
Wnt4, and Wnt7 in both species (Figure 3). Additional duplicates
of Wnt6 and Wnt11 were recovered from C. acosta (Figure 3).

Representatives of 10 Wnt subfamilies were found in the two
scorpion genomes, with both missing Wnt3, Wnt8, and Wnt9. Two
copies of Wnt1/wg, Wnt6, Wnt7, and Wnt11 were retrieved in both
species, with an additional copy of Wnt4 in M. martensii.

We did not recover duplicates of Wnt2, Wnt5, Wnt8-10, or
Wnt16 in any arachnopulmonate lineage and found no evidence
of Wnt gene duplication in the nonarachnopulmonate arachnids
(Figure 3). In the harvestman P. opilio, we recovered single copies
of all except Wnt2 and Wnt3. Ixodes scapularis was also missing
Wnt10 but was otherwise similar, whereas we did not recover
these or Wnt1/wg, Wnt7, Wnt9, or Wnt11 in the mite T. urticae. In
the nonarachnid chelicerates, P. femoratum and L. polyphemus, we
found similar representation of the subfamilies, with all except
Wnt3 and Wnt10 in P. femoratum and all except these and Wnt9 in
L. polyphemus. No duplicates were recovered in P. femoratum, but
large numbers of duplicates were found in L. polyphemus. These
included six potential copies of Wnt5 and Wnt7, four of Wnt11
and Wnt16, and five of WntA (Figure 3).

In our phylogeny using full protein sequences, only two nodes
returned support <50%: one uniting Wnt8, Wnt9, Wnt10, and
Wnt16 (39%), and one uniting Wnt1/wg, Wnt4, Wnt6, and Wnt11
(36%). These are positioned deep within the tree and concern the
interrelationships of the Wnt subfamilies, which are beyond the
scope of this study.

Most of the duplicate Wnt genes appear to be likely ohnologs;
confirmation requires synteny analysis, but the relationships be-
tween paralogs resolved by phylogenetic analysis generally sup-
port duplications originating in the arachnopulmonate ancestor.

Duplicates of Wnt7 were previously identified in P. tepidariorum
(Janssen et al. 2010) and are recovered from all surveyed arachno-
pulmonates. The spider Wnt7 duplicates formed two clades
(bootstrap �61%) suggesting the retention of ohnologs (Figure 4).
The amblypygid Wnt7 ortholog pairs resolve as sisters to the spi-
der clades, but support for these placements is lower (50–60%),
and they display slightly higher sequence similarity between
paralogs (73–74%) than the spiders (60–72%). The scorpion Wnt7
ortholog pairs formed their own separate clade with strong sup-
port (92%; Figure 4), possibly indicating a lineage-specific duplica-
tion. Nonetheless, the sequence divergence between the scorpion
paralog pairs (68–70%) is similar to that between putative ohno-
logs in spiders (60–72%).

Table 2 Summary of genetic resources for surveyed
arachnopulmonate species

Species Resource Stage No. of individuals

Acanthoscurria geniculata RNA Mixed >1
Centruroides sculpturatus DNA Adult 1
Charinus acosta RNA Mixed 1
Euphrynichus bacillifer RNA Single >1
Marpissa muscosa RNA Mixed >1
Mesobuthus martensii DNA Adult 1
Parasteatoda tepidariorum DNA Adult >1
Pardosa amentata RNA Mixed >1
Pardosa pseudoannulata DNA Mixed >1
Pholcus phalangioides RNA Mixed >1
Stegodyphus dumicola DNA Adult 1
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Duplicates of Wnt11 previously identified in P. tepidariorum
(Janssen et al. 2010) were recovered from all surveyed spiders ex-
cept A. geniculata, C. acosta, and both scorpions. The spider Wnt11
duplicates formed two separate and well-supported clades
(�85%, Figure 4), and each amblypygid Wnt11 orthology group
was sister to one of the spider clades (98–99%; Figure 4).
Similarity between paralogs in the four new transcriptomes was

very low (41–54%). We propose that the spider and amblypygid
Wnt11 duplicates are probably retained from the ancestral WGD.
The resolution of the scorpion Wnt11 duplicates is less clear;
ortholog pairs resolve together with 100% support, but only one
resolves as sister to the two clear clades occupied by the spider
and amblypygid duplicates (98%; Figure 4). They exhibit similar
sequence similarity (49–50%) to the putative ohnologs.
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Figure 2 Maximum-likelihood phylogeny of Hox amino acid sequences. The Hox subfamilies are shown as different colors (after Figure 1).
Panarthropods included: Acanthoscurria geniculata (Ag), Bombyx mori (Bm), Centruroides sculpturatus (Cs), Charinus acosta (Ca), Drosophila melanogaster (Dm),
Euperipatoides kanangrensis (Ek), Euphrynichus bacillifer (Eb), Ixodes scapularis (Is), Limulus polyphemus (Lp), Marpissa muscosa (Mm), Mesobuthus martensii (Me),
Parasteatoda tepidariorum (Pt), Pardosa amentata (Pa), Pardosa pseudoannulata (Pan), Phalangium opilio (Po), Pholcus phalangioides (Pp), Phoxichildium femoratum
(Pf), Stegodyphus dumicola (Sd), Strigamia maritima (Sm), Tetranychus urticae (Tu), and Tribolium castaneum (Tc). Node labels indicate ultrafast bootstrap
support values. See Supplementary File S1 for accession numbers, Supplementary File S2 for full amino acid sequence alignments.
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Wnt4 paralogs from M. muscosa, P. amentata, A. geniculata, P.
pseudoannulata, and S. dumicola form two separate and well-
supported clades with duplicates from the amblypygids (boot-
strap �91%). They show substantial sequence divergence within
species (53–64% similarity), indicating that they are again likely
to represent retained ohnologs following the arachnopulmonate
WGD, despite being lost in the lineage to P. tepidariorum.

The two sequences of WntA recovered from the P. pseudoannu-
lata genome are located on the same scaffold and are dissimilar
in sequence. Their peptide sequences resolve as sister to one an-
other (Figure 4), indicating a lineage-specific tandem duplication.
However, as they are partial sequences with a short overlapping
region, this requires confirmation.

We identified two copies of Wnt1/wg in the transcriptomes of
both amblypygids and A. geniculata, and in the genomes of P. pseu-
doannulata, C. sculpturatus, and M. martensii. Sequence similarity
between paralogs was low (55–73%) compared to similarity be-
tween orthologs at the order level (e.g., 91% between M. muscosa
and P. amentata), and comparable to orthologs at the class level
(e.g., 61% between P. tepidariorum and I. scapularis). Although syn-
teny analysis is required for conclusive confirmation, our phylog-
eny indicates that the amblypygid, scorpion, and A. geniculata
duplicates are likely to be ohnologs retained from the arachno-
pulmonate WGD, as they form separate clades (�70%, Figure 4).
The putative duplicates in P. pseudoannulata, in contrast, resolve
as sister to one another. These two sequences have (short)
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Figure 4 Maximum-likelihood phylogeny of Wnt amino acid sequences. The 12 Wnt subfamilies are shown as different colors (after Figure 3).
Panarthropods included: Acanthoscurria geniculata (Ag), Bombyx mori (Bm), Centruroides sculpturatus (Cs), Charinus acosta (Ca), Drosophila melanogaster (Dm),
Euperipatoides kanangrensis (Ek), Euphrynichus bacillifer (Eb), Ixodes scapularis (Is), Limulus polyphemus (Lp), Marpissa muscosa (Mm), Mesobuthus martensii (Me),
Parasteatoda tepidariorum (Pt), Pardosa amentata (Pa), Pardosa pseudoannulata (Pan), Phalangium opilio (Po), Pholcus phalangioides (Pp), Phoxichildium femoratum
(Pf), Stegodyphus dumicola (Sd), Strigamia maritima (Sm), Tetranychus urticae (Tu), and Tribolium castaneum (Tc). Node labels indicate ultrafast bootstrap
support values. See Supplementary File S1 for accession numbers, Supplementary File S9 for amino acid sequence alignments, and Supplementary File
S10 for nucleotide sequence alignments of Wnt1/wg duplicates in C. acosta, C. sculpturatus, and Euphrynichus bacillifer.
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nonidentical overlapping regions, but, again, they are partial;

therefore, it is equivocal whether they represent a genuine,

lineage-specific duplication.

Frizzled repertoires and their origins
All surveyed spiders possess at least one ortholog of FzI and FzII.

A second ortholog of FzI was recovered from the genome of S.

dumicola and a second ortholog of FzII from the transcriptome of

M. muscosa (Figure 5). FzIII was absent from the transcriptomes of

M. muscosa and P. amentata, and the genomes of S. dumicola and P.

pseudoannulata, consistent with P. tepidariorum (Janssen et al.

2015). However, single FzIII orthologs were recovered from A. gen-

iculata and previously identified in P. phalangioides (Janssen et al.

2015). Consistent with P. tepidariorum (Janssen et al. 2015), we

identified two FzIV sequences in S. dumicola and A. geniculata, but

only one in M. muscosa, P. amentata, and P. pseudoannulata and

only one was previously recovered from P. phalangioides (Janssen

et al. 2015).
The two amblypygid species have a large repertoire of frizzled

genes compared to other arachnids, with duplicates of FzI, FIII,

and FzIV orthologs in both species, as well as a duplication of FzII
in C. acosta (Figure 5).

The scorpions M. martensii (Janssen et al. 2015) and C. sculptura-
tus possess single FzI and FzIII orthologs and a duplication of
FzIV. We also recovered a single FzII ortholog in C. sculpturatus,
and an FzI duplicate in M. martensii.

Among the nonarachnopulmonate arachnids, I. scapularis pos-
sesses a single copy of all four subfamilies, but FzIII was absent
in P. opilio and T. urticae. A FzII duplicate was recovered from T.
urticae. Phoxichilidium femoratum and L. polyphemus possess all four
subfamilies, and while no duplicates were recovered in P. femora-
tum, five copies of FzI and FzII and three copies of FzIII and FzIV
were recovered from L. polyphemus (Figure 5).

Frizzled paralogs appear to stem from both WGD events and
lineage-specific duplications. FzI duplicates were recovered from
both amblypygid transcriptomes, M. martensii, and S. dumicola.
The Sd-Fz1 and Me-Fz1 paralog pairs exhibit high sequence simi-
larity (>73%) and resolved as sisters with 100% bootstrap sup-
port, indicating that these are likely the results of lineage-specific
duplications. Conversely, the amblypygid Fz1-1 and Fz1-2 ortho-
log pairs form separate clades with sequences from spiders and
scorpions, respectively (Figure 6). We therefore interpret these
duplicates as ohnologs.

Duplicates of FzII were recovered from M. muscosa and C.
acosta. The Mm-Fz2 paralogs form a well-supported clade (79%;
Figure 6), indicating that this is the result of a lineage-specific du-
plication followed by sequence divergence in Mm-Fz2-2 (53% se-
quence similarity). The origin of the FzII duplication in C. acosta is
not clear. Ca-Fz2-1 resolves as a sister group to the spider
sequences (99%; Figure 6) and Ca-Fz2-2 forms a clade with Eb-
Fz2, which in turn resolves as sister to the Ca-Fz2-1 and spider
sequences (93%; Figure 6). This topology could support an ohno-
log relationship between Ca-Fz2-1 and Ca-Fz2-2 but cannot be
confirmed. Sequence similarity between the C. acosta paralogs is
relatively high (82%), perhaps higher than expected from ohno-
logs.

The origin of the amblypygid FzIII duplicates is also unclear.
One ortholog pair forms a clade with L. polyphemus sequences
(66%; Figure 6) and the other forms a clade with the spiders and
scorpions (�70%; Figure 6). This suggests an origin in WGD, but
support for their placement is not strong (66%, Figure 6).
Paralogous pairs demonstrate middling sequence similarity (65–
66%).

Both amblypygids and scorpions, and the spiders P. tepidario-
rum, S. dumicola, and A. geniculata, possess FzIV duplicates. The
spider sequences formed two separate and well-supported clades
(100%; Figure 6). The amblypygid ortholog pairs resolved as sister
to the two spider clades (98%; Figure 6). The scorpion ortholog
pairs, however, formed a clade together (76% support; Figure 6)
which is sister to all the spider and amblypygid sequences (82%;
Figure 6). All paralogous pairs exhibited substantial sequence di-
vergence (similarity 44–58%). We propose that the spider and
amblypygid FzIV duplicates are retained from the ancestral
WGD; however, once again, the origin of the scorpion FzIV dupli-
cates is less clear, and may reflect a lineage-specific duplication.

Discussion
The contribution of WGD to expanding the developmental toolkit
is evident across the three gene families surveyed here, but it
appears that retention patterns of putative ohnologs vary sub-
stantially between them. We also see distinct phylogenetic pat-
terns beginning to emerge in gene repertoires, with improved
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sampling within lineages enabling us to distinguish between pos-
sible signal and likely noise. Of course, transcriptomic data come
with necessary caveats regarding gene expression and capture,
and absences from transcriptomes should be regarded with cau-
tion. However, where patterns are consistent across multiple spe-
cies, or better, between transcriptomic and genomic resources,
we can be more confident about their authenticity. For example,
comparisons of the transcriptome of P. amentata and the genome
of P. pseudoannulata show identical Hox and frizzled repertoires, in-
dicating good gene capture in the former. The apparent dupli-
cates of Wnt1/wg and WntA in P. pseudoannulata that were not
recovered in P. amentata are of uncertain status (partial sequen-
ces, phylogenetic position) and were absent from all other spider

genomes. Overall, levels of gene duplication detected using

BUSCO were in line with other arachnopulmonates [e.g., 3.3% in

Argiope bruennichi, Sheffer et al. (2021); 5.6% in T. antipodiana, Fan

et al. (2021); 11% in Araneus ventricosus, Kono et al. (2019)] but

lower than in horseshoe crabs [e.g., 16.7% in Carcinoscorpius rotun-

dicauda, Shingate et al. (2020)].

Hox duplicates are broadly retained
The widespread retention of duplicate Hox genes is consistent

among the arachnopulmonate orders studied to date, and spe-

cific repertoires appear to be fairly conserved at the order level

(Schwager et al. 2007; Cao et al. 2013; Di et al. 2015; Schwager et al.

2017; Leite et al. 2018; Ontano et al. 2021). Given that this is the
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Figure 6 Maximum-likelihood phylogeny of Frizzled proteins. The Frizzled subfamilies are shown as different colors (after Figure 5). Panarthropods
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level at which overall body plans are conserved, this is perhaps
not surprising. Thanks to the relatively conserved expression pat-
terns of Hox genes along the antero-posterior axis of chelicerates,
we can begin to speculate about the possible macroevolutionary
implications of duplication and loss.

The absence of a second copy of pb in both C. acosta and E.
bacillifer, which are distantly related within Amblypygi, suggests a
loss in the common ancestor of amblypygids. Gainett and
Sharma (2020) also recovered a single copy of pb in P. marginema-
culatus, but two copies in Charinus israelensis. However, one of
these sequences (32 aa) had an incomplete homeodomain that
was identical to the other copy; therefore, we are hesitant about
its status as a duplicate. Embryos of C. acosta were collected at
multiple stages of development, supporting the hypothesis that
this is a genuine loss, rather than absence of expression at a par-
ticular developmental stage. In spiders, both pb ohnologs are
expressed in the pedipalp and leg-bearing segments, separated
temporally (Schwager et al. 2017). Given the highly derived nature
of the raptorial pedipalps and the antenniform first pair of walk-
ing legs in amblypygids, it is perhaps surprising that this dupli-
cate was not retained. However, this might indicate that other
Hox genes expressed in the anterior prosomal segments (e.g., lab,
Hox3, or Dfd) may contribute to these morphological innovations.
Recent work by Gainett and Sharma (2020) examining the specifi-
cation of the antenniform legs found little difference in Distal-less,
dachshund, or homothorax expression between that and posterior
leg pairs, indicating that these are not likely to be responsible. A
good candidate for future study might be lab: a single ortholog is
expressed in both the pedipalps and the first walking leg in the
harvestman P. opilio (Sharma et al. 2012), and expression patterns
and experimental manipulation provide evidence for functional
divergence between the two lab ohnologs, which are expressed in
the pedipalps and first walking legs, in P. tepidariorum (Pechmann
et al. 2015; Schomburg et al. 2020).

While the ftz duplicate has been retained in amblypygids and
scorpions, it seems likely that having a single copy of ftz is com-
mon across all spiders (Figures 1 and 2), consistent with the loss
of a duplicate in their common ancestor. A recently published
high-quality genome from T. antipodiana also reported a single
copy of ftz (Fan et al. 2021), as did another mygalomorph tran-
scriptome, A. hentzi (Ontano et al. 2021). In both P. opilio (Sharma
et al. 2012) and P. tepidariorum (Schwager et al. 2017), a single copy
of ftz is expressed in leg pairs 2–4. Any subfunctionalization or
neofunctionalization that could be evident in scorpion and
amblypygid ftz had therefore presumably not taken place at the
point of their divergence from spiders. Expression patterns of the
two paralogs in these groups would be of interest for comparison
with both harvestmen and spiders.

The absence of Hox3 duplicates in M. muscosa, P. pseudoannu-
lata, and P. amentata may indicate a lineage-specific loss in the
RTA clade, which unites salticids, lycosids, and their allies.
Indeed, only one copy of Hox3 was previously recovered in
Cupiennius salei, which also belongs to the RTA clade (Schwager
et al. 2007). Although the absence of a second copy in the embry-
onic transcriptomes could be attributed to failure to capture ex-
pression, both C. salei and P. pseudoannulata yielded single copies
from DNA, strengthening the case for a genuine loss. In P. tepidar-
iorum, Hox3-A and Hox3-B exhibit dramatic protein sequence di-
vergence (20.6% similarity). Both copies are expressed in the
embryo, with their expression overlapping spatially and tempo-
rally but not identical, indicating some functional divergence.
Hox3-A expression was reported to be very weak (Schwager et al.
2017), and the Hox-3A homeodomain demonstrates much higher

divergence from other arachnid Hox3 sequences than does Hox3-
B (Supplementary File S3); together, these could reflect dimin-
ished functionality. In the other spiders for which we recovered
Hox3 duplicates, paralogs also exhibited very low sequence simi-
larities (24.7–30.6%), and these duplicates had very low similarity
to each other (17.2–30.1%, compared to 33–58.2% between those
resolving with other spider Hox3 sequences). In all cases, one re-
solved within a well-supported clade of spider Hox3 and the other
was placed haphazardly. We speculate that the Hox3 duplicate is
highly divergent or degenerate in spiders, leading to eventual
pseudogenization in the RTA clade.

Other apparent losses of Hox gene duplicates are restricted to
transcriptomes of individual species, with the exception of Scr in
S. dumicola, and could reflect failure to capture additional sequen-
ces or indicate lineage-specific loss. It would be premature to
conclude that they are genuinely absent from the genome. For in-
stance, the apparent absence of a Ubx duplicate in E. bacillifer. In
P. tepidariorum, the two Ubx ohnologs are expressed most strongly
in close succession, at stages 8.1 and 8.2 (Schwager et al. 2017),
but this may not reflect their relative expression patterns in
amblypygids, and therefore one may not have been captured in
this single-stage transcriptome.

Limited retention of Wnt duplicates
In contrast to the widespread retention of Hox duplicates, these
new data indicate that the retention of duplicate Wnt genes is
less common and restricted to certain subfamilies. Apparent
ohnologs of Wnt4, Wnt7, and Wnt11 are retained in the majority
of arachnopulmonates, for example, but Wnt2, Wnt5, Wnt8-10,
Wnt16, and WntA are only represented by single copies. These
patterns could reflect early losses of duplicates, and/or differen-
tial effects of higher copy numbers across Wnt subfamilies. The
fact that retention patterns appear to differ between the arach-
nopulmonate and horseshoe crab independent WGD events
lends support to the former hypothesis.

Our understanding of specific Wnt functions among arthro-
pods is more limited than that of Hox genes, but Wnt expression
patterns in P. tepidariorum are available for tentative comparison.
For example, previous attempts to characterize the expression
patterns of Wnt11 paralogs in P. tepidariorum only detected ex-
pression of Wnt11-2 (Janssen et al. 2010). Given the retention of
Wnt11-1 in both spiders and scorpions, and the considerable di-
vergence between paralogous sequences, Wnt11 could be a good
candidate for sub- or neofunctionalization, but the role of Wnt11-
1 remains unknown. Conversely, the presence of two apparent
Wnt4 ohnologs in spiders and amblypygids (Figures 3 and 4) con-
trasts with the retention of only one Wnt4 in P. tepidariorum. The
role of the additional copy, particularly in spiders, will be of fu-
ture interest and expression patterns of Wnt4-2 in these groups
will help to clarify this. Although it is possible that the second
copy is redundant or in the process of pseudogenization, the fact
that both ohnologs are retained in two large clades, with detect-
able levels of expression during development, suggests that this
is not the case. Thus, its absence in P. tepidariorum unexpectedly
appears to be the exception.

The discovery of duplicate Wnt1/wg in scorpions, amblypygids,
and mygalomorphs is particularly exciting: duplicates of this
Wnt gene have not yet been detected in any other metazoans,
even following multiple rounds of WGD in vertebrates, teleosts
(see https://web.stanford.edu/group/nusselab/cgi-bin/wnt/verte
brate), or horseshoe crabs. This requires critical interpretation.
We can eliminate the possibility of individual variation in C.
acosta, as embryos are produced by parthenogenesis and are
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therefore clones (de Armas 2005), and in the two scorpions, as
the sequences were recovered from a single individual’s genome
(Supplementary File S1). Levels of sequence divergence exceed
those seen between putative tandem duplications, in both nucle-
otide and amino acid sequences. Wnt1/wg performs a wide vari-
ety of roles in arthropods, including in segment polarization and
in appendage and nervous system development (Murat et al.
2010) and has an accordingly complex expression pattern in P.
tepidariorum, appearing in the L1 and L2 segments, limb buds, and
dorsal O2 and O3 segments (Janssen et al. 2010). In theory, there-
fore, there is ample potential for subfunctionalization. Gene ex-
pression and functional studies of Wnt1/wg duplicates in
arachnopulmonates will no doubt prove extremely interesting in
the future.

The presence of Wnt10 in both amblypygids and P. opilio is also
intriguing because it is absent from all other chelicerates sur-
veyed so far. This could indicate multiple losses of Wnt10 in all
other arachnid lineages, the co-option of another gene in ambly-
pygids and harvestmen, or the recovery of a lost Wnt10; however,
the possible routes for co-option are unclear and pseudogene re-
covery has only been suggested in a handful of cases
(Trabesinger-Ruef et al. 1996; e.g., Balakirev and Ayala 2003). It is
notable that we did not recover Wnt10 orthologs in L. polyphemus
or P. femoratum, nonarachnid chelicerates. Studies of other avail-
able horseshoe crab genomes (Shingate et al. 2020; Nong et al.
2020) will shed further light on whether Wnt10 is truly absent.

frizzled repertoires vary substantially
Previous studies of spiders, scorpions, and ticks indicated that
frizzled repertoires in these groups are restricted to three or four
genes, often with incomplete representation of the four subfami-
lies (Janssen et al. 2015). The spiders M. muscosa, S. dumicola, P.
pseudoannulata, and P. amentata are consistent with this pattern,
albeit with a unique duplication of FzII in the jumping spider.
The presence of FzIII duplicates in P. phalangioides and A. genicu-
lata indicates that, while entelegynes may universally lack fz3, it
was likely present in the ancestor of all spiders. In contrast, all
four frizzled subfamilies were recovered in both amblypygid spe-
cies, with three present in duplicate in E. bacillifer and four in C.
acosta. Based on our data, it appears that the frizzled repertoire of
amblypygids is around twice the size of all other arachnids and
may have followed a very different evolutionary trajectory to spi-
ders and scorpions following WGD. The expanded repertoire of
frizzled genes in amblypygids is intriguing since they have the
largest Wnt repertoires, via both duplication and representation
of the subfamilies (Wu and Nusse 2002). However, although friz-
zled genes encode key receptors for Wnt ligands, they have other
Wnt-independent functions, so the expansion of the frizzled rep-
ertoire could be equally related to the evolution of alternative sig-
naling roles (Janssen et al. 2015; Yu et al. 2020).

Arachnopulmonate genome evolution in the
wake of WGD
Our new analyses provide a thorough survey of Hox, Wnt, and friz-
zled genes in arachnids, and substantially improve the density
and breadth of taxonomic sampling for these key developmental
genes in Arachnopulmonata. We find evidence of consistent evo-
lutionary trajectories in Hox and Wnt gene repertoires across
three of the six arachnopulmonate orders, with interorder varia-
tion in the retention of specific paralogs. We have also identified
intraorder variation at the level of major clades in spiders, which
could help us better understand their morphological evolution.
In new data for a third arachnopulmonate lineage, the

amblypygids, we find additional evidence supporting an ancestral
WGD and are better able to reconstruct the chronology of gene
duplications and losses in spiders and scorpions. These transcrip-
tomic resources are among the first available for amblypygids
and will aid future investigations of this fascinating group.

By improving taxonomic coverage within the spider lineage,
we are better able to polarize some loss/duplication events and
identify potential new trends within the spiders, particularly il-
lustrating separations between synspermiatan and entelegyne
spiders, and between the derived RTA clade and other spiders.
Despite being unable to ultimately conclude that some missing
transcripts reflect genuine genomic losses, it appears that the
evolution of these developmental genes in spiders is more com-
plicated than we thought. It may be that these gene repertoires
are genuinely more variable within spiders than they are in
amblypygids or scorpions; spiders are by far the most taxonomi-
cally diverse arachnopulmonate order, and the apparent diver-
sity of repertoires may simply reflect this. Conversely, the higher
apparent intraorder diversity of gene repertoires may be an arti-
fact of increased sampling in spiders (up to four or five species for
specific gene families) compared to the one or two available
resources for scorpions and amblypygids; we may detect more di-
versity within these groups with increased sampling.
Nonetheless, we see two notable trends within spiders, outlined
below.

First, we see several characters that appear to unite the RTA
clade, which contains almost half of all extant spider species
(World Spider Catalog 2019), having diversified rapidly following
its divergence from the orb weavers (Garrison et al. 2016;
Fernández et al. 2018; Shao and Li 2018). Marpissa muscosa, P.
amentata, and P. pseudoannulata all exhibit the apparent loss of
Hox3 and fz4 paralogs and the retention of a Wnt4 duplicate. The
identification of genetic trends potentially uniting this group is
exciting, even if the macroevolutionary implications are unclear:
as described above, the possible functions of a Wnt4 paralog are
elusive. Members of the RTA clade are very derived compared to
other araneomorph spiders, both morphologically (e.g., male ped-
ipalp morphology and sophisticated eyes) and ecologically (most
are wandering hunters), and their rapid diversification would
align with clade-specific genetic divergence (Garrison et al. 2016;
Fernández et al. 2018; Shao and Li 2018).

Second, although data are only available for single representa-
tives of the plesiomorphic clades Synspermiata (P. phalangioides)
and Mygalomorphae (A. geniculata), these hint at lineage-specific
losses of Hox paralogs and recover the only examples of FzIII
found in spiders so far. The presence of FzIII is consistent with
other arachnopulmonate groups and suggests that it was present
in the spider ancestor and only lost in the more derived entele-
gyne lineages. If selected Hox duplicates are indeed absent from
the genomes of these two species, this could represent an inter-
esting divergence between the three major groups of spiders.
Though these genes are unlikely to be directly responsible, the di-
vergence might provide a starting point for understanding the
important morphological differences between mygalomorphs,
synspermiatans, and entelegynes. However, genomic information
for additional taxa in both groups is required to verify these po-
tential losses.

The amblypygids emerge as a key group of interest for study-
ing the impacts of WGD owing to their high levels of ohnolog re-
tention. Our transcriptomes, from representatives of two major
clades, provide further evidence supporting a WGD in the ances-
tor of arachnopulmonates and demonstrate widespread reten-
tion of ohnologs in three major families of developmental genes
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(consistent with the retention of many duplicated regulators of
eye development in other species, Gainett et al. 2020). In all three
gene families we studied, repertoires were largest in the ambly-
pygid species. This was particularly the case in C. acosta, which
belongs to the less speciose and more plesiomorphic infraorder
Charinidae within living Amblypygi. Although this study repre-
sents just two amblypygid species and three gene families, this
appears to contradict widespread predictions of diversification
with the duplication of important developmental genes such as
Hox (e.g., Van De Peer et al. 2009). Of particular interest are the
amblypygid Wnt gene repertoires. We have identified from their
transcriptomes, and from the published genome of C. sculptura-
tus, the first reported duplicates of Wnt1/wg in any animal, as
well as the first reported Wnt10 in any arachnid. Future func-
tional studies of these genes and their expression during develop-
ment will be critical to understanding the evolutionary impacts
of these unusual components of amblypygid gene repertoires.
Amblypygids also represent a potential model group for studying
the evolution of arthropod body plans, owing to the unusual and
derived morphology of the pedipalps and especially the first
walking legs. Thanks to a substantial existing body of work on
anterior-posterior patterning, segmentation, and appendage de-
velopment in spiders and other arachnids, we may have a chance
to crack the genetic underpinnings of these dramatic evolution-
ary innovations (Pechmann et al. 2009; Sharma et al. 2012, 2014a;
Turetzek et al. 2016, 2017; Schwager et al. 2017; Schomburg et al.
2020; Baudouin-Gonzalez et al. 2021).

Finally, our analysis of existing genomic data for C. sculpturatus
and M. martensii has recovered several Wnt and frizzled gene
duplications, similar to spiders and amblypygids. However, in
contrast to those groups, our phylogenies have sometimes sup-
ported within-lineage duplication in scorpions, as opposed to the
retention of ohnologs following WGD, even when these are ob-
served in spiders and amblypygids. This was the case for AbdB,
Wnt1/wg, Wnt6, Wnt7, and FzIV (Figures 2, 4, and 6). However, lev-
els of sequence similarity in these cases were comparable for C.
sculpturatus paralogs and amblypygid and spider ohnologs, when
we might expect within-lineage duplicates to show higher simi-
larity. The resolution of the paralogous sequences in our phyloge-
netic analyses could be confounded by the early-branching
position of scorpions within Arachnopulmonata, which means
paralogs would be expected to appear toward the bottom of
ortholog clades and are more vulnerable to movement.
Nonetheless, this pattern emerged multiple times in our analyses
and may be of future interest.

Both arachnopulmonates and horseshoe crabs have been sub-
ject to WGD. Comparison between these independent events is a
useful tool in studying WGD, spanning smaller phylogenetic dis-
tances than arachnopulmonate-vertebrate comparisons. From
the three gene families surveyed here, both patterns and incon-
sistencies emerge. As in arachnopulmonates, Hox gene duplicates
appear to be overwhelmingly retained, even in triplet or quadru-
plet in some cases, in L. polyphemus. Ftz is an interesting exception
that aligns with the absence of duplicates in spiders, but not scor-
pions or amblypygids. However, the apparent loss of all Ubx and
two abdA duplicates stands at odds with the arachnopulmonates,
wherein these are largely retained. As seen in arachnopulmo-
nates, only select Wnt genes are retained in duplicate in L. poly-
phemus. However, it is not always the same Wnts: for example,
whereas Wnt4 duplicates are common in arachnopulmonates,
they are completely absent in L. polyphemus, and vice versa for
Wnt5. There are, however, some Wnts that are commonly or even
universally present in single copies following both independent

WGD events, potentially indicating low potential for sub- or neo-
functionalization, such as Wnt8, Wnt6, and Wnt1/wg.

Overall, our new data provide further evidence of an ancestral
arachnopulmonate WGD, identify evolutionary patterns within
gene families following WGD, reveal new diversity in spider gene
repertoires, better contextualize existing data from spiders and
scorpions, and broaden the phylogenetic scope of available data
for future researchers. However, other arachnid groups, both
with and without ancestral WGD, require further study. Recent
work on two pseudoscorpions recovered duplicates of most Hox
genes (Ontano et al. 2021). This not only further supports arach-
nopulmonate WGD but substantially improves our understand-
ing of pseudoscorpion placement within arachnids, which has
been historically problematic (e.g., Ballesteros et al. 2019;
Ballesteros and Sharma 2019; Arribas et al. 2020). The sequencing
of a pseudoscorpion genome provides the tantalizing chance to
add a fourth lineage to future studies of WGD and its impacts
(Ontano et al. 2021). The remaining arachnopulmonate orders,
thelyphonids (vinegaroons or whip scorpions) and schizomids,
form a clade with amblypygids (Pedipalpi) and should also have
been subject to the arachnopulmonate WGD. Future work on
these groups will shed light on the unusual patterns of gene re-
tention we find in both major clades of amblypygids.
Nonarachnopulmonate arachnids are invaluable for contextual-
izing the changes that occur following WGD, both in terms of
gene repertoires and of gene function. Genomic resources and
gene expression pattern studies are vital for this, and the harvest-
man P. opilio has emerged as the clear model species (Sharma
et al. 2012; Gainett et al. 2021). The ability to compare rates of se-
quence divergence, within-lineage gene duplication, and, eventu-
ally, functional properties of developmental genes in these
groups will provide critical comparative data for arachnopulmo-
nates.

Data availability
Alignments and gene accession numbers are included as supple-
mentary information files. Reads and assembled transcriptomes
are available on SRA and TSA, respectively, under BioProject
PRJNA707377. Supplemental material is available at figshare:
https://doi.org/10.25387/g3.14456289.
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amblipı́gido partenogenético Charinus acosta (Quintero, 1983)

(Ambliypygi: Charinidae). Boletı́n la SEA. 36:271–273.

Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in

the ancestral vertebrate. PLoS Biol. 3:e314.doi:10.1371/journal.-

pbio.0030314.

Di Z, Yu Y, Wu Y, Hao P, He Y, et al. 2015. Genome-wide analysis of

homeobox genes from Mesobuthus martensii reveals Hox gene du-

plication in scorpions. Insect Biochem Mol Biol. 61:25–33. doi:

10.1016/j.ibmb.2015.04.002.

Donoghue PCJ, Purnell MA. 2005. Genome duplication, extinction

and vertebrate evolution. Trends Ecol Evol. 20:312–319. doi:

10.1016/j.tree.2005.04.008.

Erwin DH. 2009. Early origin of the bilaterian developmental toolkit.

Philos Trans R Soc Lond B Biol Sci. 364:2253–2261. doi:

10.1098/rstb.2009.0038.

Fan Z, Yuan T, Liu P, Wang L-Y, Jin J-F, et al. 2021. A

chromosome-level genome of the spider Trichonephila antipodiana

reveals the genetic basis of its polyphagy and evidence of an an-

cient whole-genome duplication event. Gigascience. 10:1–15. doi:

10.1093/gigascience/giab016.

Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, et al.

2018. Phylogenomics, diversification dynamics, and comparative

transcriptomics across the spider Tree of Life. Curr Biol. 28:

1489–1497.e5. doi:10.1016/j.cub.2018.03.064.

Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, et al. 2013. Genomic evi-

dence for ameiotic evolution in the bdelloid rotifer Adineta vaga.

Nature. 500:453–457. doi:10.1038/nature12326.

Force A, Lynch M, Pickett FB, Amores A, Yan YL, et al. 1999.

Preservation of duplicate genes by complementary, degenerative

mutations. Genetics. 151:1531–1545.

Gainett G, Ballesteros J, Kanzler C, Zehms J, Zern J, et al. 2020. How

spiders make their eyes: systemic paralogy and function of reti-

nal determination network homologs in arachnids. BMC

Genomics. 21:811–817. doi:10.1101/2020.04.28.067199.
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The genome of Tetranychus urticae reveals herbivorous pest adap-

tations. Nature. 479:487–492. doi:10.1038/nature10640.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden

J, et al. 2013. De novo transcript sequence reconstruction from

RNA-Seq: reference generation and analysis with Trinity. Nature

Protocols. 8:1494–1512.

Hamilton FS, Wheeler GN, Hoppler S. 2001. Difference in XTcf-3 de-

pendency accounts for change in response to b-catenin-mediated

Wnt signalling in Xenopus blastula. Development. 128:2063–2073.

Havlak P, Putnam NH, Yue J-X, Brockmann HJ, Nossa CW, et al. 2014.

Joint assembly and genetic mapping of the Atlantic horseshoe

crab genome reveals ancient whole genome duplication.

Gigascience. 3:9–21. doi:10.1186/2047-217x-3-9.

Hayden L, Arthur W. 2013. Expression patterns of Wnt genes in

the venom claws of centipedes. Evol Dev. 15:365–372. doi:

10.1111/ede.12044.

Hogvall M, Schönauer A, Budd GE, McGregor AP, Posnien N, et al.

2014. Analysis of the Wnt gene repertoire in an onychophoran

provides new insights into the evolution of segmentation.

Evodevo. 5:14–15. doi:10.1186/2041-9139-5-14.

Holland LZ. 2013a. Evolution of new characters after whole genome

duplications: insights from amphioxus. Semin Cell Dev Biol. 24:

101–109. doi:10.1016/j.semcdb.2012.12.007.

Holland PWH. 2013b. Evolution of homeobox genes. Wiley

Interdiscip Rev Dev Biol. 2:31–45. doi:10.1002/wdev.78.

Holland PWH, Garcia-Fernandez J, Williams NA, Sidow A. 1994. Gene

duplications and the origins of vertebrate development.

Development. 1994:125–133.

Holzem M, Braak N, Brattström O, McGregor AP, Breuker CJ. 2019.

Wnt gene expression during early embryogenesis in the nympha-

lid butterfly Bicyclus anynana. Front Ecol Evol. 7: 486. 1–16. doi:

10.3389/fevo.2019.00468.

Hueber SD, Lohmann I. 2008. Shaping segments: Hox gene function in

the genomic age. Bioessays. 30:965–979. doi:10.1002/bies.20823.

Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, et al. 2010.

Conservation, loss, and redeployment of Wnt ligands in proto-

stomes: implications for understanding the evolution of segment

formation. BMC Evol Biol. 10:374. doi:10.1186/1471-2148-10-374.

Janssen R, Posnien N. 2014. Identification and embryonic expression

of Wnt2, Wnt4, Wnt5 and Wnt9 in the millipede Glomeris marginata

(Myriapoda: Diplopoda). Gene Expr Patterns. 14:55–61. doi:

10.1016/j.gep.2013.12.003.

Janssen R, Schönauer A, Weber M, Turetzek N, Hogvall M, et al. 2015.

The evolution and expression of panarthropod frizzled genes.

Front Ecol Evol. 3:1–14. doi:10.3389/fevo.2015.00096.

Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS.

2017. ModelFinder: fast model selection for accurate phylogenetic

estimates. Nat Methods. 14:587–589. doi:10.1038/nmeth.4285.

Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, et al. 2016. The

genome of the crustacean Parhyale hawaiensis, a model for animal

development, regeneration, immunity and lignocellulose diges-

tion. Elife. 5:1–45. doi:10.7554/elife.20062.

Kenny NJ, Chan KW, Nong W, Qu Z, Maeso I, et al. 2016. Ancestral

whole-genome duplication in the marine chelicerate horseshoe

crabs. Heredity (Edinb). 116:190–199. doi:10.1038/hdy.2015.89.

Kono N, Nakamura H, Ohtoshi R, Moran DAP, Shinohara A, Yoshida

Y, Fujiwara M, Mori M, Tomita M, Arakawa K. 2019. Orb-weaving

spider Araneus ventricosus genome elucidates the spidroin gene

catalogue. Sci Rep. 9:1–13. doi:10.1038/s41598-019-44775-2.
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al. 2014. Phylogenomic interrogation of Arachnida reveals sys-

temic conflicts in phylogenetic signal. Mol Biol Evol. 31:

2963–2984. doi:10.1093/molbev/msu235.
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