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Abstract

In addition to known genes, much of the human genome is transcribed into RNA. Chance formation of novel open reading frames

(ORFs) can lead to the translation of myriad new proteins. Some of these ORFs may yield advantageous adaptive de novo proteins.

However, widespread translation of noncoding DNA can also produce hazardous protein molecules, which can misfold and/or form

toxic aggregates. The dynamics of how denovo proteins emerge frompotentially toxic raw materials and what influences their long-

term survival are unknown. Here, using transcriptomic data from human and five other primates, we generate a set of transcribed

humanORFsat six conservation levels to investigatewhichproperties influence theearlyemergenceand long-termretentionof these

expressed ORFs. As these taxa diverged from each other relatively recently, we present a fine scale view of the evolution of novel

sequencesover recentevolutionary time.Wefindthatnovelhuman-restrictedORFsarepreferentially locatedonGC-richgene-dense

chromosomes, suggesting their retention is linked topre-existinggenes. Sequence properties suchas intrinsic structural disorder and

aggregation propensity—which have been proposed to play a role in survival of de novo genes—remain unchanged over time. Even

very young sequences code for proteins with low aggregation propensities, suggesting that genomic regions with many novel

transcribed ORFs are concomitantly less likely to produce ORFs which code for harmful toxic proteins. Our data indicate that the

survival of these novel ORFs is largely stochastic rather than shaped by selection.
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Introduction

Taxon-restricted genes have been discovered in numerous

clades, including animals (Begun et al. 2007; Knowles and

McLysaght 2009; Wissler et al. 2013; Palmieri et al. 2014;

Prabh and Rödelsperger 2016), fungi (Carvunis et al. 2012;

Vakirlis et al. 2018), and plants (Campbell et al. 2007; Zhang

et al. 2019). Many of these genes are thought to have evolved

de novo from ancestrally noncoding DNA rather than from

the duplication and divergence of pre-existing protein-coding

genes (Schmitz and Bornberg-Bauer 2017; Van Oss and

Carvunis 2019; Vakirlis et al. 2020). Despite their recent ori-

gin, de novo proteins can acquire important biological roles,

including adaptations to novel environments, and may even

become essential components of existing cellular processes or

physiological systems (Gubala et al. 2017; Baalsrud et al.

2018; Xie et al. 2019). In humans, de novo proteins have

functional roles in the brain (Wu et al. 2011), as well as in-

volvement in diseases, such as cancer (Samusik et al. 2013;

Papamichos et al. 2015; Guerzoni and McLysaght 2016).

Significance

Although de novo emerged proteins have been identified in numerous organism, how they evolve and transition from

chance transcriptional events to fully fledged proteins is little understood. Here we show that over the short time scale

of primate evolution, the sequence properties (such as protein disorder and aggregation propensity) of expressed

human open reading frames change little. This suggests that the retention of de novo gene precursors in the genome

is primarily a stochastic process and not driven by selection on structural properties.
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Analyses of the human genome and annotated protein-

coding genes suggest that several dozen human-proteins

arose de novo and indicate that de novo proteins are added

to the genome at a slow and stable rate (Knowles and

McLysaght 2009; Wu et al. 2011; Guerzoni and McLysaght

2016). However, transcriptomic data show the existence of

many thousands of human-restricted transcripts (Ruiz-Orera

et al. 2015). Species-restricted transcripts, which could serve

as the raw material for novel protein-coding or RNA genes,

are abundant suggesting that there is a rapid turnover in their

creation and loss (Chen et al. 2015; Ruiz-Orera et al. 2015;

Neme and Tautz 2016; Schmitz et al. 2018). How species-

restricted transcripts transition into protein-coding genes is

unclear. At a minimum, transcripts would require the forma-

tion of a sufficiently long open reading frame (ORF) in order to

be translated into proteins (we use proteins here in a broad

sense to refer amino-acid translations of nucleic acids irrespec-

tive of folding or functional information). Evidence from

ribosome-profiling experiments indicates that many taxon-

restricted sequences bind to ribosomes and are translated

into proteins which evolve neutrally (Wilson and Masel

2011; Schmitz et al. 2018; Ruiz-Orera et al. 2018). Thus, eu-

karyotic genomes are likely home to a shifting population of

novel transcripts containing ORFs with members regularly be-

ing gained and lost. Whether retention of these novel ORFs is

driven largely by selection, on specific properties of the pro-

teins, or is predominately stochastic and nonadaptive, is

unknown.

Transcriptomics studies show the pervasive transcription of

virtually the entire human genome (Clark et al. 2011;

Hangauer et al. 2013). However, the extent to which novel

ORFs are present in these transcripts, and to what degree they

are translated into proteins is uncertain. Translation of these

novel, previously noncoding, mRNAs may expose the cell to

numerous potentially toxic proteins (�Angy�an et al. 2012).

Many transcripts appear to be species- or taxon-restricted,

suggesting that there is a high turnover of novel transcripts,

either by stochastic loss of neutral sequences or the active

purging from the genome of deleterious sequences (Chen

et al. 2015; Ruiz-Orera et al. 2015, 2018; Neme and Tautz

2016; Schmitz et al. 2018). Thus, although much of the ge-

nome has the potential to produce novel de novo genes dis-

tinct from existing protein-coding genes, only a small fraction

of this is realized. Whether certain genomic regions are more

amenable to the production of new de novo genes, or if their

base composition influences the sequence properties of newly

emerging de novo genes, is unclear.

As de novo proteins have minimal sequence similarity with

pre-existing proteins, they may have radically different se-

quence properties and structures. Whether newly emerged

de novo proteins have specific three-dimensional folds or are

predominantly disordered in uncertain (Carvunis et al. 2012;

Schmitz and Bornberg-Bauer 2017; Wilson et al. 2017;

Vakirlis et al. 2018). Proteins with high levels of intrinsic

structural disorder (ISD) lack well-defined three-dimensional

structures and are less likely to misfold and form harmful

aggregates or plaques (Tretyachenko et al. 2017). ISD level

appears to be positively correlated with GC content of the

nucleic-acid sequence and high ISD levels may be due to de

novo genes emerging from GC-rich regions (Basile et al. 2017;

Vakirlis et al. 2018). Indeed, GC-rich mRNA molecules may be

more suitable de novo gene precursors as they are more sta-

ble and favorably translated into proteins than GC-poor RNA

(Chen et al. 2015). How the structural properties of young

proteins evolve over short timescales is little understood.

To bridge the gap between species-restricted transcripts

and de novo proteins, we used transcriptomic data from hu-

man and other primates to focus on the fine-scale evolution

of unannotated expressed ORFs. Using these data, we eluci-

date the rates at which novel ORFs emerge and are retained

and infer which properties influence survival of nascent de

novo proteins. We further categorize these ORFs based on

their proximity to annotated coding-genes to determine if

proximity to known genes has an influence on the rate of

emergence or sequence properties of novel ORFs. Our results

show that novel ORFs which map to coding regions are

steadily added to the genome. However, ORFs emerging

from intergenic and intronic regions are rapidly gained and

lost with few surviving over longer evolutionary timescales.

We find little evidence that sequence and structural properties

of novel ORFs change as they age over time suggesting that

their survival is nonadaptive rather than driven by selection.

Materials and Methods

Transcriptome Assembly

We assembled transcriptomes of six primate species; human

(Homo sapiens), bonobo (Pan paniscus), chimpanzee (Pan

troglodytes), gorilla (Gorilla gorilla), orang-utan (Pongo pyg-

maeus), and rhesus macaque (Macaca mulatta) and one ro-

dent outgroup (mouse [Mus musculus]) using HISAT2 and

StringTie following the protocol of Pertea et al. (2016).

We assembled transcriptomes using data from six tissue

types (brain, cerebellum, heart, lung, kidney, and testes) for

six of the seven species. For orang-utan only five tissues were

used (RNA-seq data for testes was unavailable). Raw reads

originally published by Brawand et al. (2011) were down-

loaded from the NCBI Sequence Read Archive (SRA). Before

assembling the transcriptomes, we trimmed the reads of

adapters and low quality bases (quality scores <15) using

Trimmomatic (Bolger et al. 2014). For details on RNA-seq

data and genomic GTF files used see supplementary table

S2, Supplementary Material online.

The genomes of the seven species were indexed using

HISAT2. All raw reads (after trimming and quality filtering)

were then mapped to the corresponding genome using

HISAT2 (for details see supplementary tables S3 and S4,
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Supplementary Material online). The resulting SAM files were

converted to BAM files using SAMtools (version 1.6) (Li et al.

2009). The mapped reads were then assembled using

StringTie (Pertea et al. 2016). Using StringTie, transcripts

from each tissue sample for each species were merged to

create a single transcriptome assembly for each of the seven

species. For each assembled transcriptome, a FASTA file was

created containing all transcript sequences. These FASTA files

were used as the source of BLAST queries or BLAST databases.

Identifying Novel Transcribed ORFs and Assigning
Conservation Levels

We predicted ORFs using the getorf program in the EMBOSS

software suite (Rice et al. 2000). We selected ORFs that began

with a start codon and ended with a stop codon. We used a

threshold of 30 amino-acids for each ORF, that is, a minimum

length of 90 nucleotides per ORF. We searched for ORFs in all

six reading frames. To reduce the effects of transcripts with

multiple copies and/or splice variants, we filtered out highly

similar sequences. For sequences with high similarity (95%

identity over 90% sequence length), we selected only the

longest sequence.

To determine the approximate age of human ORFs, we

used BLAST (Altschul et al. 1990) to search for homologous

ORFs in the six other transcriptomes (i.e., bonobo, chimpan-

zee, gorilla, orang-utan, Rhesus macaque, and mouse)

(BLASTp, cutoff of e-3). The divergence times for the six pri-

mate species were taken from Perelman et al. (2011).

Divergence time for mouse and primates was taken from

the “estimated divergence times” from timetree.org (Kumar

et al. 2017). Thus, for each predicted human ORF, we could

assign an approximate age to it, based on where in the pri-

mate phylogeny we identified corresponding homologous

sequences. To reduce the risk that lowly expressed genes be

incorrectly assigned to younger conservation levels, we fil-

tered out all ORFs with expression <0.5 TPM.

To find annotation statuses of transcribed ORFs, we

mapped all human transcribed ORFs to the GTF file (see sup-

plementary table S2, Supplementary Material online) used to

assemble the human transcriptomes. We categorized each

transcribed human ORF into one of eight different categories

based on proximity to annotation features. These were as

follows: a minimum of 5 kb away from an annotated gene

(class 0), within 5 kb of annotated gene but not overlapping

(class 1), within 5 kb of annotated gene but on opposite

strand (class 2), overlapping gene on same strand but not

exon (class 3), overlapping gene on other strand but not

exon (class 4), overlapping exon on same strand but out of

frame (class 5), overlapping exon on other strand but out of

frame (class 6), and overlapping exon in frame (class 7). For

the sake of simplicity, we only show results of the analyses of

certain annotation classes. Annotation classes shown are class

0 (corresponding to intergenic ORFs), class 3 corresponding to

intronic ORFs on same strand as gene), and classes 5–7 com-

bined and treated as a single new class (corresponding to

exon overlap). A simplified representation of annotations sta-

tuses of transcribed human ORFs is shown in figure 1a.

Synteny Analysis

As BLAST-based homology detection may miss highly di-

verged sequences, we verified our findings by predicting ho-

mologous transcribed ORFs independent of sequence

similarity using synteny information. We followed the meth-

odology used Ruiz-Orera et al. (2015). In short, we predicted

all ORFs longer than 30 codons using getorf (Rice et al. 2000).

We used the LiftOver tool from USCS Genome Browser (Lee

et al. 2020) to convert all ORF coordinates in chimpanzee,

gorilla, and orangutan to human genome (GRCh38) coordi-

nates. We then considered ORFs homologous if any human

ORF overlapped with an ORF in one of the other species by at

least one base. This gave us the proportion of shared ORFs at

three conservation levels. We repeated this process using the

chimpanzee as the focal species to determine the proportion

of chimpanzee ORFs which are shared with the other great

apes.

Analyses of ORF Sequence Properties

We predicted and/or calculated properties of each transcribed

ORF using several software tools. ISD was predicted using the

short disorder predictor setting of the program IUPred

(Doszt�anyi et al. 2005). Aggregation propensity was mea-

sured using TANGO (Fernandez-Escamilla et al. 2004;

Monsellier et al. 2008). Armomaticity, isoelectric point, codon

adaptation index, and hydropathy were measured using

EMBOSS (Rice et al. 2000). We predicted transmembrane

domains using Phobius (K€all et al. 2004; K€all et al. 2007)

and TMHMM (Krogh et al. 2001). For each sequence property

measured, we calculated an effect size of the difference be-

tween the youngest and oldest ORFs (i.e., human-specific

ORFs and human ORFs with homologs in mouse) using

Cohen’s d in R (R Core Team 2014) using the package effsize

(version 0.7.1) (Torchiano 2018).

Genomic Context

Genomic context of novel transcribed ORFs was determined

as follows.

We predicted repetitive elements present in the transcribed

ORFs using the program RepeatMasker (Smit et al. 2015). We

predicted repetitive elements for each age category but only

in the human sequences.

We measured GC content for each ORF (for the human

homolog). We also calculated GC content for each human

chromosome (genome assembly GRCh 38). We divided the

number of human-restricted transcribed ORFs found on each

chromosome by the length of the chromosome in million base

Open Reading Frames in the Human Lineage GBE
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pairs to calculate the number of human-restricted transcribed

ORFs per chromosome per million base pair.

Selection Pressure Analyses

To see if transcribed ORFs were under purifying selection, we

calculated dN/dS (x) values for each human ORF and its chim-

panzee homolog. We aligned the translated human ORFs

with the homologous sequence from the chimpanzee using

Muscle (Edgar 2004). Human-restricted ORFs were not ana-

lyzed as, by definition, they lack homologs in other species.

Using the amino-acid alignments, we aligned the correspond-

ing nucleotide sequences using pal2nal.pl (Suyama et al.

2006). We used the program codeml from the PAML (version

4.0) suite (Yang 2007) to calculate dN/dS (x) scores for each

alignment using two models: one in which sequences evolved

neutrally (m0) and another in which x could vary (m1a). We

used a likelihood ratio test to select between the two models.

We adjusted P values using the FDR method to control for

multiple testing using the stats package in R (R Core Team

2014). To determine whether older ORFs were more likely to

be under purifying selection, we used a v2 test to compare the

(a)

(b) (c)

(d) (e) (f)

FIG. 1.—Novel transcribed human open reading frames (ORFs). (a) Cartoon showing annotation status of novel ORFs. Intergenic ORFs (dark gray) are

located 5kb away from annotated genes, intronic ORFs are located within intron of annotated gene, exon overlapping ORFs map to coding regions (either

on same strand or other strand as annotated gene). (b) Cladogram of species studied showing divergence times with conservation level in brackets

(conservation level 0 corresponds to human-specific ORFs). (c) Counts of ORFs found at each conservation level. (d–f) Rate at which new intergenic, intronic,

and exon overlapping ORFs are added to the genome respectively.
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number of younger ORFs (conservation levels 1–4) which had

x below a threshold value (0.25 and 0.5) against older

sequences (conservation level 5).

Evidence for Translation of Transcribed ORFs

As a proxy for coding probability, we calculated hexamer

scores for each ORF using CPAT (Wang et al. 2013). To see

if transcribed ORFs bind to ribosomes, we downloaded hu-

man ribosome-profiling data from gwips.ucc.ie (see supple-

mentary table S1, Supplementary Material online for data

sources). We found the overlap between our transcribed

ORFs and ribosome-profiling reads based on their genomic

coordinates. ORFs which overlapped with genomic regions

which also overlapped with ribosome-profiling reads were

assumed to bind to ribosomes. To determine ribosome-

release score (RRS), we calculated the ratio of ribosome-

profiling reads which overlapped the ORF to those which

overlapped the 350 nucleotides following the stop codon of

the ORF (Guttman et al. 2013). As the ORFs did not have

annotated 30 UTRs, we used the 350 nucleotides after the

ORF stop codon as a proxy 30 UTR as this is the typical length

of eukaryote intronless proteins (Lynch and Marinov 2015).

We also looked for evidence of ORF translation from mass-

spectrometry based experiments. First, we downloaded all

human small proteins with mass spectrometry data from

the SmProt database (Hao et al. 2017). Next, we used

BLASTP to search the downloaded peptides using the tran-

scribed primate ORFs as query sequences. Mass spectrometry

data from human testes and cell culture were analyzed using

PeptideShaker (Vaudel et al. 2015) (see supplementary table

S1, Supplementary Material online for data used). Peaks were

identified using X! Tandem search tool. Reversed sequences

of the transcribed ORFs were used as decoy sequences to

detect false positives. Peptides were validated at a 1.0%

False Discovery Rate (FDR) which was estimated using the

decoy hit distribution. Further identification parameters

were as follows: Trypsin as cleavage enzyme, with maximum

of two missed cleavages, Fragment Ion Types: b and y,

Precursor m/z Tolerance: 10 ppm, Fragment m/z Tolerance:

0.5 Da, Precursor Charge: 2–4, Isotopes: 0–1. We selected

all ORFs that had at least one uniquely mapping peptide-

spectrum. For details of ORFs evidence of translation from

mass spectrometry experiments see supplementary table S8,

Supplementary Material online.

Results

Using transcriptomic data from six primate species, we iden-

tified 29,751 transcribed human ORFs arising from intergenic,

intronic, and exonic regions of the human genome (fig. 1 and

supplementary table S5, Supplementary Material online). We

used BLAST-based similarity searches to infer homologous

ORFs transcribed in other primate transcriptomes and thus,

get approximate ages and conservation levels for each ORF.

The majority (94.74%) of transcribed ORFs mapping to exons

have mouse homologs indicating that they are very ancient

(i.e., at least 90 million years old). Transcribed ORFs arising

from intergenic or intronic DNA, however, often lacked

homologs in older conservation levels and are more likely to

be restricted to more recent conservation levels (e.g., 82.9%

of intergenic and 88.69% of intronic ORFs are primate-

restricted). In total, we found 2,749 human-restricted tran-

scribed ORFs, of which 1,512 are intergenic, 1,158 are

intronic, and 79 map to annotated exons. A further 5,378

transcribed ORFs were primate-restricted transcribed ORFs

consisting of 2,738 intergenic, 1,923 intronic, and 717 ORFs

mapping to exons. We found that ORFs mapping to exons

arise at a steady rate. In contrast, intergenic and intronic ORFs

emerge at a higher rate than ORFs mapping to exons at more

recent timescales but at a lower rate over more distant time-

scales (fig. 1). Additionally, ORFs arising from intronic regions

were almost twice as common as ORFs arising from intergenic

regions (9,167 intronic compared with 5,101 intergenic) de-

spite introns accounting for a smaller proportion of the hu-

man genome than intergenic DNA (see supplementary table

S5, Supplementary Material online for the number of ORFs of

each conservation level and annotation class and supplemen-

tary fig. S8, Supplementary Material online for the number of

ORFs expressed in the same tissue in different species).

To verify that our findings were not due to biases in BLAST-

based homology detection (e.g., missing highly diverged

homologs, see supplementary fig. S6, Supplementary

Material online for sequence identity of inferred homologs),

we predicted homology independently of sequence similarity.

Using synteny information, we found that both the human

and chimpanzee genomes contain a large proportion of

species-restricted transcribed ORFS (see fig. 2). As we

searched more distantly related genomes, we found fewer

shared ORFs. Note, for the synteny-based homology infer-

ence, we did not filter our highly similar sequences as we

had done in the BLAST-based analysis and, thus, the absolute

numbers of shared ORFs differs between the two analyses.

To test if transcribed certain ORFs were more likely to be

retained in the genome, we predicted sequence properties

(ISD, ORF length, aggregation propensity, GC-content, aro-

maticity, isoelectric point, hydropathy, codon adaptation in-

dex, and presence of transmembrane domains) for all

transcribed ORFs at each conservation level (fig. 3, supple-

mentary figs. S9–S11, Supplementary Material online). For

intergenic and intronic ORFs, we found little change in ISD,

aggregation propensity, and GC-content, aromaticity, isoelec-

tric point, hydropathy, codon adaptation index of, and pres-

ence of transmembrane domains in ORFs over time. The

length of ORFs, however, did increase with time. Exonic

ORFs did change over time slightly in terms of ISD, GC-

content, codon adaptation index, isoelectric point, and length

Open Reading Frames in the Human Lineage GBE
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(see supplementary table S6 and fig. S10, Supplementary

Material online).

GC content has an influence on ISD of young proteins

(Basile et al. 2017). To determine whether ISD of our candi-

date genes were dependent on GC content of the sequence,

we compared GC content of each ORF with its predicted ISD.

ISD was positively correlated with each GC content for ORFs

of each annotation class but was stronger for intergenic and

intronic ORFs (fig. 4 intergenic: R¼ 0.422, intronic: R¼ 0.481,

Coding: R¼ 0.288).

Young ORFs (i.e., human-restricted) have GC content in-

termediate between mean chromosomal GC and old ORFs

(i.e., those with homologs in mouse, fig. 5a). Chromosomes

with higher GC content contained more human-restricted

ORFs than chromosomes with lower GC content when con-

trolling for chromosome length (Rho¼ 0.84, P¼ 2.05e–06,

Spearman correlation) (fig. 5b).

To determine how primate-restricted ORFs were evolving,

we calculated pair-wise x values for human–chimpanzee

homologs (fig. 6). Median x values of younger conservation

classes suggest that these ORFs are evolving neutrally whereas

older ORFs (conservation level 5) were evolving under purify-

ing selection. Approximately 31% (2,091/6,778) of primate

specific ORFs had x values below 0.5, 12% (824/6,778) had

x values under 0.25. In contrast, 73% (11,825/16,199) of

transcribed ORFs in the oldest conservation level had x values

below 0.5 and 49% (7,958/16,199) were under 0.25. ORFs of

the oldest conservation level were significantly more likely to

have x< 0.5 (v2¼ 3392.5632, df¼ 1, P< .00001) or 0.25

(v2¼ 2647.5017, df¼ 1, P< .00001). For further details of

v2 tests performed see supplementary table S7,

Supplementary Material online. We did not find x to be cor-

related with the number of tissues each ORF was expressed in

(supplementary fig. S7, Supplementary Material online) and

most ORFs share similar tissue expression (supplementary fig.

S8, Supplementary Material online).

We used two methods to infer protein-coding status of

transcribed ORFs. First, we calculated RRS for all human

ORFs with human ribosome profiling data. RRS above 1 (or

0 in log transformed data as in fig. 7a) are likely to be under

active translation as there are more ribosome reads overlap-

ping the ORF compared with the 30 UTR. RRS scores indicative

of translation were found in approximately one quarter of

ORFs with ribosome binding evidence. ORFs mapping to an-

notated exons are more likely to have RRS scores indicative of

protein-coding status than intergenic or intronic ORFs (fig. 7a

and b). The second method used to identify likely protein-

coding sequences was to calculate hexamer scores for each

(a) (b)

FIG. 2.—Syntenic transcribed open reading frames (ORFs) in great apes. (a) Fraction of human ORFs with syntenic homologs in other conservation levels.

(b) Fraction of chimpanzee ORFs with syntenic homologs in other conservation levels. Conservation levels correspond to those used in figure 1b.
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transcribed ORF. Hexamer scores above 0 indicate protein-

coding sequences. ORFs which arise from exons are more

likely to have hexamer scores above 0 than intergenic or

intronic ORFs. Even so, �37% (2,812/7,624) of primate re-

stricted ORFs mapping to intergenic or intronic DNA have

hexamer scores above 0 indicating that a proportion of these

novel intergenic and intronic transcribed ORFs resemble

protein-coding sequences (fig. 7c and d). Furthermore, we

found evidence from mass spectrometry studies for 70 pri-

mate specific proteins by searching the SmProt database (Hao

et al. 2017). By reanalyzing mass spectrometry data, we

found evidence for at least one peptide from the mass spec-

trometry data mapping to each of a further five primate-

specific ORFs from our data set.

Additionally, we found that many human and primate re-

stricted ORFs overlap with repetitive elements. Alu-elements

were especially common with 1,845 (14%) of primate-

restricted ORFs containing Alu-elements (see supplementary

fig. S1, Supplementary Material online for details).

Discussion

Widespread transcription and translation of the human ge-

nome can lead to the expression of a multitude of potentially

beneficial or hazardous novel RNA and protein molecules.

Here, we used transcriptomic data from six primate species

to investigate the early emergence and transcription of novel

ORFs and the properties which contribute to their conserva-

tion over time. We found that the rate at which novel tran-

scribed ORFs are recruited into the genome varies with their

proximity to annotated protein-coding genes. ORFs which

have arisen from intergenic or intronic regions are rapidly

gained and lost. However, we find that ORFs which arise

from pre-existing exons (e.g., through a frame-shift) are

(a) (b)

(c) (d)

FIG. 3.—Sequence properties of transcribed human open reading frames (ORFs). (a) Log ORF length. (b) Intrinsic structural disorder (ISD). (c) Aggregation

propensity. (d) GC-content.
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gained at stable rate, confirming previous findings showing

that de novo proteins are added to the genome of great apes

at a constant rate (Guerzoni and McLysaght 2016).

Transcriptomics studies indicate that novel taxon-restricted

transcripts, which may or may not have selected biological

functions, are rapidly gained and lost (Neme and Tautz

2016). Our results show that many transcribed ORFs are

species-restricted (e.g., �15% of human ORFs, see fig. 1)

and suggest that there is a similar rapid turnover of novel

ORFs, with the vast majority not surviving over longer

FIG. 4.—Correlation between GC content of ISD. Top left: intergenic ORFs. Top right: intronic ORFs. Bottom left: ORFs overlapping exons.

(a) (b)

FIG. 5.—Novel transcribed human open reading frames (ORFs) and chromosomal GC-content. (a) GC-content of chromosomes, young ORFs (conser-

vation class 0), and old ORFs (conservation class 5). (b) GC-content of chromosomes and number of novel ORFs (conservation class 0) per million base pairs.
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evolutionary times. This suggests that the formation of both

novel transcripts and ORFs is common, but their long-term

conservation is rare.

We find roughly twice as many intronic ORFs as intergenic

ORFs even though introns account for far less of the human

genome (see supplementary table S5, Supplementary

Material online). This may be due to the higher transcriptional

rate of introns compared with intergenic regions and suggests

that certain portions of the genome may be more prone to de

novo gene emergence than others.

Closely related taxa share more novel sequences than more

distantly related taxa (Neme and Tautz 2016). As we used

primate taxa with relatively recent divergence times, we

were able to identify a large number (�29%) of novel tran-

scribed ORFs shared between multiple primate taxa (see fig. 1

and supplementary table S5, Supplementary Material online).

The relatively high number of ORFs at each conservation level

(i.e., >1,000 ORFs) and of each annotation category allowed

us to confidently compare changes in sequence properties of

novel ORFs over time and infer how they influence the survival

of novel ORFs. Several protein properties, such as ISD and

aggregation propensity, have been suggested to play a role

in the survival of nascent de novo genes (table 1). The inter-

pretation of some trends in the evolution of sequence prop-

erties of young sequences may be compounded because of

biases inherent to using BLAST-based methods to assign ho-

mology (Moyers and Zhang 2018). However, reanalyses of

published data suggest that the trends reported are not solely

due to biases of using BLAST (Domazet-Lo�so et al. 2017). In

our study, we used closely related taxa to minimize BLAST

biases (Moyers and Zhang 2018; Vakirlis et al. 2020), as

well as evaluating our finding on a subset of our data not

likely to be error-prone (see supplementary figs. S2–S4,

Supplementary Material online). We find that predicted ISD
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FIG. 6.—dN/dS omega (x) values of transcribed human–chimpanzee homologous open reading frames (ORFs). (a) Log transformed scores. (b) Proportion

of ORFs with x below thresholds of 1, 0.5, and 0.25.
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and aggregation propensity of intergenic and intronic ORFs

do not change significantly over time, in agreement with

previous findings in mouse and other mammals (Schmitz

et al. 2018). Young ORFs which map to exons do appear

to have slightly elevated ISD levels compared with older

exonic ORFs. This observation may be because the

(a) (b)

(c) (d)

FIG. 7.—Translation of transcribed human open reading frames (ORFs). (a) Log Ribosome Release Score. Values above 0 indicate coding sequence. (b)

Proportion of ORFs with RRS above 1 indicating coding potential. (c) Hexamer score of novel ORFs. Scores above 0 indicate coding sequences. (d) Proportion

of sequences with hexamer scores above 0 indicating coding sequences.

Table 1

Comparison of Sequence Properties Between Youngest and Oldest ORFs Investigated in this and Other Studies

Study Focal Species GC Content ISD Aggregation Length

Ruiz-Orera et al. (2015) Human/chimpanzee Lower — — Shorter

Chen et al. (2015) Human Higher — — Shorter

Schmitz et al. (2018) Mouse — Same Same Shorter

Xie et al. (2019) Mouse — Lower — Shorter

This study/intergenic Human Same Same Same Shorter

This study/intronic Human Same Same Same Shorter

This study/CDS Human Higher Higher Lower Shorter
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majority of these young ORFs map to alternative reading

frames of GC-rich sequences, which, due to their higher

GC-content, have higher ISD (Casola 2018).

Proteins with high levels of ISD have been suggested to be

better tolerated in the cell as they are less likely to form harm-

ful aggregations and plaques (Monsellier et al. 2008; �Angy�an

et al. 2012; Tretyachenko et al. 2017; Wilson et al. 2017). ISD

has also been shown to impact the emergence of novel pro-

tein extensions in yeast (Kleppe and Bornberg-Bauer 2018).

However, studies of yeast transcriptomes showed that youn-

ger ORFs have lower rather than higher levels of disorder than

older ORFs (Carvunis et al. 2012; Vakirlis et al. 2018), whereas

in mouse disorder levels remain unchanged between old and

young age classes (Schmitz et al. 2018). Our results show that

young ORFs code for proteins with similar levels of ISD as older

ORFs. In addition, young ORFs have similar aggregation pro-

pensities to older ORFs and are not more likely to form aggre-

gations than pre-existing proteins. Novel ORFs which produce

highly deleterious, aggregation prone, proteins are likely to be

rapidly purged from the genome and thus, possibly missing

from our analyses. Alternatively, regions of the genome pre-

disposed to the emergence and transcription of novel ORFs

may also be less likely to produce codons which code for

aggregation prone proteins, thus the initial pool of novel

ORFs may be more similar to pre-existing proteins than previ-

ously anticipated (Basile et al. 2017).

Several studies indicate that younger protein-coding genes

have shorter coding sequences and contain fewer introns

than older genes, although little is known about the rate of

ORF extension or addition of introns (Carvunis et al. 2012;

McLysaght and Guerzoni 2015; Villanueva-Ca~nas et al.

2017; Klasberg et al. 2018; Schmitz et al. 2018; Vakirlis

et al. 2018). Our results agree with these findings and show

that young intergenic, intronic, and exonic ORFs are all shorter

than older ORFs in their respective categories. Short ORFs

(typically<100 codons in length) code for small protein prod-

ucts which are able to fold correctly more rapidly and effi-

ciently than larger more complex proteins and are therefore

less likely to form toxic aggregations (Hartl et al. 2011). Small

proteins can also have important biological functions and ac-

tivities and many conserved microproteins have been found in

numerous taxa (Andrews and Rothnagel 2014; Mackowiak

et al. 2015; Ruiz-Orera and Alb�a 2019). Additionally, the ex-

tension of an ORF into noncoding DNA can yield novel de

novo protein domains (Klasberg et al. 2018).

It seems likely that novel ORFs may remain in the human

genome for millions of years before being selected for specific

functions. Indeed, data in great apes show the existence of

hundreds of novel multi-exon transcripts evolving neutrally,

indicating that young de novo may evolve gene-like properties

prior to acquiring biological functions (Ruiz-Orera et al. 2015).

In our data, which included single exon transcribed ORFs,

pairwise x values show that the majority of primate-

restricted ORFs are evolving neutrally. However, over 30%

of primate-restricted ORFs (2,091/6,778) with chimpanzee

homologs tested have x values below 0.5 indicating that

they are under mild purifying selection and suggesting that

they may be translated into functional protein products. We

find that a similar proportion of primate-restricted transcribed

ORFs have hexamer scores indicative of protein-coding genes

and RRS suggesting active translation of the ORF. We found

little evidence of translation from mass spectrometry data;

however, the data used were not explicitly generated to de-

tect short or lowly expressed proteins. Studies specifically

searching for de novo proteins have returned far higher quan-

tities (Zhang et al. 2019). Thus, future studies of de novo

proteins may benefit from targeted mass spectrometry experi-

ments aimed at short or lowly expressed proteins.

We find that young ORFs tend to be preferentially located

on gene-dense GC-rich chromosomes (fig. 5b and supple-

mentary fig. S5, Supplementary Material online). This may

be due to the greater transcriptionally activity in GC-rich

regions of the genome compared with GC-poor regions lead-

ing to the expression of more ORFs (Versteeg et al. 2003).

Moreover, as stop codons are AT-rich, GC-rich DNA is more

likely to contain long uninterrupted ORFs. However, Illumina

sequencing data (such as those used here) can be biased

against reporting especially GC-rich or GC-poor sequences

(Benjamini and Speed 2012; Ross et al. 2013). Thus, our anal-

yses may have missed ORFs from regions with extremely high

or low GC. Additionally, we filtered out very short ORFs (<30

codons) which are likely to be prevalent in AT-rich regions.

Specifically, using transcriptomics data that account for the

heterogeneity in GC content of the human genome may be

needed to accurately determine whether certain genomic

regions are more likely to give rise to novel ORFs.

Our results support previous findings which indicate that

each species is host to a myriad of novel transcribed sequen-

ces. Fine-scale analyses, using closely related taxa, have

allowed for the study of the evolution of protein properties

in insects (Heames et al. 2020) and fish (Schmitz et al. 2020)

but, until now, not mammals. Our use of recently diverged

primate taxa allows us to trace the fine-scale evolution of

expressed ORFs over recent time scales in a mammalian order.

We find that novel ORFs are frequently formed and tran-

scribed from intergenic and intronic regions. Properties of

these transcribed ORFs, such as ISD, aggregation propensity,

and proximity to annotated genes; do not change with in-

creasing level suggesting that their chance of survival over

time and long term retention are largely stochastic rather

than driven by selection.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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