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Abstract

Barley yellow dwarf is one of the major viral diseases of cereals. Phenotyping barley yellow dwarf in wheat is extremely challenging due to
similarities to other biotic and abiotic stresses. Breeding for resistance is additionally challenging as the wheat primary germplasm pool
lacks genetic resistance, with most of the few resistance genes named to date originating from a wild relative species. The objectives of
this study were to (1) evaluate the use of high-throughput phenotyping to improve barley yellow dwarf assessment; (2) identify genomic
regions associated with barley yellow dwarf resistance; and (3) evaluate the ability of genomic selection models to predict barley yellow
dwarf resistance. Up to 107 wheat lines were phenotyped during each of 5 field seasons under both insecticide treated and untreated
plots. Across all seasons, barley yellow dwarf severity was lower within the insecticide treatment along with increased plant height and grain
yield compared with untreated entries. Only 9.2% of the lines were positive for the presence of the translocated segment carrying the resis-
tance gene Bdv2. Despite the low frequency, this region was identified through association mapping. Furthermore, we mapped a poten-
tially novel genomic region for barley yellow dwarf resistance on chromosome 5AS. Given the variable heritability of the trait (0.211–0.806),
we obtained a predictive ability for barley yellow dwarf severity ranging between 0.06 and 0.26. Including the presence or absence of
Bdv2 as a covariate in the genomic selection models had a large effect for predicting barley yellow dwarf but almost no effect for other ob-
served traits. This study was the first attempt to characterize barley yellow dwarf using field-high-throughput phenotyping and apply geno-
mic selection to predict disease severity. These methods have the potential to improve barley yellow dwarf characterization, additionally
identifying new sources of resistance will be crucial for delivering barley yellow dwarf resistant germplasm.

Keywords: barley yellow dwarf (BYD); high-throughput phenotyping (HTP); Triticum aestivum; virus; resistance; tolerance; genome-wide
association mapping (GWAS); genomic selection (GS)

Introduction
Wheat (Triticum aestivum L.) is one of the most essential food

crops in the world and is constantly threatened by biotic stresses

(Savary et al. 2019). Among the most important viral stresses is

barley yellow dwarf (BYD). This disease is widespread across the

world and transmitted by aphids (Shah et al. 2012), and can cause

significant yield reductions in susceptible cultivars. In Kansas,

BYD is the fourth most significant wheat disease in terms of aver-

age estimated yield losses with an average yield loss of approxi-

mately 1% estimated over the past 20 years (Hollandbeck et al.

2019), equivalent to a loss of more than $10 million per year.

However, yield losses are highly variable ranging from 5% to 80%

in a single field depending on the environment, management

practices, the host, and the genetic background (Miller and

Rasochová 1997; Perry et al. 2000; Gaunce and Bockus 2015).

Moreover, the wide host range and the complex lifestyle of its

vectors make BYD extremely difficult to manage, and different
management strategies (e.g. planting date and control of vector
populations) are inconsistent depending on climate and location
(Bockus et al. 2016). Thus, in many production environments, par-
ticularly in the Central and Eastern regions of Kansas, BYD is of-
ten the most economically impactful disease.

BYD disease symptoms are highly variable depending on the
crop, variety, time, and developmental stage when the infection
occurs, aphid pressure, and environmental conditions (Shah et al.
2012; Choudhury et al. 2019b). BYD characterization in the field is
extremely challenging as the symptoms can easily be confused
with other viral disease symptoms such as wheat streak mosaic
virus symptoms, nutrient deficiencies, or environmental stresses
such as waterlogging (Shah et al. 2012). Typical BYD symptoms
can be observed at all levels of plant organization—leaf, roots,
and flowers. Leaf discoloration in shades of yellow, red, or purple,
specifically starting at the tip of the leaf and spreading from the
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margins toward the base is common as well as a reduction in
chlorophyll content (Jensen and Van Sambeek 1972; D’arcy 1995).
Often the entire plant visually appears stunted or dwarfed from a
reduction in biomass by reducing tiller numbers. Spike grain yield
is decreased through a reduction in kernels per spike and kernel
weight which also affects grain quality (Riedell et al. 2003;
Choudhury et al. 2019b). Quality can be further reduced by a re-
duction in starch content (Peiris et al. 2019). Below ground effects
of BYD have also been reported including reduced root growth
(Riedell et al. 2003).

Currently, there is no simple solution to control BYD (Walls
et al. 2019), however, the use of genetic resistance and tolerance
is the most appealing and cost-effective option to control this dis-
ease (Comeau and Haber 2002; Choudhury et al. 2017, 2019b).
Resistance and tolerance could be different genetic mechanisms,
namely stopping virus replication and minimizing disease symp-
toms, respectively, but within this paper all mention of resistance
includes both genetic resistance and tolerance. Breeding strate-
gies involving genetic resistance can target either the aphids or
the virus. Resistance to aphids can be achieved by 3 different
strategies, antixenosis, antibiosis, or tolerance (Girvin et al. 2017).
To date, most breeding efforts have been directed to the identifi-
cation of viral tolerance, also known as “field resistance,” that
refers to the ability of the plant to maintain yield under BYD in-
fection and is associated with a reduction of symptoms of infec-
tion independent of the virus titer (Foresman et al. 2016). Field
resistance has been reported to be polygenic, falling under the
quantitative resistance class, where several genes with very
small effects control the resistance response (Qualset et al. 1973,
Cisar et al. 1982; Ayala et al. 2002; Choudhury et al. 2019a, 2019c).

Presently, no major gene conferring immunity or a strong re-
sistant phenotype to BYD has been identified in bread wheat, and
only 4 resistance genes have been described for BYD. Located on
chromosome 7DS, Bdv1 is the only gene described from the pri-
mary pool of wheat and was originally identified in the wheat
cultivar “Anza” (Singh et al. 1993). This gene provides resistance
to some but not all the viruses that cause BYD (Ayala-Navarrete
and Larkin 2011). The other 3 named genes were all introduced
into wheat through wide crossing from intermediate wheatgrass
(Thinopyrum intermedium) (Ayala et al. 2001; Zhang et al. 2009). Bdv2
and Bdv3 are both located on a translocation segment on wheat
chromosome 7DL (Brettell et al. 1988; Sharma et al. 1995), while
Bdv4 is located on a translocation segment on chromosome 2D
(Larkin et al. 1995; Lin et al. 2007). Bdv2 was the first gene success-
fully introgressed in wheat breeding programs from the tertiary
gene pool for BYD resistance (Banks et al. 1995) and deployed into
varieties.

In addition to the 4 known resistance genes, other genomic
regions associated with BYD resistance have been identified
through genetic mapping. These regions have been described on
nearly all wheat chromosomes but have not been genetically
characterized (Ayala et al. 2002; Jaro�sová et al. 2016; Choudhury
et al. 2019a, 2019b, 2019c). Of the described regions, most explain
a minor proportion of the genetic variation (<15%) (Ayala et al.
2002; Choudhury et al. 2019a, 2019c) in biparental populations
suggesting a potential upwardly biased estimate due to the
Beavis effect (Xu 2003). Moreover, 2 recent studies have reported
that some of these new genomic regions display additive effects
(Choudhury et al. 2019a, 2019b). Additive genetic effects had al-
ready been reported in lines combining Bdv2 and Bdv4 (Jahier
et al. 2009).

Taken together, research indicates that resistance genes to
BYD in wheat are rare. With a lack of major genes and difficulty

to characterize resistance in the wheat pool likely due to the
polygenic nature of many small effect loci, identifying resistance
has been limited. Nevertheless, breeding programs have devoted
large efforts for breeding BYD resistance due to the economic im-
portance of this disease, with some of the greatest success com-
ing from wide crosses to the tertiary gene pool.

Breeding for BYD resistance can be improved by applying
strategies for more effective evaluation and utilization of the
identified resistance. To get a better understanding of BYD and
its quantitative nature, consistent, and high-throughput methods
are needed for the identification of resistant wheat lines for
large-scale selection in breeding programs (Aradottir and Crespo-
Herrera 2021). Effective selection of quantitative resistance with
low heritability can be aided by high-throughput genotyping,
high-throughput phenotyping (HTP), or a combination of both.

Access to high-density genetic markers at a very low-cost, ow-
ing to the rapid developments in DNA sequencing, have enabled
breeding programs to apply molecular breeding for quantitative
traits. Genomic selection (GS) is a powerful tool to breed for
quantitative traits with complex genetic architecture and low
heritability (e.g. yield, quality, and diseases such as Fusarium
head blight), because it has greater power to capture loci with
small effect compared with other marker-assisted selection strat-
egies (Meuwissen et al. 2001; Poland and Rutkoski 2016). In addi-
tion to molecular data, HTP using unmanned aerial systems
(UAS) or ground-based sensors is providing high density pheno-
typic data that can be incorporated into breeding programs to in-
crease genetic gain (Haghighattalab et al. 2016; Crain et al. 2018;
Wang et al. 2020). Using precision phenotyping for disease scoring
can improve the capacity for rapid and nonbiased evaluation of
large field-scale numbers of entries (Poland and Nelson 2011).
Taken together, improvements in genomics and phenomics have
the potential to aid breeding progress for BYD resistance.

In an effort to accelerate the development of resistant lines,
we combined high throughput genotyping and phenotyping to as-
sess BYD severity in a large panel of elite wheat lines. We evalu-
ated the potential of HTP data to accurately assess BYD severity
as well as identify genetic regions associated with BYD resistance
and inform whole genome prediction to identify resistant lines.

Materials and methods
Plant material
A total of 381 different wheat genotypes were characterized for
BYD resistance, including 30 wheat cultivars and 351 advanced
breeding lines in field nurseries over 5 years (Supplementary
Table 1). In each nursery, an unbalanced set of 52–107 wheat
entries were evaluated including both cultivars and breeding
lines (Table 1). The BYD susceptible cultivar “Art” and BYD resis-
tant cultivar “Everest” were included in all the nurseries (seasons)
as checks, and no other wheat genotype was in common between
different seasons of evaluation.

Field experiments
Nurseries for BYD field-screening were conducted during 5 con-
secutive wheat seasons (2015–2016 to 2019–2020) (Table 1).
Seasons 2015–2016 and 2016–2017 were conducted at Kansas
State University (KSU) Rocky Ford experimental station
(39�13045.6000N, 96�34041.2100W), while the 2017–2018, 2018–2019,
and 2019–2020 nurseries were planted at KSU Ashland Bottoms
experimental station (39�07053.7600N, 96�37005.2000W). The nurser-
ies were established for natural BYD infections by planting in
mid-September, about 3 weeks earlier than the normal planting
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window. The susceptible cultivar “Art” was planted as a spreader
plot in the borders and as a control check plot also with the resis-
tant cultivar “Everest.” The experimental unit was 1.5 m� 2.4 m
with a 6-row plot on 20 cm row spacing.

A split-plot field design with 2 or 3 replications was used
where the main plot was insecticide treatment, and the split plot
was the wheat genotype. Three replications were used for proof
of concept during the first 2 seasons but then 2 replications were
chosen as a balance of space and number of entries for the fol-
lowing seasons. For the treated replications the seed was treated
at planting with Gaucho XT (combination of insecticide and fun-
gicide) at a rate of 0.22 ml/100 g of seed, followed with foliar in-
secticide applications starting approximately 2–3 weeks after
planting through heading. Depending on field conditions, spray
treatments were conducted every 14–21 days if average air tem-
peratures remained above 10�C. Foliar insecticides were applied
to the treated replications in a spray volume of 280.5 l/ha using a
Bowman MudMaster plot sprayer equipped with TeeJet Turbo
TwinJet tips. Insecticide applications consisted of a rotation of
Warrior II, Lorsban, and Mustang Max at rates of 0.14, 1.17, and
0.29 l/ha, respectively. For the control insecticide treatment
(untreated), the seed was treated with Raxil MD (fungicide) at a
rate of 0.28 ml/100 g of seed, and no foliar insecticide applications
were applied. Foliar fungicide Nexicor was applied to the whole
experiment at a rate of 0.73 l/ha, at both planting and heading, to
control all other diseases so the main disease pressure was fo-
cused on BYD.

Phenotypic data
Individual plots were assessed for (1) BYD severity characterized
as the typical visual symptoms of yellowing or purpling on leaves
using a 0–100% visual scale, determined directly after spike emer-
gence by recording the proportion of the plot exhibiting the
symptoms (Table 1); (2) manual plant height (PTHTM, m); and (3)
grain yield (GY, tons/ha). Experimental plots were harvested us-
ing a Kincaid 8XP plot combine (Kincaid Manufacturing., Haven,
KS, USA). Grain weight, grain moisture and test weight measure-
ments for each plot was recorded using a Harvest Master Classic
GrainGage and Mirus harvest software (Juniper Systems, Logan,
UT, USA). Visual phenotypic assessment was recorded using the
Field Book phenoapp (Rife and Poland 2014).

High-throughput phenotyping
To compliment the manually recorded phenotypic data, we ap-
plied HTP using a ground-based proximal sensing platform or an
UAS (Table 2). Seasons 2015–2016 and 2016–2017 were character-
ized by the ground platform as described in Barker et al. (2016)

and Wang et al. (2018). For the other 3 seasons, we used a quad-
copter DJI Matrice 100 (DJI, Shenzhen, China) carrying a
MicaSense RedEdge-M multispectral camera (MicaSense Inc.,
USA). The HTP data were collected on multiple dates throughout
the growth cycle from stem elongation to ripening (GS 30–90;
Zadoks et al. 1974) (Table 2). Flight plans were created using
CSIRO mission planner application and missions were executed
using the Litchi Mobile App (VC Technology Ltd., UK; https://uav
missionplanner.netlify.app/) for DJI Matrice100. The aerial image
overlap rate between 2 geospatially adjacent images was set to
80% both sequentially and laterally to ensure optimal orthomo-
saic photo stitching quality. All UAS flights were set at 20 m
above ground level at 2 m/s and conducted within 2 h of solar
noon. To improve the geospatial accuracy of orthomosaic images,
white square tiles with a dimension of 0.30 m� 0.30 m were used
as ground control points and were uniformly distributed in the
field experiment before image acquisition and surveyed to centi-
meter-level resolution using the Emlid REACH RSþ Real-Time
Kinematic Global Navigation Satellite System unit (Emlid Ltd,
Hong Kong, China).

An automated image processing pipeline (Wang et al. 2020)
was used to generate the orthomosaics and extract plot-level
plant height [PTHTD (m); Singh et al. 2019] and normalized differ-
ence vegetation index (NDVI) (Rouse et al. 1974), calculated as:

NDVI ¼ NIR� Red
NIRþ Red

; (1)

where NIR and Red are the near-infrared and red bands of the
multispectral images and NDVI is the output image. Both traits
were selected based on potential BYD characterization where the
most typical BYD symptoms include chlorosis and stunting of the
plants, thus, influencing NDVI and PTHT.

Statistical data analyses
First, the adjusted mean best linear unbiased estimator (BLUE)
was calculated for each entry for all the different traits for each
season (Supplementary Table 1), using the following model:

yijklm ¼ lþ Gi þ Tj þ GTij þ RkðjÞ þ Bl kjð Þ þ CmðkjÞ þ eijklm; (2)

where yijklm is the phenotype for the trait of interest, l is the over-
all mean, Gi is the fixed effect of the ith entry (genotype), Tj is the
fixed effect of the jth insecticide treatment, GTij is the fixed effect
of the interaction between the ith entry and the jth insecticide
treatment (genotype by treatment effect), RkðjÞ is the random

Table 1. Field experimental details for the 5 wheat nurseries.

Season 2015–2016 2016–2017 2017–2018 2018–2019 2019–2020

Location Rocky Ford farm Ashland Bottoms farm

39�13045.6000N, 96�34041.2100W 39�07053.7600N, 96�37005.2000W

Planting date 2015 September 17 2016 September 12 2017 September 19 2018 September 17 2019 September 17
Number of entries 68 52 81 81 107
Number of plots 504 360 400 392 476
Field design Split-plot with insecticide treatment as main factor effect and wheat genotype as secondary factor
Replications 3 3 2 2 2
Plot size 6 rows plots—1.5 m� 2.4 m
BYD evaluation 2016 April 28 2017 May 12 2018 May 19 2019 May 13 2020 May 19
Harvesting date 2016 June 20 2017 June 19 2018 June 23 2019 June 28 2020 June 25

P. Silva et al. | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/12/7/jkac064/6556002 by guest on 19 April 2024

https://uavmissionplanner.netlify.app/
https://uavmissionplanner.netlify.app/
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac064#supplementary-data


effect of the kth replication nested within the jth insecticide treat-
ment and distributed as iid RkðjÞ � Nð0; r2

RÞ, BlðkjÞ is the random ef-
fect of the lth row nested within the kth replication and jth
treatment distributed as iid BlðkjÞ � Nð0; r2

BÞ, CmðkjÞ is the random
effect of the mth column nested within the kth replication and jth
treatment and assumed distributed as iid CmðkjÞ � Nð0; r2

CÞ, and
eijklm is the residual for the ijklmth plot and distributed as iid
eijklm � Nð0; r2

e Þ. The “lme4” R package (Bates et al. 2015) was used
for fitting the models.

The BLUEs were used to inspect trait distributions and to cal-
culate Pearson’s correlations between all traits. In addition, BLUE
values were used to calculate the reduction in GY for each entry
as the difference of GY between the untreated and insecticide
treated main plots. This variable reflects the level of BYD resis-
tance of each entry, and it was used to perform GWAS and GS
analyses.

For NDVI and PTHTD, the plot-level observed values extracted
for the different phenotypic dates were fitted to a logistic nonlin-
ear regression model (Fox and Weisberg 2011) as,

y ¼ h1

1þ e�ðh2þh3xÞ þ e; (3)

where y is the phenotype for the trait of interest at the time-
point x measured as days after January 1, h1 is the maximum
value (upper asymptote) represented by the final PTHT or max-
imum achieved NDVI, h2 is the inflection point that represents
the greatest rate of change in the growth curve, either senes-
cence for NDVI or height of growth, h3 is the lag phase or onset
of senescence or growth rate from time x where x is the calen-
dar day of the year since January 1, and e is the residual error
(Supplementary Fig. 1). The “nlme” R package was used for
model fitting (Pinheiro et al. 2015). The model parameters
obtained for each trait (h1NDVI, h2NDVI, h3NDVI, h1PTHTD , h2PTHTD , and
h3PTHTD ) were used in addition to the other phenotypic traits to
calculate BLUEs, distributions, correlations, and BLUPs.

Secondly, we used a mixed linear model to calculate the best
linear unbiased predictors (BLUPs) for each entry in each nursery
(season) (Supplementary Table 1), using the same model as de-
scribed in Equation (2) but defining Gi, Tj, and GTij as random
effects. BLUPs were used because of the unbalanced nature of the

data. The BLUPs calculated for each season were then combined

for GWAS and GS. Furthermore, we calculated broad-sense heri-

tability on a line-mean basis by splitting the data based on whole

plot treatment for insecticide treatments as:

H2 ¼ r2
G

r2
G þ ðr2

e=rÞ
; (4)

where r2
G is the genotypic variance, r2

e is the residual error vari-

ance, and r is the number of replications.

Genotypic data
A total of 346 wheat entries were genotyped using genotyping-by-

sequencing (GBS) (Poland et al. 2012) and sequenced on an

Illumina Hi Seq2000. Single nucleotide polymorphisms (SNPs)

were called using Tassel GBSv2 pipeline (Glaubitz et al. 2014) and

anchored to the Chinese Spring genome assembly v1.0

(IWGSC et al. 2018). SNP markers with minor allele frequency

<0.01, missing data >85%, or heterozygosity >15% were removed

from the analysis. After filtering, we retained 29,480 SNPs

markers that were used to investigate the population structure

through principal component analysis (PCA), genome-wide asso-

ciation analysis (GWAS), and GS. In addition, GBS data were used

to run a bioinformatics pipeline to predict the presence or ab-

sence of the translocated segment on chromosome 7DL carrying

the Bdv2 gene for each entry (Supplementary Table 1). The pre-

diction was done based on a modified alien prediction pipeline

(Gao et al. 2021). Briefly, alien or wheat specific tags were counted

in the 7DL region and tabulated using a training set of cultivars

or lines that are known to be Bdv2 positive and negative. A simple

classification was done based on alien to wheat tag counts ratios.

Genome-wide association analysis
The GWAS analysis was performed with a mixed linear model

according to Yu et al. (2006) implemented in the “GAPIT” R pack-

age (Lipka et al. 2012) that included the first 2 principal compo-

nents to account for population structure as fixed effects and the

individuals to explains familial relatedness as random effects,

Table 2. Dates of high-throughput phenotypic data collection and details of image acquisition in the 5 wheat nurseries screened for
BYD, Kansas, USA (2015–2020).

Season 2015–2016 2016–2017 2017–2018 2018–2019 2019–2020

UAS platform PheMU DJI Matrice 100

Imaging sensor Multiple digital single-lens reflex (DSLR) cameras MicaSense RedEdge-M

Flight/pass speed 0.3–0.5 m/s 2 m/s

Flight dates 2016-03-31
2016-04-07
2016-04-14
2016-05-06

2017-03-28
2017-04-13
2017-05-01
2017-05-09
2017-05-21
2017-05-23
2017-05-30
2017-06-05
2017-06-13

2018-03-30
2018-04-04
2018-04-12
2018-04-19
2018-04-23
2018-05-16
2018-06-13

2019-04-01
2019-04-09
2019-04-19
2019-04-26
2019-05-02
2019-05-10
2019-05-15
2019-05-23
2019-05-31
2019-06-05
2019-06-12
2019-06-17

2020-03-20
2020-04-11
2020-04-23
2020-05-03
2020-05-19
2020-06-05
2020-06-11

Flight/pass altitude 0.5 m above the canopy 20 m AGL
In-air flight duration NA �11–14 min
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y ¼ Xbþ Zui þ e; (5)

where y is the vector of phenotypic BLUPs, X and Z are the inci-
dence matrix of b and ui, respectively, with ui assumed � N (0,
2Kir

2
i Þwhere K is the individual kinship matrix, and e is the vector

of random residual effects with � N (0, Ir2
e Þ, where I is the identity

matrix and r2
e is the unknown residual variance. The false discov-

ery rate correction with an experimental significance level value
of 0.01 was used to assess marker-trait associations. Manhattan
plots were generated with “CMplot” package in R software (Yin
2020). PCA using GBS-SNPs was performed in R language.
Eigenvalues and eigenvectors were computed with “e” function
using “A.mat” function and the “mean” imputation method of
“rrBLUP” package (Endelman 2011). To declare a quantitative trait
locus (QTL) we considered only the regions having several SNP
markers in linkage disequilibrium, clearly showing a peak. We
did not consider regions with a single SNP above the significant
threshold as a QTL.

Genomic selection
Using data from the 5 seasons, GS models using the genomic
BLUP (G-BLUP) were developed to assess predictive ability. A 5-
fold cross-validation method was used to assess model accuracy
where the data set was split into 5 sets based on season, with 4
seasons forming the training set and the fifth season serving as
prediction set. This process was repeated until all seasons were
predicted. Along with predicting all other seasons from each sea-
son, a model was evaluated with a leave-two-out cross-validation
strategy. This strategy was used to get a better mix of years with
and without disease incidence, where the training population
consisted of 3 seasons, and the remaining 2 seasons were pre-
dicted from the combined training population. The GS model was
fitted with the training population using “rrBLUP” kin.blup func-
tion (Endelman 2011), the GS model equation was,

y ¼Wgþ e; (6)

where y is a vector of phenotypic BLUPs, W is the design matrix
of g, g is the vector of genotypic values � N (0, Kr2

gÞ; and e is the
vector of residual errors (Endelman 2011). Predictive ability was
assessed using Pearson’s correlation (r) between the predicted
value (G-BLUP) and the BLUP for the respective phenotype. In ad-
dition, for both GS strategies we also tested the effect of adding
the genotype of the Bdv2 loci as a fixed effect cofactor, using the
model,

y ¼ lþ XbþWgþ e; (7)

which combines parameters described in Equation (5) and X is
the matrix (n � 1) of individual observation for presence or ab-
sence of Bdv2 and b is the fixed effect for the Bdv2 measure-
ments.

Results
Phenotypic data
We analyzed 5 years of BYD field-screening nurseries (seasons
2015–2016 to 2019–2020) characterizing a total of 381 wheat lines.
The disease pressure and the expression of BYD associated symp-
toms varied each season, however, we were able to observe a sig-
nificant effect of the insecticide treatment in all seasons (Fig. 1).
Across all seasons, BYD symptoms were lower on the insecticide
treated plots and both PTHTM and GY increased compared with

the nontreated control. Season 2016–2017 had the most condu-

cive conditions for BYD screening, resulting in high average se-

verity and a larger difference between mean values for the

treated vs untreated plots for all the collected traits (Fig. 1). There

was general consistency in order across all seasons with the sus-

ceptible check “Art” ranked among the highest in BYD severity

(Supplementary Fig. 2).
Phenotypic correlations between the traits showed a negative

correlation between BYD and GY for all the seasons and a nega-

tive or no correlation between BYD and PTHTM (Supplementary

Fig. 3). The same correlation trends were observed under insecti-

cide treated and untreated plots. Broad-sense heritability was

moderate to high for all the traits, ranging between 0.21 and 0.79

for the insecticide treated plots and between 0.41 and 0.84 for the

untreated plots. Across all traits, the untreated insecticide repli-

cations showed higher H2 values, with season 2016–2017 showing

the highest values (Fig. 2).
For the HTP data collected (Table 2), we obtained 3 different

parameters (h1, h2, and h3) for both PTHTD and NDVI after fitting

a logistic regression model using the data collected during the

experiments (2015–2016 season data were not included due to

lack of data quality) (Supplementary Fig. 1). Correlations between

these parameters and the phenotypic traits collected manually

were different for all the traits (Supplementary Fig. 3). For the in-

secticide untreated plots, BYD resulted in a negative correlation

with h2NDVI and a positive correlation with h3NDVI, in most of the

field seasons. We did not find a clear correlation pattern between

BYD and PTHTD. For PTHTM we detected a positive correlation

with h1PTHTD across all seasons, and for GY we observed a positive

correlation with h1NDVI and h2NDVI, and a negative correlation with

h3NDVI (Supplementary Fig. 3).

Prediction of Bdv2 resistance gene
We used GBS data to genotype the Bdv2 resistance gene located

on a translocation segment from intermediate wheatgrass on

chromosome 7DL of bread wheat. In total, 33 of the 346 wheat

lines carried the Th. intermedium chromosomal translocation with

Bdv2 (Supplementary Table 1). Interestingly, 28 of these Bdv2

lines belonged to the same breeding cycle, entering the advanced

yield nursery stage of the KSU breeding program in the 2017–2018

season. Furthermore, only 7 pedigrees are represented within the

28 Bdv2 entries, meaning that these lines are highly related. The

remaining 5 Bdv2 lines were distributed in 2015–2016 (n¼ 3),

2018–2019 (n¼ 1), and 2019–2020 (n¼ 1), and none of the lines

from the season 2016–2017 had the presence of Bdv2

(Supplementary Table 1).

Population structure
We studied the population structure of 346 wheat lines using

29,480 GBS-derived SNP markers. The PCA did not reveal a strong

pattern of population structure (Fig. 3). Moreover, the variation

explained by the first 2 principal components (4% and 3%, respec-

tively) also supports the hypothesis of minimal population struc-

ture within a single breeding program. We observed that most of

the wheat cultivars released by KSU breeding program were lo-

cated outside the cluster grouping all the breeding lines (Fig. 3a).

Lines with the presence of Bdv2 clustered together (Fig. 3b), likely

due to a related pedigree to the original source, and we did not

identify any evident pattern for BYD severity associated with the

population structure (Fig. 3c).
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Fig. 1. Adjusted phenotypic values for the traits collected manually for 5 different field seasons (2015–2016 to 2019–2020). a–e): Barley yellow dwarf
severity (%) characterized as the typical visual symptoms of yellowing/purpling on leaves using a 0–100% visual scale; f–i) manual plant height/stunting
(PTHTM) (m), note that the trait was not recorded for the 2015–2016 season; and j–n) grain yield (tons/ha). The dashed line represents the mean value for
the trait in each treatment.
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Fig. 2. Broad-sense heritability of wheat phenotypic traits collected manually, including visual barley yellow dwarf (BYD) score, plant height (PTHTM),
and grain yield (GY) during 5 different field seasons under 2 insecticide treatments.
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Genome-wide association analysis
To investigate the genetic architecture of BYD we performed
GWAS analyses for all collected traits using the BLUP values for
346 lines and 29,480 SNP markers. The first two principal compo-
nents from PCA and the kinship matrix were included in the
mixed model to account for population structure and genetic re-
latedness. We found significant marker-trait associations for
BYD severity on chromosomes 5AS, 7AL, and 7DL (Fig. 4a). The
highest peak was observed on the proximal end of chromosome
7DL, located at 571–637 Mbp. To test the hypothesis that this as-
sociation was explained by the resistance gene Bdv2 (located on
chromosome 7DL), we investigated the haplotypes defined by the
16 SNP markers associated with BYD severity and were able to
identify 2 haplotypes that exactly matched the presence or

absence of Bdv2 (Fig. 4a). This same region was mapped using

BYD severity and the presence or absence of Bdv2 as a fixed co-
variate (Fig. 4b). This analysis (Fig. 4b) also detected a peak on
chromosome 7AL. Lastly, we explored the effect of Bdv2 on both

BYD BLUEs and BLUPs, and we observed that the presence of
Bdv2 had a positive effect in reducing the disease severity by ap-
proximately 10% (Fig. 5a). The significant peak on chromosome

5AS, located at 46–103 Mbp, was explained by 10 SNP markers,
comprising 2 main haplotypes, one of them associated with re-

duced BYD severity (Fig. 5b). When we combined the different
5AS haplotypes with Bdv2, we observed that the presence of Bdv2
had a positive effect, reducing the levels of BYD when combined

with both 5AS haplotypes (Fig. 5c), and suggesting an additive ef-
fect. In addition, there was no significant difference in BYD
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Fig. 3. Scatterplot of the first two principal component axis, made from principal component analysis on the marker matrix, n¼357 wheat lines,
markers¼29,480. Each data point represents an individual wheat line that is color-coded by (a) breeding status; (b) prediction of Bdv2 presence/absence;
and (c) adjusted mean for BYD severity (BYD BLUE) scored visually. Total variance explained by each principal component (PC) is listed on the axis.

Fig. 4. Manhattan plots showing the marker-trait associations using 346 wheat accessions and 29,480 SNP markers obtained with genotyping-by-
sequencing (GBS) for (a) BYD severity and (b) presence/absence of Bdv2 resistance gene. The 21 labeled wheat chromosomes with physical positions are
on the x-axis and y-axis is the –log10 of the P-value for each SNP marker. Horizontal dashed lines represent the false discovery rate threshold at 0.01
level and highlighted data points above the threshold represent SNPs significantly associated with the trait. In (a), the length of the region and the
haplotypes defined by the significant SNP markers is displayed.
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reduction between the 2 5AS haplotypes combined with presence
of Bdv2 (Fig. 5d). Compared to the associations found for Bdv2
(Fig. 4b), we did not find any strong evidence of marker trait asso-
ciations for the other evaluated traits (Supplementary Fig. 4).

Genomic selection
To evaluate the potential of GS to predict BYD disease severity,
we fit several GS models to the phenotypic BLUPs of BYD, PTHM,
and reduction in GY. Across all traits, to determine predictive
ability we used a 5-fold cross validation where prediction ability
ranged from �0.08 to 0.26. There was relatively good predictive
ability for BYD severity ranging between 0.06 and 0.26, in compar-
ison with PTHTM and reduction in GY resulting in a lower range
from 0.02 to 017 and �0.08 to 0.2, respectively (Fig. 6). Evaluating
the composition of the training population, we observed that
when including 2016–2017 season, prediction abilities were the
highest for BYD but the lowest for the other 2 traits, implying
that season 2016–2017 was either a good season to train the

prediction models or a difficult season to predict based on avail-
able data.

To further investigate the ability of GS to predict BYD, we
tested GS models using a leave-two-out strategy, where 2 seasons
were excluded from the training population and used as the test-
ing population. We fitted GS models for all possible 2-season
combinations. This strategy resulted in slightly smaller training
populations which decreased overall predictive ability (Fig. 6).
This result was evident for BYD predictions where excluding 2
seasons had a larger negative impact.

Lastly, we evaluated the effect of adding information about
the genotype of the Bdv2 resistance gene as a phenotypic fixed co-
variate into the GS models. There were differences in the effect of
Bdv2 on the predictive ability across BYD severity, PTHTM, and
GY, showing a large effect for predicting BYD but almost no effect
for PTHTM and reduction in GY (Fig. 6). Including the presence or
absence of Bdv2 as a covariate had a major effect on the predic-
tive ability. For example, in the 2017–2018 season which had the

(a) (b)

(c) (d)

Fig. 5. Measurement of barley yellow dwarf disease severity in wheat based on certain haplotype effects were (a) the presence or absence of the
translocation segment carrying the resistance gene Bdv2; (b) the 2 haplotypes for the significant region on chromosome 5AS; (c) the combination of 5A
haplotypes with the presence or absence of Bdv2 gene; and (d) the 5A haplotypes combined with presence of Bdv2 resistant allele. Boxplots show the
significant reduction of BYD disease severity by averaging the phenotypic best linear unbiased estimated (BLUE) values for the lines. Count is the
number of wheat genotypes averaged in each group and mean is the mean BLUE value for the group.
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highest proportion of lines with presence of Bdv2, excluding the

covariate, resulted in a drop of the predictive ability from 0.09 to

�0.21.

Discussion
Phenotypic data
The success of breeding for BYD resistance is highly impacted by

the ability to precisely characterize breeding material and disease

symptoms. Even though BYD is spread worldwide, its incidence

in a given year depends on several factors such as aphid pressure,

planting date, and environmental conditions (e.g. temperature,

rainfall, frost, etc.). In this study, we evaluated winter wheat ad-

vanced breeding lines during 5 seasons implementing a rigorous

field-testing approach, that ultimately enabled us to consistently

have plots contrasting with BYD infection and uninfected or low

incident plots. Moreover, by using large yield-size plots we were

able to calculate the reduction in GY and use this parameter as

an estimate of field resistance.
The expression of BYD symptoms, however, was highly incon-

sistent during the different seasons. Seasons 2015–2016 and

2016–2017 showed the best expression of the disease symptoms,

supported by the wide range of BYD severity between treated and

untreated replications (Fig. 1). Interestingly, both these seasons

were conducted in the same experimental field (Table 1), suggest-

ing that this location could favor the development of BYD.

Moreover, weather conditions were variable for all the seasons,

suggesting that these had a huge impact on the disease occur-

rence. While temperature records were similar for all the sea-

sons, precipitation records did show some differences. Season

2017–2018 was dryer than normal, with 34% less precipitation

than the 30 years historical average (1981–2010). On the other

hand, season 2018–2019 was wetter than normal, with 58% more

precipitation than the 30 years historical average (Supplementary

Table 2).

High-throughput phenotyping
Evaluating BYD resistance using visual phenotypic selection can

be challenging due to the complex nature of the disease and rater

variability (Poland and Nelson 2011). The use of HTP with UAS is

gaining popularity within plant breeding programs because it fur-

ther improves selection intensity and accuracy compared with

conventional phenotyping. Accurate phenotyping is crucial for

understanding the genetic basis of quantitative and complex

traits such as BYD severity. In this study, we used HTP to comple-

ment the visual BYD scoring. This phenotyping methodology im-

proved our capacity for rapid, nondestructive, and nonbiased

evaluation of large field-scale numbers of entries for BYD
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resistance. We were able to observe strong correlation patterns

between visual BYD severity and HTP derived parameters

(Supplementary Fig. 3); although, none of the HTP traits collected

in this study had a common genetic base with BYD severity

(Fig. 4; Supplementary Fig. 4). This uncertainty could be raised by

3 main technical reasons. Firstly, in this study a 5-band multi-

spectral camera was used to capture spectral information

reflected from canopies. Limitation due to the spectral resolution

might restrict the potential to find accurate vegetation indices

that correlates with visual BYD severity. Secondly, the visibility of

BYD symptoms on canopies is likely to require finer pixel resolu-

tion to be reflected in digital images, whereas the imaging sensor

size, the sensor total effective pixel resolution, and the UAS flight

height adopted in this study might induce a ground sampling dis-

tance that could be further improved to discover clear BYD re-

lated features. Lastly, image acquisition in this study was based

on a weekly frequency. The temporal resolution of data collection

may not be sufficient to match the optimum period for observa-

tion of BYD symptoms. Disease scoring using HTP is scaling fast

among breeding programs; however, how to effectively use this

data remains challenging. Based on the variable heritability ob-

served for BYD severity across seasons (0.211–0.806), genetic

progress based only on phenotypic selection will be limited. In a

year when there is a BYD outbreak, HTP can rapidly provide

quantitative measurements compared to the alternative visual

breeder score. Previous studies have shown that data collected

with sensor-based HTP can be substituted to improve conven-

tional disease visual evaluation (Sankaran et al. 2010; Kumar et al.

2016; Zheng et al. 2018); although our study is the first attempt to

characterize BYD severity in wheat using HTP.

Genome-wide association analysis
Using GWAS we detected QTLs on chromosomes 5AS, 7AL, and

7DL for BYD severity BLUPs values. Using GBS tags that mapped

to known alien fragments, we confirmed that Bdv2 resistance

gene was located at 7DL and confirmed that the 7DL QTL was

explained by the presence of the Bdv2 resistance gene. Even

though only 33 wheat lines were positive for the presence of

Bdv2, we still had enough power to detect its effect, supporting

that Bdv2 has a strong effect on BYD under Kansas field condi-

tions (Fig. 5). The associations on chromosome 7AL, observed for

both BYD severity and Bdv2, suggest that the SNP markers on the

7AL peak may be miss-anchored markers that should have

mapped to 7DL. The relatively high heritability values obtained

for the untreated replications (Fig. 2) allowed us to detect a minor

QTL on 5AS. Marza et al. (2006) reported a QTL at 38cM on the

short arm of chromosome 5A associated with yellowing symp-

toms caused by BYD, and it is possible that this is the same region

yet more data is needed to confirm if these QTLs are the same.

The only other study reporting GWAS for BYD in wheat was able

to identify several markers associated with BYD resistance on

chromosomes 2A, 2B, 6A, and 7A (Choudhury et al. 2019b).

However, most of the association were explained by individual

SNP markers, and to date do not have any definitive biological

link. GWAS results for the other traits used in this study did not

discover genomic regions associated with the traits

(Supplementary Fig. 4). Taken together, these results suggest that

BYD resistance in the primary pool of wheat is rare and there is

limited large effect loci that could easily be incorporated into the

breeding program, thus GS could be an efficient way to enhance

BYD resistance.

Genomic selection
We evaluated several different GS models to identify the best ap-
proach for predicting BYD (Fig. 6). Overall, we observed some trends
including (1) incorporating years with consistent BYD disease data
in the training population increased the model predictive ability; (2)
predicting years with high disease pressure is difficult; and (3) using
Bdv2 as a covariate had increased prediction performance, suggest-
ing that it is responsible for much of the predictive power. These
results suggest that GS based on G-BLUP with Bdv2 as fixed effect
covariate would lead to the greatest genetic gain for BYD breeding.
Using selected major QTL as a fixed effect to improve GS models
was suggested in a simulation study (Bernardo 2014) and demon-
strated with empirical studies (Rutkoski et al. 2014). Nonetheless,
using Bdv2 as a fixed effect covariate in our GS strategies did not
consistently improve the predictive ability for PTHTM or reduction
in GY (Rice and Lipka 2019). However, there was not a consistent
distribution of Bdv2 allele across the cohorts. GS predictive abilities
for BYD were low compared to other disease (reviewed by Poland
and Rutkoski 2016). However, since this is the first report of GS for
BYD resistance in wheat, we do not have similar results to make
better comparisons. One possible explanation we did not explore is
if these lines were selected earlier in the breeding pipeline for BYD
and therefore represent a poor training population for testing GS
models. Another way to improve the predictive ability could be us-
ing multitrait GS models. There are some examples in the literature
where using correlated traits to the trait of interest resulted in
higher genomic prediction accuracies (Jia and Jannink 2012;
Rutkoski et al. 2016; Crain et al. 2018). BYD has traditionally been
reported to have low H2 (Tola and Kronstad 1984; Choudhury et al.
2019b) and in this study, even with well managed plots that often
had H2 approaching 0.8, we still had difficulty reproducing these
results year to year as evidence of the challenge of studying this
pathosystem. Moreover, the correlation between HTP parameters
and BYD phenotypes was interesting, but not sufficient to be useful
in combination with GS in the germplasm tested.

Conclusions
We were able to show that Bdv2 has a major effect controlling
BYD resistance in the KSU breeding germplasm. Apart from the
known Bdv2 and a potentially novel 5AS region, we did not find
evidence of other regions controlling BYD resistance supporting
the hypothesis of limited resistance available in the current
wheat gene pool and the highly polygenic nature of the trait.
Moreover, our study was the first attempt to characterize and im-
prove BYD field-phenotyping using HTP and apply GS to predict
the disease. HTP traits showed strong correlation patterns with
BYD severity, however, none of these parameters shared a com-
mon genetic architecture with BYD severity. The GS predictive
ability results that we found in this study open the door for fur-
ther improvement and testing GS implementation for breeding
for BYD resistance. Continuing the improvement of BYD charac-
terization and the search of new sources of resistance using spe-
cies related to wheat, will be crucial to broadening the resistant
genes available to introgress into wheat germplasm.

Data availability
Supplementary material, including raw and analyzed phenotypic
data, genotypic data, and basic plot scripts are available at Dyrad
doi:10.5061/dryad.ncjsxkswd and GitHub https://github.com/
umngao/wsm1_bdv2.

Supplemental material is available at G3 online.
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