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ABSTRACT Colony-based screens that quantify the fitness of clonal populations on solid agar plates are
perhaps the most important source of genome-scale functional information in microorganisms. The images
of ordered arrays of mutants produced by such experiments can be difficult to process because of
laboratory-specific plate features, morphed colonies, plate edges, noise, and other artifacts. Most of the
tools developed to address this problem are optimized to handle a single setup and do not work out of the
box in other settings. We present gitter, an image analysis tool for robust and accurate processing of images
from colony-based screens. gitter works by first finding the grid of colonies from a preprocessed image and
then locating the bounds of each colony separately. We show that gitter produces comparable colony sizes
to other tools in simple cases but outperforms them by being able to handle a wider variety of screens and
more accurately quantify colony sizes from difficult images. gitter is freely available as an R package from
http://cran.r-project.org/web/packages/gitter under the LGPL. Tutorials and demos can be found at http://
omarwagih.github.io/gitter
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A well-controlled approach to query the function of genes and the
effects of environment or small molecules is to study single genetic
perturbations in appropriate conditions. Publicly available genome-
scale reagents in microorganisms, such as gene deletion collections in
yeast (Tong et al. 2001; Giaever et al. 2002; Kim et al. 2010) and
bacteria (Baba et al. 2006), as well as collections of tagged proteins
(Ghaemmaghami et al. 2003; Huh et al. 2003), combined with low
technological requirements for using them, allow almost any labora-
tory to conduct genome-wide studies in a comprehensive and unbi-
ased fashion. Indeed, much has been learned about genetic interactions
(Roguev et al. 2008; Costanzo et al. 2010), mechanisms of small
molecule effects (Hillenmeyer et al. 2008), modulators of protein
localization (Vizeacoumar et al. 2010), determinants of aging
(Powers et al. 2006), microbial pathogenicity (Butland et al. 2008),

and almost all other aspects of cell biology using high-throughput
genetic screens.

A typical screen consists of growing an array of strains on agar
plates, forming a grid of colonies on each. The raw data from a screen
are a collection of high-resolution images of plates containing the
colonies. A proxy for the effect of a genetic perturbation in the
surveyed setting can then be estimated as the size of the corresponding
colony at a particular time point or as the rate of growth over time
(Shah et al. 2007). The primary, and perhaps the most challenging
analysis task, is to accurately quantify colony sizes from these images
for reliable phenotypic measurements.

Although performing the screens is accessible to many groups, the
image analysis step can be a limiting factor. There are currently no
tools that are able to robustly quantify the colony sizes from a wide
range of experimental setups. The images of screen plates vary in
format, shape, illumination, background, plate edges, typical colony
sizes, and the distribution of colonies on the plate. Several existing
software packages [e.g., HT colony grid analyzer (Collins et al. 2006),
Colonyzer (Lawless et al. 2010), Cell Profiler (Carpenter et al. 2006),
Colony Imager (Tong et al. 2002), ScreenMill (Dittmar et al. 2010)
and YeastXtract (Shah et al. 2007)] work well in some settings, usually
for the images from the laboratory in which they were developed.
However, when looking for a universal solution to a general screen
analysis pipeline (Wagih et al. 2013), we could not find a single tool
that was able to robustly handle a large variety of different plate types.
Some of the tools are limited to graphical user interfaces, which makes
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incorporating them into new computational pipelines difficult, or re-
quire extensive customization, which is undesirable for an automated
solution. Furthermore, processing irregular images, or underesti-
mating colony sizes can be a problem, which we also demonstrate
herein.

To address these issues, we developed gitter, an image analysis
pipeline to robustly and accurately process images from colony-based
genetic screens. gitter first applies a range of preprocessing steps,
including automatic plate rotation, contrast adjustment, and back-
ground correction, followed by identification of the colony layout on
the plate, by the use of techniques similar to those used for microarray
image analysis (Angulo and Serra 2003; Antoniol et al. 2005; Berlemont
et al. 2007; Bariamis et al. 2010; Rueda and Rezaeian 2011). gitter
then fits the boundaries of individual colonies separately, which
results in more accurate size estimates for irregular and larger-
than-average colonies. We show that gitter is able to process a wide
variety of plate images and is more accurate in quantifying the
colony size compared to other tools. gitter can be freely obtained
as an R package from CRAN under the LGPL.

METHODS
There are six main steps to gitter: image preprocessing, thresholding,
determining the grid of colonies on plate, identifying individual
colonies, quantification of colony sizes, and visualization of the resulting
data (Figure 1).

Image preprocessing
gitter preprocesses the initial image in several steps to make it
appropriate for analysis. First, the grayscale intensity Iij in row i and
column j is calculated from the color image as 0.2Rij + 0.72Gij +
0.07Bij, where Rij, Gij, and Bij are the pixel intensities (ranging from
0 to 1) of the red, green, and blue channels, respectively (also known
as the luminosity method). gitter assumes that colonies in the image
have a greater pixel intensity compared with the background. If the
colonies are dark, the user should choose to invert the image to obtain
Iij = 1 2 Iij. To improve running time, the fast option allows resizing
images to a specified width (default 1500 pixels), while maintaining
the aspect ratio.

The image is then rotated to make sure the rows of colonies are
horizontal. To do so, we first calculate its Radon transform (Deans
1983), which has been successfully used in microarray image analysis
(Angulo and Serra 2003; Antoniol et al. 2005; Berlemont et al. 2007;
Bariamis et al. 2010):

Rðr;aÞ ¼
X

ij

Iijdðr2 i cosa2 j sinaÞ:

Here, r is the y-axis offset of a line from the plate center, a is the
angle of the line, and R(r, a) is the sum of pixel intensities Iij along
the line defined by r and a. The lines that pass through colonies and
spaces between colonies will have large and small pixel intensity
sums, respectively. The lines angled parallel to the rows of colonies
will therefore vary between the large and small total intensity values,
and R(r, a) will have large variance for that particular a. Thus, we
choose the rotation angle as argmaxa (varr R(r, a)), where we vary a
in 0.2-degree increments. To reduce the computational complexity
of this step, we resize the image to a width of 500 pixels before
applying the transform. In practice, images are rarely rotated more
than 5 degrees because the plate position is standardized before the
photo is taken. However, we allow rotation angles of up to 30 degrees.

Artifacts such as variation in lighting, condensation, and noise can
make it difficult to distinguish colonies from the plate. We estimate
the background by eroding and then dilating the image using a w · w
window and then subtract it from original image to remove the broad
artifacts. We picked the window size w as 1.5 times the width of the
image divided by the number of colony columns in the plate. This
ensures colonies and plate edges are smaller than the window, and will
be collapsed in the erosion step.

Thresholding the image
Next, the image is thresholded to identify foreground pixels
corresponding to colonies and other bright objects in the plate. We
use k-means clustering with two clusters to find the threshold value t
that distinguishes the two classes. We initialize t to the mean of Iij, and
then iteratively recalculate cluster means as the average intensity of
pixels above and below t, respectively, and threshold t as the midpoint
of cluster means. These steps are repeated until the value of t does not
change.

Finding the grid of colonies
In an image of a screen plate, pixel intensities in rows and columns
corresponding to the colonies tend to have greater values than
elsewhere (Figure 2A). This feature can be used to determine the
colony locations. To do so, we first calculate the total number of
foreground pixels in row i as Ti ¼

P
jI½Iij$ t�, yielding a set of char-

acteristic peaks. Some of these peaks correspond to colonies (Figure
2A, green lines), rest to plate edges or other artifacts (Figure 2A, red
lines). The number of foreground pixels in the rows corresponding to
one round colony is expected to be lw ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 2w2

p
, where w

ranges from 2W to W, the colony radius. To quantify how well the
intensity profiles match the expectation at each potential colony center
i, we compute the Pearson correlation ri between the expected in-
tensity l = (l2W,. . .,lW) and the observed intensities in the window

Figure 1 The workflow of gitter. The input image is preprocessed to account for global lighting effects and small rotations and thresholded to
identify foreground pixels corresponding to colonies. The colony grid layout is fitted on the thresholded image, and individual colonies are
quantified at each grid cell. Finally, the quantified colony sizes can by visualized.
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(Ti2W,. . .,Ti+W) centered on i. Here, W is estimated as half the
median distance between local maxima of the middle 50% in smoothed
intensity profiles. We determine all N high peaks in the correlation
profiles by finding the local maxima fxkjrxk .maxðrxk2 1 ; rxkþ1 ; 0:3Þg,
and calculate the distance dk = xk 2 xk21 between them. Given the
start index of the true colony peaks s, and the number of colonies, n
in the row, we then calculate the likelihood L(s) for different starting
positions, assuming normal distributions for distances dk between
the peaks, and the correlations to expected colony shape ri at the
peak centers:

LðsÞ ¼ P
�
xjs;md;s

2
d

�
P
�
rjs;mr;s

2
r

�

¼ Qsþn2 2

k¼s
N �

xkþ1 2 xk;md;s
2
d

�
·

·
Qsþn2 1

k¼s
N �

rxk ;mr ;s
2
r

�
:

Here, md ¼
P

k
dk

N2 1 , s
2
d ¼ varðdkÞ, mr ¼

P
k
rxk

N , and s2
r ¼ varðrxkÞ. We

pick the most likely starting peak ŝ ¼ argmaxsLðsÞ, and the corre-
sponding true peaks ðxŝ; . . . ; xŝþn2 1Þ that follow. The aforemen-
tioned procedure is repeated similarly for columns and true peaks
obtained from rows and columns are used to define the initial colony
locations for the next analysis step. We also calculate the character-
istic distance between true peaks d ¼ medianðdxŝ ; . . . ; dxŝþn22Þ.

Quantification of colony size
First, small speckles are optionally removed from the thresholded
image by eroding with a 3 · 3 window, which eliminates single pixel
noise. Larger windows would start eroding colonies and substantially
reduce their measured size. We then find, for each colony,
the minimum rectangle enclosing it in the square of width 1.5 · d
around the colony center. This width is chosen to allow for variations
in the colony’s morphology outside its typical boundary. We then
identify the local minimum of the colony pixel intensity profiles that
are nearest to the colony centers, but at least d3 away (Figure 2B). If the
pixel defining the center of the colony is a background pixel, we
assume that the colony is not present, and a square with width d
around the center of the colony is used as the bounding rectangle.

Finally, the size or area A of the colony is computed as the number of
foreground pixels within the boundary. For each colony, we also re-
port its circularity 4p A

P2, where P is the number of foreground pixels
neighboring a background pixel.

If the boundary contains foreground pixels, there is no clean
separation between neighboring colonies, suggesting they are at least
touching. In this case, the colony is flagged as potentially overlapping
in the output. Similarly, colonies with low circularity are flagged to
draw users’ attention to them, and allow automatic filtering. Entire
plates are flagged if at least 10% of colonies are smaller than 0.1 of the
median colony size, or have circularity below 0.6. Plate level flags
indicate to the user that the output should be manually inspected.

Processing sparse images
Sparse plates with a majority of small or dead colonies, such as those
seen in suppression screens, usually fail to process properly, as there is
not enough information to establish the grid. To overcome this, the
typical distance between colonies d and colony center coordinates {xk}
can be precomputed from a reference image taken with same dimen-
sions, sizes and settings as the sparse image. To account for small trans-
lational shifts, we calculate total pixel intensities Ti for both the reference
and the sparse image, and offset the reference image to maximize the
correlation between the Ti profiles. After obtaining the colony center
coordinates and typical distances between them from the reference,
the sparse image can be processed without fitting its grid independently.

RESULTS
gitter was developed to overcome the two main drawbacks of existing
tools—limited range of experimental setups that can be easily analyzed,
and accuracy in quantifying the colony sizes in nontrivial cases. Thus, we
evaluated the performance of gitter for robustness of handling plates
from different laboratories, and correctly estimating the size of colonies.

Robustness
We tested gitter on images from a range of experimental setups and
organisms, including 840 images from Saccharomyces cerevisiae (Costanzo
et al. 2010), 82 from Schizosaccharomyces pombe, 87 from Escher-
ichia coli (Butland et al. 2008; Babu et al. 2011) and nine from

Figure 2 Obtaining the grid of
colonies. (A) Total pixel intensi-
ties Ti for rows (to the left of im-
age) and columns (above image)
of the thresholded input image
are used to find the centers of
the peaks that correspond to
colony locations (green lines)
that define the colony grid.
Peaks from greater pixel intensi-
ties near plate edges and other
sources of confounding signals
(red lines) are discarded by fit-
ting the grid. (B) Identifying the
best-fit boundaries for a spot us-
ing local intensity profiles. Ma-
genta and blue lines represent
the x and y-coordinates of the
boundaries, respectively. Gray
dashed lines represent the local
maxima from (A) that define the
colony center.
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Drosophila melanogaster (Hens et al. 2011). All D. melanogaster and
E. coli images were successfully gridded and quantified without any
adjustments to the default parameters. Only 2 of 87 (2.3%) of S. pombe
images and 5 of 840 (0.6%) S. cerevisiae images had an edge being
mistaken for a row or column. When processing images in batch
using a reference image, all tested images were correctly gridded.

The tested images included many that pose difficulties to existing
image analysis tools. The sizes of irregular colonies (Figure 3A) are
difficult to quantify accurately by counting pixels inside a fixed circular
template, but gitter overcomes this problem by fitting the bounds of
each colony separately. gitter can also process noisy and inverted images
where colonies are represented by darker, rather than brighter colors
(Figure 3, B and C). Images with uneven lighting or cloudiness caused
by condensation (Figure 3, D and E) are problematic because brighter
regions often are mistaken for foreground pixels. gitter’s background
correction subtracts these effects out so they do not interfere with
gridding and colony quantification. Images of plates with cracked agar
caused by drying, dropping, etc. (Figure 3F) often are discarded because
it is assumed that the image analysis software will not be able to
successfully identify the colonies from the deformed grid. gitter over-
comes small variations in the grid by refitting individual colony bounds.

Accuracy
We compared the results of gitter to Colonyzer (Lawless et al. 2010),
HT colony grid analyzer (Collins et al. 2006), and Colony Imager
(Tong et al. 2002). Three images showing irregular colonies and that
were successfully processed by the four tools were considered for the
comparison. Establishing a ground truth segmentation and boundary
for colonies is difficult because thresholding is subjective. We thus first
confirmed that the colony size estimates are concordant for a large
fraction of colonies, and then manually inspected discordant ones.

The colony sizes calculated by different tools are similar for well-
behaved images and colonies (Figure 4A), but the estimates differ for
some classes. Although Colonyzer also optimizes the bounds of each
spot, it does so by fitting a fixed width square, resulting in under-
estimating sizes of spots larger than the square (Figure 4B). In addi-
tion, in some rare cases, the bounds are misplaced for colonies on the
edge of a plate (Figure 4B). HT colony grid fits a grid of fixed-size
circles to the image. Due to not adjusting the bounds for each colony,
the sizes are sometimes underestimated, as a substantial portion of the
colony remains outside of the fixed circle (Figure 4B). Colony Imager
approximates the edges of each spot; however, we have found the
defined bounds to be eroded (Figure 4B), resulting in the underesti-
mation of colony sizes. This becomes an issue for very small colonies,
as they get a quantified size of zero, and very large colonies, for which
the erosion can account for a large part of the total area.

IMPLEMENTATION
gitter is implemented in an open-source R package available from
http://cran.r-project.org/web/packages/gitter and uses the EBImage
(Pau et al. 2010) package for image manipulation and the ggplot2
(Wickham 2009) package for visualizations. A single function call
quantifies the colony sizes from an image:

gitter(file, plate.format, remove.noise=F,

inverse=F, autorotate=F,

contrast=F, fast=1500, verbose=p)

where file is the path to the plate image, plate.format is a length-2
vector of the number of rows and columns of colonies in the plate or
a known plate density (e.g., 1536 or 384), remove.noise is a boolean

determining whether noise and speckles should be removed before
quantification, inverse determines whether the image should be
inverted, autorotate determines whether the image should be autoro-
tated, contrast is a contrast factor (if any), that should be applied to
the image, fast is the width (in pixels) that the image should be resized
to before processing, and verbose indicates whether the progress
should be written out to the console. A set of images can be processed
in batch using the batch function:

gitter.batch(files, file.reference, ...)

where files is the directory containing images to be processed or a list
of file paths, file.reference is the path to a reference image to process
all images in file (optional), and ... is any of the previously mentioned
arguments. Additional documentation can be found online through
the documentation on the package website.

Figure 3 Sections of five example images and their thresholded
gridded output. gitter can quantify images with (A) irregular colonies,
(B) noise, (C) inverted colonies, (D) variable illumination, (E) cloudy
background, and (F) cracked plates.
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The result of calling gitter on a single file is a data frame containing
the row and column of the colony on the plate, the quantified size,
circularity, and any warning flags (potential overlap with neighbor
and low circularity). This data frame is output to a tab-delimited file,
and the thresholded image showing the boundaries of each colony (as
in Figure 3B) is created. Users can also visualize the quantified colony
sizes as a heatmap or bubble plot.

DISCUSSION
Software for analyzing images of genetic screens does not always work
out of the box for a new experimental setup. Here, we present gitter,
a tool that provides a robust and accurate way to quantify colony sizes
via a simple interface. We apply methods to deal with heterogeneity in
plate formats, as well as confounding factors such as rotation and
illumination differences, colony morphology, and plate edges. As
a result, the vast majority of the tested images can be processed
without requiring any input from the user to tweak the parameters,
and all tested images are successfully processed in batch provided one
well-behaving reference.

gitter optimizes the boundaries for each colony separately,
resulting in more accurate colony size estimates. This is especially be-
neficial for screens with irregular or larger-than-average colonies, and
we have shown that comparable tools often underestimate colony
sizes in such cases. As the downstream analyses look for the effects of
genetic perturbations by comparing colony sizes, these minute differ-
ences in estimates can have a substantial impact on the biological
interpretation of the screen.

The image analysis approach used by gitter required choosing
several algorithms and variables a priori. For example, we used the
Radon transform as a natural approach to quantify the variation in
different directions of the image. We also tested the 2-dimensional
Fourier transform but found extracting the optimal rotation angle
from it to be more error-prone. The 3 · 3 kernel was used for noise

removal as the smallest that eliminates one pixel speckles, since larger
kernels start compromising colony size by erosion. We picked the
background correction window size w to be larger than a colony
diameter so that erosion and dilation remove the foreground
objects. The choice of even-larger w results in further blurring of
the signal and reduction of correction efficacy, whereas choosing
a much smaller w results in subtracting off parts of colonies. The
typical width W is estimated from the central 50% of intensity
profiles to include only well-behaved portions of the image, and
exclude edges. Finally, we used a window of 1.5 · d around colony
centers to search for the optimal boundary while allowing for
variations in the colony’s morphology. Smaller windows produce
boundaries that cut off parts of irregular colonies, and larger ones
start encompassing neighboring colonies. All these parameters
were manually optimized for best performance on a large set of
test images.

Automated tools for extracting understanding from biological
data ought to be powerful and flexible on one hand, but intuitive
and approachable for bench scientists on the other. Although to
use gitter requires one to have a basic knowledge of R, we have also
made it accessible via the online SGAtools normalization, scoring,
and visualization suite (Wagih et al. 2013), so that images can be
processed in a web application without a command line interface.
gitter’s output is compatible with standard formats used in colony
processing software, allowing integration into existing data analysis
pipelines (Bean and Ideker 2012; Wagih et al. 2013). Future work
includes adding support for spot dilutions, tetrad plates, densito-
metric images, and multiplate images; the latter can currently be
processed with other existing tools (Dittmar et al. 2010; Lawless
et al. 2010). We hope that with gitter and SGAtools the transition
from images of a screen to understanding the effects of the per-
turbation is straightforward for experimentalists and not limited by
computation.

Figure 4 Comparison of gitter and other tools. (A) Comparison of colony sizes calculated by the four compared tools for three irregular images
that pass each tool. Colony sizes are normalized to a range of 021 by dividing by the maximum colony size. (B) Fitted colony bounds for the four
compared tools for three colonies. The dashed red boundary designates the region of the colony that is used for quantification. Sizes of these
colonies are marked on the scatter plots (A) with a red marker.
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