Abstract

Lycopodiophyta—consisting of three orders, Lycopodiales, Isoetales and Selaginellales, with different types of shoot apical meristems (SAMs)—form the earliest branch among the extant vascular plants. They represent a sister group to all other vascular plants, from which they differ in that their leaves are microphylls—that is, leaves with a single, unbranched vein, emerging from the protostele without a leaf gap—not megaphylls. All leaves represent determinate organs originating on the flanks of indeterminate SAMs. Thus, leaf formation requires the suppression of indeterminacy, that is, of KNOX transcription factors. In seed plants, this is mediated by different groups of transcription factors including ARP and YABBY.

We generated a shoot tip transcriptome of Huperzia selago (Lycopodiales) to examine the genes involved in leaf formation. Our H. selago transcriptome does not contain any ARP homolog, although transcriptomes of Selaginella spp. do. Surprisingly, we discovered a YABBY homolog, although these transcription factors were assumed to have evolved only in seed plants.

The existence of a YABBY homolog in H. selago suggests that YABBY evolved already in the common ancestor of the vascular plants, and subsequently was lost in some lineages like Selaginellales, whereas ARP may have been lost in Lycopodiales. The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM. Furthermore, a comparison of the expression patterns of ARP in shoot tips of Selaginella kraussiana (Harrison CJ, etal. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434(7032):509–514.) and YABBY in shoot tips of H. selago implies that the development of microphylls, unlike megaphylls, does not seem to depend on the combined activities of ARP and YABBY. Altogether, our data show that Lycopodiophyta are a diverse group; so, in order to understand the role of Lycopodiophyta in evolution, representatives of Lycopodiales, Selaginellales, as well as of Isoetales, have to be examined.

Introduction

All aboveground organs of land plants originate from the shoot apical meristem (SAM). Three main types of SAMs exist (fig. 1). Angiosperms and Gnetopsida have duplex SAMs whose apical initials (AIs) are located in the central part of the two to three outermost cell layers (the tunica) and divide anticlinally to form the epidermis and the outer cortex (Gifford and Foster 1989; Steeves and Sussex 1989). The initials of the layers below the tunica, the corpus, divide in various planes to form the ground and vascular tissues. Therefore, in these plants tunica and corpus are not clonally related (Newman 1965; Philipson 1990; Popham 1951; fig. 1A). Most monilophytes (i.e., ferns s.l.) and some lycophytes (Selaginellales) have monoplex SAMs with a single tetrahedral AI in the superficial cell layer of the apex, which is the ultimate source of all shoot apex cells (Bierhorst 1977; Gifford 1983). Simplex SAMs with few to several AIs in the superficial layer exist in other lycophytes (Lycopodiales and Isoetales), in some monilophytes as well as in most gymnosperms (Ambrose and Vasco 2016; Buvat 1989). Here, the AIs divide both anticlinally and periclinally, thereby producing peripheral and subsurface cells of the SAM, respectively.

Fig. 1.

—Shoot apical meristems (SAMs) in land plants. (A) Types of the SAM. From left to right: monoplex (single Apical Initial, AI) SAM of Selaginella kraussiana, simplex (several AIs in the surface layer, that divide both anticlinally and periclinally) of Huperzia selago, duplex (several AIs in two or three outermost layers that divide exclusively anticlinally, also known as tunica-corpus type) in Syringa vulgaris. AIs are shown in red, subapical cells in purple, peripheral cells in light green, and cells of leaf primordia in dark green. (B) Morphology and density of plasmodesmata in different SAM types: numerous unbranched (simple) plasmodesmata in the walls between the apical cell and its immediate derivatives in S. kraussiana; scarce, mainly branched H-shaped and Y-shaped plasmodesmata in the basal walls of the peripheral AIs in H. selago; simple rare plasmodesmata in the walls between cells of layers L1 and L2 of the tunica in the duplex SAM of potato. (C) Distribution of the SAM types throughout the main groups of higher plants (Kenrick and Crane, 1997; Judd etal. 2002): This scheme infers that all SAMs evolved from a plesiomorphic monoplex precursor, with independent origins of simplex SAMs in lycophytes and gymnosperms, respectively. Bar: 50 µm (A); 1 µm (B).

The three types of SAMs differ in origin and distribution of the plasmodesmata (PD) connecting their cells. In plants, PD between cells can be primary or secondary with regard to their origin. Primary PD develop during cytokinesis and connect “sister cells” from the same cell lineage. Secondary PD arise de novo, that is, postcytokinetically, between cells, which belong to different cell lineages. All cells within a monoplex SAM are clonally related and connected exclusively by primary PD (Gunning 1978; Imaichi and Hiratsuka 2007); indeed, a hypothesis has been put forward that the presence of a single AI in plants with monoplex SAMs is a consequence of the inability of the cells to form secondary PD (Cooke etal. 1996). This might explain the presence of a gradient of PD density in monoplex SAMs where PD abundance gradually decreases from the AI towards the distant cells in the apex (Gunning 1978; Imaichi and Hiratsuka 2007). In simplex and duplex SAMs, cells can be connected by both primary and secondary PD, and no PD density gradients have been observed (Imaichi and Hiratsuka 2007). Altogether, the organization of the borders between SAM domains is drastically different in the three types of SAMs (Evkaikina etal. 2014; fig. 1B).

Interestingly, two types of SAMs can be found within the earliest branch of vascular plants, the lycophytes (i.e., Lycopodiophyta; fig. 1C), one of them (simplex) with clear seed plant-like traits such as formation of secondary PD between cells and the presence of multiple AIs. The type of SAM in lycophytes shows no correlation with homo-/heterospory; lycophytes with simplex SAMs include homosporous Lycopodiales and heterosporous Isoetales, whereas the heterosporous Selaginellales have monoplex SAMs. Neither does the type of SAM correlate with leaf type since all members of the Lycopodiophyta are inferred to have the same fundamental leaf type, which contrasts with that of other vascular plants. These leaf types have long been assumed to have evolved independently in the two major groups of vascular plants: microphylls in the Lycopodiophyta and megaphylls in euphyllophytes (monilophytes and seed plants). Microphylls are always simple in shape and contain a single vascular trace, whereas megaphylls develop complex vasculature and variable shape. Although the evolutionary origin of megaphylls as a result of gradual modifications of leafless axes, or telomes of rhyniophytes sensu lato, is widely accepted, the pattern of microphyll origin is still controversial. Three different concepts of their origin are under discussion: concept 1) that microphylls, like megaphylls, evolved by gradual reduction of lateral telomes (Zimmerman 1952); 2) the de novo origin of microphylls as stem tissue outgrowths (enations; e.g., Bower 1908, p. 552–554); and 3) the sterilization theory which sees microphylls as modified sporangia (Kenrick and Crane 1997).

At any rate, however, both microphylls and megaphylls are determinate organs originating on the flanks of indeterminate SAMs (Gifford and Foster 1989). Thus, in all vascular plants leaf formation involves the addition of a determinate growth program to the indeterminate growth program of the SAM. Class I KNOTTED1-like homeobox (KNOX) genes encode the key transcription factors that maintain the cells in an undifferentiated state (Byrne 2012; Kessler and Sinha 2004). They act in a noncell-autonomous manner, moving between cells via PD (Carles and Fletcher 2003; Gaillochet etal. 2015; Holt etal. 2014; Perales and Reddy 2012). The functions of KNOX I proteins are conserved among Selaginellales, ferns and angiosperms (Harrison etal. 2005). Chen etal. (2013, 2014) have suggested that the ability of KNOX I proteins to efficiently traffic through PD was acquired early in the evolution of land plants, that is, already in Bryophyta, which only contain primary PD. Simplex SAMs in Lycopodiales/Isoetales as well as duplex SAMs in angiosperms require secondary PD. There is evidence for differences in trafficking through primary and secondary PD (Ding etal. 1992; Hake and Freeling 1986).

Determinate leaf growth thus requires the repression of KNOX I activity in the progeny of stem cells destined to generate lateral organs. A complex genetic network is responsible for leaf lamina outgrowth and specification of adaxial–abaxial polarity. The most important members of this network are genes encoding MYB homologs (ASYMMETRIC LEAVES1, ROUGH SHEATH2 and PHANTASTICA, collectively called ARP), the adaxial determinants, and the YABBY genes, which were first proposed to represent abaxial determinants, are now thought to play a key role in regulating laminar outgrowth in response to adaxial–abaxial juxtaposition (reviewed by Yamaguchi etal. 2012).

Most studies have been conducted on angiosperms, but the genome sequence of a heterosporous lycophyte, Selaginella moellendorffii (Selaginellales), was published in 2011 (Banks etal. 2011) and has since then played an important role in comparative genomics and improved our understanding of land plant evolution. However, to progress in the field and obtain a better understanding of evolution of SAMs in land plants, more data and better taxonomic coverage are needed, not least from the Lycopodiophyta. We therefore sequenced the shoot tip transcriptome of a homosporous lycophyte, Huperzia selago (Lycopodiales).

Both the telome theory of leaf evolution and the sterilization hypothesis of microphyll evolution can be interpreted to mean a common origin of microphylls and megaphylls and are supported by the data of Harrison etal. (2005) and the gymnosperm transcriptome data of Finet etal. (2016). However, the enation hypothesis of microphyll evolution is supported by the data of Floyd and Bowman (2006) on HD-Zip III genes in Selaginella kraussiana. Similarly, the evolution of the different types of SAMs has not been resolved. Did the duplex SAM of angiosperms evolve from the simplex SAM of the common ancestor of vascular plants, with the monoplex SAMs in Selaginellaceae and monilophytes represent convergent evolution after independent losses? Or do the simplex SAMs of Isoetales/Lycopodiales and gymnosperms, which all contain secondary PD, represent cases of independent convergent evolution from monoplex SAMs, whereas the duplex SAMs of angiosperms evolved later from the simplex SAMs of gymnosperms? In this context, it is interesting that the evolution of angiosperms (with duplex SAMs) involved a large expansion of the KNOX gene family (Gao etal. 2015).

In order to see whether the evolution of simplex meristems in Lycopodiales led to a similar expansion, we analyzed the phylogeny of KNOX proteins in the H. selago transcriptome. As the down-regulation of KNOX I genes represents a key event in differentiation of leaf primordia in all plants, we set about to search for transcripts of the two major KNOX I repressors, ARP and YABBY, in the H. selago transcriptome.

Materials and Methods

Plant Material

All plants of Huperzia selago were collected near Kuznechnoe village at the shore cliffs of Ladoga Lake (Leningrad Region, Russian Federation). If necessary, H. selago plants were cultivated in a greenhouse at 19 °C and a light regimen of 8 h light/16 h dark with ca. 200 µMol photons m2 sec1 in pots using Kuznechnoye forest soil; otherwise, they were shock-frozen in a dry ice/EtOH mixture and stored at −80 °C. A voucher specimen prepared from cultivated material that had been harvested on June 16, 2012 has been deposited in the herbarium of the Swedish Museum of Natural History (S), leg. K. Pawlowski s.n. (S; Reg. No. S17-11258). Based on the study by Case (1943) describing the rhythmic pace of H.selago shoot growth and development and on our own observations, plant material for molecular studies was collected on June 11, 2011 (transcriptome), and on May 30, 2016 (RT-PCR), when the plants had completed a zone with sterile leaves and began to form fertile leaves with sporangia. Material for DNA isolations was harvested on July 24, 2016, when the fertile zone had developed further. Plants for shoot tips for in situ hybridization were harvested in September 2016; their uppermost region was sterile, followed by a completed fertile zone. Shoot tips were fixed after these plants had been cultivated in the greenhouse for a week.

For RNA isolation, ca. 4 mm long shoot tips were cut off with a razor; then the leaves were cut off under a stereomicroscope with razor blade, leaving shoot apices with shoot apical meristems and primordia of young leaves and sporangia. The material was divided into several samples of 100 mg fresh weight each, which were ground with mortar and pestle in liquid nitrogen upon addition of 100 mg Polyclar AT (Serva, Mannheim, Germany). The ground samples were transferred into Eppendorf tubes precooled in liquid nitrogen and stored at −80 °C until being used for RNA isolation. For DNA isolation, plant material was shock-frozen in liquid nitrogen and stored at −80 °C. For in situ hybridization, plants with soil were transferred to the laboratory and observed for 1 week to make sure they were still growing; then, shoot tips were fixed.

RNA Isolation and Transcriptome Sequencing

RNA was isolated using TRIzol reagent according to Chomczynski and Mackey (1995). The absence of contaminating DNA was confirmed by direct PCR for ubiquitin (Heidstra etal. 1994). After poly(A) selection, a strand-specific library was prepared using the TruSeq Stranded mRNA Sample Prep Kit (Illumina RS-122-2103; Illumina, San Diego, CA, USA). A bead based RoboCut size selection was performed using the 430 A and 280B buffers, resulting in fragments of ca. 280–430 bp with an average fragment size of ca. 350 bp. The library was sequenced in an Illumina MiSeq v2 flow cell to produce 21.29 million paired end reads of 250 bp (SciLifeLab, Stockholm, Sweden). The raw data were submitted to GenBank (BioProject PRJNA281995).

Transcriptome Assembly

We ran Trimmomatic v0.32 (Bolger etal. 2014) to trim the RNA-Seq reads, with a quality cut-off of 20. With these trimmed reads, we assembled a de novo transcriptome with Trinity r2013-08-14 (Grabherr etal. 2011; Haas etal. 2013), using default parameters. We discarded all the sequences whose length was <300 nucleotides. We then mapped back the same set of trimmed reads onto the Trinity assembly with bowtie (Langmead etal. 2009), and performed abundance estimation using RSEM (Li and Dewey 2011). For each Trinity component, we selected the most abundant transcript as representative sequence. We ended up with a data set of 63,908 transcript sequences.

Transcriptome Analysis

We ran a blastx search of our representative transcriptome against all the plant protein sequences in the nr (nonredundant) database using blast 2.2.29+ (Camacho etal. 2009) and kept the 20 best hits for each transcript. We then used Blast2GO V.2.8.0 (Conesa etal. 2005) to retrieve the corresponding GO IDs associated with these hits. Following the Gene Ontology Consortium guidelines (Gene Ontology Consortium 2001), we removed the GO IDs that should not be used for direct annotations. Five transcripts of KNOX genes were found in the transcriptome (GenBank accession KX761181 - KX761185), as well as one transcript of YABBY (GenBank accession KX761186).

Molecular Cloning

Molecular cloning of YABBY cDNAs from fresh shoot tips of H. selago was performed by PCR amplification. Total RNA was isolated via the method of Chomczynski and Mackey (1995) using TRIzol reagent. First strand cDNA was synthesized using Maxima First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA). Full length H. selago YABBY cDNA was amplified using the gene-specific primers 5′-GAGCGTACTTGCTACAAATCATGTCATCC-3′ and 5′-GGATGAACTTTCTGGTGGAAGGAGTTACA-3′ and 1.25 U of Taq DNA polymerase (Syntol, Moscow, Russia) according to the manufacturer’s instructions. The absence of contaminating DNA was confirmed by direct PCR for ubiquitin (Heidstra etal. 1994). PCR conditions were: 40 cycles of 95°C for 30 s, 63 °C for 30 s, and 72 °C for 1 min. PCR products were cloned in pJET1.2 (Thermo Scientific) and sequenced. The genomic sequence of YABBY was amplified using H. selago DNA as a template with the same gene-specific primers and 0.4 U of Phusion High-Fidelity DNA Polymerase (Thermo Scientific). DNA was extracted according to Doyle and Doyle (1990). The PCR protocol was 98 °C for 5 min, followed by 35 cycles of 98 °C for 10 s, 72 °C for 2.5 min. PCR products were cloned in pJET1.2 (Thermo Scientific) and sequenced (GenBank accession MF175244).

In situ RNA–RNA Hybridization and Cytology

Full length H. selago YABBY cDNA in pJET1.2 was used for both sense and antisense probe synthesis. Plasmids containing the cDNA in different orientations were linearized with NcoI (Thermo Scientific) according to the manufacturer’s instructions, followed by extraction with phenol/chloroform 1:1 (v/v). 0.5 µg of each linearized plasmid were used for invitro transcription with T7 RNA polymerase in the presence of DIG-11-UTP according to the manufacturer’s instructions (Roche, Mannheim, Germany) in the presence of RNase inhibitor (Syntol). After invitro transcription, the reaction mix was treated with 1 Unit of DNase (Thermo Scientific) for 15 min at 37 °C, then 2 µl of 200 mM EDTA (pH 8.0) were added, followed by 10 min incubation at 65 °C. Probes were hydrolyzed in 60 mM Na2CO3/40 mM NaHCO3, pH 10.2 for 19 min at 60 °C to obtain fragments of 200–300 nucleotides (Roche). Hydrolysis was stopped using 3 M sodium acetate (pH 6.0), followed by EtOH precipitation. Unincorporated nucleotides were removed using an RNA probe purification kit (E.Z.N.A., Omega bio-tek, Norcross, GA, USA).

Huperzia selago shoot apices were fixed with 4% paraformaldehyde in microtubule-stabilizing buffer (MTSB; 80 mM PIPES pH 6.8, 1 mM MgCl2, 5 mM EGTA plus 0.2% Tween-20 and 0.2% Triton X-100) or in 3% paraformaldehyde in 1/3 MTSB (containing 0.2% Tween-20, 0.2% Triton X-100 and additionally 10% DMSO) overnight at 4 °C after vacuum infiltration. Both treatments yielded the same results; the results depicted in this manuscript are from the fixation in 4% PFA Afterwards, the tissue was dehydrated in a graded ethanol series and embedded in paraffin with 60 °C melting temperature following Karlgren etal. (2009; Arabidopsis embedding version).

In situ hybridizations were performed according to Coen etal. (1990) and Eisel et al. (2008) with some modifications. Results were documented using an Olympus BX51 light microscope (Olympus, Hamburg, Germany) equipped with a Colorview II camera (Olympus).

For the analysis of the leaf structure of H. selago, plant material was fixed in FAA (Formalin-Acetic Acid-Alcohol), dehydrated with a graded ethanol series, embedded in paraffin, cross-sectioned with Accu-Cut SRM 200 Rotary Microtome (Sakura), deparaffinized in xylenes, rehydrated and stained with 0.1% Safranin O solution according to standard plant anatomy protocols (Ruzin 1999).

Plant Evolution: Data, Sequence Alignment, and Phylogenetic Analyses Using Parsimony

Data from the newly produced transcriptome of Huperzia was analyzed along with data from GenBank (accessions are given in supplementary table S1; Supplementary Material online). Sequences of three chloroplast markers were utilized, rbcL, atpB and rps4. Alignment was performed using ClustalX (Chenna etal. 2003) with minor subsequent manual editing. The aligned data matrix comprised 105 taxa representing the major clades of land plants, and a total of 3,359 characters (1,344 from rbcL, 1,398 from atpB, and 613 from rps4). Parsimony analyses were performed in Paup* (Swofford 2002). A starting tree for divergence time analyses (see below) was produced by using the heuristic search option, 100 random sequence additions, TBR branch swapping. Bootstrap analysis was conducted, performing 1,000 bootstrap replicates with ten random sequence additions in each. Trees were rooted using liverworts (Marchantia, Plagiochila, and Pellia) as outgroup, and Euphyllophytes were enforced as monophyletic according to generally accepted views of land plant phylogeny (e.g., Pryer etal. 2001; Qiu etal. 2007; Rydin etal. 2002).

Estimation of Divergence Times of Clades

Phylogeny and absolute divergence times of clades were estimated using a Bayesian approach as implemented in software BEAST v. 1.8 (Drummond etal. 2012). The analyses were set up using software BEAUti v. 1.8 (Drummond etal. 2012). A full description of the methodological approach is given in the Supplementary Material Online (supplementary file S1). Two identical analyses were run, each for 100 million generations, with parameters logged every 10,000 generations. In addition a third analysis was run, identical to the other two but with sampling from priors only. Values sampled for different parameters and convergence of runs were examined and assessed in Tracer v. 1.5 (Rambaut and Drummond 2007). Results were summarized using LogCombiner v. 1.8 and Tree Annotator v. 1.8 (Drummond etal. 2012). Graphic output was produced in FigTree (http://tree.bio.ed.ac.uk/software/figtree/; last accessed June 8, 2014).

Gene Trees

The H. selago transcriptome data set was cleaned and translated with Transdecoder (Haas etal. 2013). It was then merged with the predicted proteomes of Amborella trichopoda (AmbTri), Arabidopsis thaliana (AraTha; Arabidopsis Genome Initiative 2000), Chlamydomonas reinhardtii (ChlRei; Merchant etal. 2007), Oryza sativa (OrySat; Goff etal. 2002), Ostreococcus lucimarinus (OstLuc; Palenik etal. 2007), Physcomitrella patens (PhyPat; Rensing etal. 2008), Populus trichocarpa (PopTri; Tuskan etal. 2006), Selaginella moellendorffii (SelMoe; Banks etal. 2011), Vitis vinifera (VitVin; Jaillon etal. 2007) and Zea mays (ZeaMay; Schnable etal. 2009), downloaded from Phytozome v. 11 (Goodstein etal. 2012); and the genomes of Pinus taeda (PinTae) (v. 1.0, downloaded from http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pita/v1.0/; last accessed August 18, 2017) and Picea abies (PicAbi) (v. 1.0, downloaded from http://congenie.org/start; last accessed August 18, 2017) (Nystedt etal. 2013). We used blastp (v. 2.2.28; Camacho etal. 2009) to find similar sequences; AT1G62360.1 (Arabidopsis STM) was used as the query for KNOX and AT1G08465.1 (Arabidopsis YAB2) as the query for YABBY. To achieve better coverage of the Lycopodiophyta, transcriptome data sets for species that contained both class I and class II KNOX transcripts were obtained from the OneKP database, namely, Lycopodium deuterodensum, Isoetes tegetiformans, Selaginella apoda, and Selaginella kraussiana (Matasci etal. 2014; Wickett etal. 2014).

Protein domain analysis was performed with Pfam-A (Finn etal. 2016) and hmmer (v. 3.1b2) (Mistry etal. 2013). All YABBY orthologs contained the characteristic YABBY domain whereas the most strict requirement for KNOX protein demanded that they are full-length homologs—that they have two KNOX domains, a homeobox and ELK domain (supplementary fig. S1, Supplementary Material online). Another, less strict set of requirements allowed for any sequence with at least one of the two KNOX domains or a homeobox domain (supplementary fig. S1, Supplementary Material online). Protein sequences were aligned with mafft (v7.123b; parameter genafpair, maximum number of cycles of iterative refinement= 1000; Katoh and Standley 2013), columns with >20% gaps were removed with trimAl (version 1.4.rev15; Capella-Gutiérrez etal. 2009) and trees were inferred with RAxML (v. 8.2.4, parameters: rapid bootstrap analysis and search for the best-scoring ML tree in one program run (-f a), 100 bootstraps, protein model JTTIG) (Stamatakis 2014). Protein model was determined using ProtTest 3 (Darriba etal. 2011). Trees were visualized with iTol v3 (Letunic and Bork 2016).

Results

The H. selago Shoot Tip Transcriptome

RNA was isolated from shoot tips of field samples of H. selago. After reduction of one isoform per gene, and removal of contigs <300 bp, the assembly contained 78,760 contigs. When the sequences with an RPKM value of 0 were removed, 63,908 contigs were left. For annotation, blastx searches were run in May 2014. From 63,908 sequences, only 22,212 yielded a hit against NCBI NR (plants) and/or Swissprot. For those contigs that got a hit in the Gene Ontology database with Blast2GO, the associated GO terms for biological processes and molecular functions are shown in figure 2. TransDecoder (v 2.0.1; Haas etal. 2013) was run on the 41,696 transcripts that did not get a blastx hit against NCBI NR plant. Among them, 7,681 sequences have a coding region of at least 75 aa long.

Fig. 2.

—Gene ontology (GO) mapping results for H. selago contigs. (A) Biological processes, (B) Molecular functions. The chosen GO categories are at the same “high level” in the GO hierarchy. The best represented categories, especially for molecular functions, are similar to those found in a whole plant transcriptome of Selaginella moellendorfii (Weng etal. 2005).

However, only ca. 35% of the assembled cDNAs showed similarity with database sequences, or in other words, the transcriptome contained ca. 65% of orphans. Such a high percentage of orphans is unusual, but not unheard of; a functional transcriptome of the lone star tick had been shown to contain 71% of orphans, a fact ascribed to taxonomic isolation (Gibson etal. 2013). Still, this was a very high number of orphans. Since a field sample had been used for isolating RNA for sequencing, blobtools (version 0.9.19; Kumar etal. 2013) was used to examine the transcriptome for potential contaminants/endophytes. Blobtools was run based on four blast (Version 2.4.0+) searches: a blastn megablast on the NCBI nucleotide database, a blastx on the SwissProt database, a blastn megablast on the SILVA database (RNAcentral SILVA collection) and a blastx search against NR (NCBI). The reads were remapped on the final transcriptome (63,908 contigs). The read_cov plot (supplementary fig. S2; Supplementary Material Online) shows that 19% of the reads mapped to transcripts annotated as “no hits”, whereas 75% of the reads mapped to transcripts annotated as belonging to the Streptophyta clade. Almost no reads mapped to known sequences belonging to other organisms from various clades (bacteria, chordata, ascomycota). The percentage of “no hits” reads is not surprising given the high number of transcripts annotated as orphans. These orphans likely represent lineage-specific genes that are currently absent from the databases used for the searches, rather than unknown contaminants. Thus, a problem of contamination by known organisms can be excluded.

To ascertain the quality of the assembly, the 63,908 contigs were compared with the BUSCO plant set (Simão etal. 2015, at the time only available on request). This set contains single-copy genes from the Embryophyta clade, based on the OrthoDB database of orthologs (http://www.orthodb.org/; last accessed October 31, 2016). Of 956 BUSCO groups, 780 were found complete in the transcriptome (590 groups were found once and 190 more than once). Altogether, 81.5% of the BUSCO groups were complete, 5.3% were fragmented and 13.2% were missing. This compares well with other transcriptomes analyzed using BUSCO (spinach, Xu etal. 2015; Pinus patula, Visser etal. 2015; several sea grasses, Lee etal. 2016).

We next examined the phylogenetic position of H. selago to determine whether it could explain the high percentage of orphans.

Phylogenetic Analysis of the Position of H. selago Relative to Selaginella sp. and to Angiosperms

In order to provide a context of the high amount of orphans in the transcriptome, the evolutionary position of H. selago was examined phylogenetically using Bayesian inference. The topological results (fig. 3) are generally well supported and consistent with accepted views of land plant phylogeny. Effective age prior distributions (as assessed by a prior only analysis) were consistent with those specified (table 1) for all nodes. Huperzia diverged from its closest relative Lycopodium about 93 Ma, from the heterosporous lycopods (Isoetes and Selaginella) 376 Ma, and the most recent common ancestor of Huperzia and the angiosperm Arabidopsis dates to 419 Ma. All node ages and confidence intervals are given in table 1. In summary, the divergence of Selaginellales and Lycopodiales within the lycopods took place in the Late Devonian before the evolution of megaphylls, and Huperzia and Lycopodium diverged during the Late Cretaceous, during the early radiation of angiosperms (Beerling etal. 2001; Pires and Dolan 2012).

Table 1

Age Priors, and Posterior Distributions and Probabilities for Selected Clades

NodesPrior Source (distribution)Monophyly EnforcedPrior Ages: Median (95% CI)Posterior Ages: Median (95% HPD)Posterior Prob. of CladesPrior Setting References (see text for details)
Land plants (root)Fossila (lognormal)480.2 (472.8–497.1)487 (471–532)1Taylor etal. (2009), Kenrick (2003)
Land plants except MarchantiophytaTree prior onlyyes477 (446–527)1
Anthocerophyta and TracheophytaTree prior only445 (427–468)0.94
TracheophytaFossila (lognormal)yes423.1 (412.4–459.8)419 (410–433)1Kidston and Lang (1920), Hao (1988), Kenrick and Crane (1997)
LycopodiophytaTree prior only376 (354–399)1
LycopodiaceaeTree prior only93 (41–181)1
Selaginellaceae and IsoetaceaeFossila (lognormal)yes346.1 (335.4–382.8)341 (332–355)1Bateman and DiMichele (1994), Korall etal. (1999), Rowe (1988)
EuphyllophytaFossila (lognormal)yes401.5 (396.2–419.9)402 (395–413)1Granoff etal. (1976), Kenrick and Crane (1997), Hoffman and Tomescu (2013)
MonilophytaTree prior only342 (306–373)1
SpermatophytaFossila (lognormal)yes329.6 (319.8–352.2)327 (317–343)1Hilton and Bateman (2006), Doyle (2008), Taylor etal. (2009)
AngiospermaeFossila (lognormal)yes146.3 (138.3–173.9)161 (146–181)1Friis etal. (2011)
EudicotsFossila (exponential)yes126.7 (126.1–129)127 (126–129)1Friis etal. (2011)
CycadophytaTree prior only57 (28–121)1
PinaceaeTree prior only48 (27–78)1
GnetalesTree prior only139 (97–182)1
CupressophytaTree prior only184 (136–231)1
NodesPrior Source (distribution)Monophyly EnforcedPrior Ages: Median (95% CI)Posterior Ages: Median (95% HPD)Posterior Prob. of CladesPrior Setting References (see text for details)
Land plants (root)Fossila (lognormal)480.2 (472.8–497.1)487 (471–532)1Taylor etal. (2009), Kenrick (2003)
Land plants except MarchantiophytaTree prior onlyyes477 (446–527)1
Anthocerophyta and TracheophytaTree prior only445 (427–468)0.94
TracheophytaFossila (lognormal)yes423.1 (412.4–459.8)419 (410–433)1Kidston and Lang (1920), Hao (1988), Kenrick and Crane (1997)
LycopodiophytaTree prior only376 (354–399)1
LycopodiaceaeTree prior only93 (41–181)1
Selaginellaceae and IsoetaceaeFossila (lognormal)yes346.1 (335.4–382.8)341 (332–355)1Bateman and DiMichele (1994), Korall etal. (1999), Rowe (1988)
EuphyllophytaFossila (lognormal)yes401.5 (396.2–419.9)402 (395–413)1Granoff etal. (1976), Kenrick and Crane (1997), Hoffman and Tomescu (2013)
MonilophytaTree prior only342 (306–373)1
SpermatophytaFossila (lognormal)yes329.6 (319.8–352.2)327 (317–343)1Hilton and Bateman (2006), Doyle (2008), Taylor etal. (2009)
AngiospermaeFossila (lognormal)yes146.3 (138.3–173.9)161 (146–181)1Friis etal. (2011)
EudicotsFossila (exponential)yes126.7 (126.1–129)127 (126–129)1Friis etal. (2011)
CycadophytaTree prior only57 (28–121)1
PinaceaeTree prior only48 (27–78)1
GnetalesTree prior only139 (97–182)1
CupressophytaTree prior only184 (136–231)1
a

Absolute ages of fossil strata are inferred based on stratigraphic interpretations in The Geological Time Scale (Gradstein etal. 2012).

Table 1

Age Priors, and Posterior Distributions and Probabilities for Selected Clades

NodesPrior Source (distribution)Monophyly EnforcedPrior Ages: Median (95% CI)Posterior Ages: Median (95% HPD)Posterior Prob. of CladesPrior Setting References (see text for details)
Land plants (root)Fossila (lognormal)480.2 (472.8–497.1)487 (471–532)1Taylor etal. (2009), Kenrick (2003)
Land plants except MarchantiophytaTree prior onlyyes477 (446–527)1
Anthocerophyta and TracheophytaTree prior only445 (427–468)0.94
TracheophytaFossila (lognormal)yes423.1 (412.4–459.8)419 (410–433)1Kidston and Lang (1920), Hao (1988), Kenrick and Crane (1997)
LycopodiophytaTree prior only376 (354–399)1
LycopodiaceaeTree prior only93 (41–181)1
Selaginellaceae and IsoetaceaeFossila (lognormal)yes346.1 (335.4–382.8)341 (332–355)1Bateman and DiMichele (1994), Korall etal. (1999), Rowe (1988)
EuphyllophytaFossila (lognormal)yes401.5 (396.2–419.9)402 (395–413)1Granoff etal. (1976), Kenrick and Crane (1997), Hoffman and Tomescu (2013)
MonilophytaTree prior only342 (306–373)1
SpermatophytaFossila (lognormal)yes329.6 (319.8–352.2)327 (317–343)1Hilton and Bateman (2006), Doyle (2008), Taylor etal. (2009)
AngiospermaeFossila (lognormal)yes146.3 (138.3–173.9)161 (146–181)1Friis etal. (2011)
EudicotsFossila (exponential)yes126.7 (126.1–129)127 (126–129)1Friis etal. (2011)
CycadophytaTree prior only57 (28–121)1
PinaceaeTree prior only48 (27–78)1
GnetalesTree prior only139 (97–182)1
CupressophytaTree prior only184 (136–231)1
NodesPrior Source (distribution)Monophyly EnforcedPrior Ages: Median (95% CI)Posterior Ages: Median (95% HPD)Posterior Prob. of CladesPrior Setting References (see text for details)
Land plants (root)Fossila (lognormal)480.2 (472.8–497.1)487 (471–532)1Taylor etal. (2009), Kenrick (2003)
Land plants except MarchantiophytaTree prior onlyyes477 (446–527)1
Anthocerophyta and TracheophytaTree prior only445 (427–468)0.94
TracheophytaFossila (lognormal)yes423.1 (412.4–459.8)419 (410–433)1Kidston and Lang (1920), Hao (1988), Kenrick and Crane (1997)
LycopodiophytaTree prior only376 (354–399)1
LycopodiaceaeTree prior only93 (41–181)1
Selaginellaceae and IsoetaceaeFossila (lognormal)yes346.1 (335.4–382.8)341 (332–355)1Bateman and DiMichele (1994), Korall etal. (1999), Rowe (1988)
EuphyllophytaFossila (lognormal)yes401.5 (396.2–419.9)402 (395–413)1Granoff etal. (1976), Kenrick and Crane (1997), Hoffman and Tomescu (2013)
MonilophytaTree prior only342 (306–373)1
SpermatophytaFossila (lognormal)yes329.6 (319.8–352.2)327 (317–343)1Hilton and Bateman (2006), Doyle (2008), Taylor etal. (2009)
AngiospermaeFossila (lognormal)yes146.3 (138.3–173.9)161 (146–181)1Friis etal. (2011)
EudicotsFossila (exponential)yes126.7 (126.1–129)127 (126–129)1Friis etal. (2011)
CycadophytaTree prior only57 (28–121)1
PinaceaeTree prior only48 (27–78)1
GnetalesTree prior only139 (97–182)1
CupressophytaTree prior only184 (136–231)1
a

Absolute ages of fossil strata are inferred based on stratigraphic interpretations in The Geological Time Scale (Gradstein etal. 2012).

Fig. 3.

—Dated phylogeny inferred from analysis of three chloroplast genes (atpB, rbcL, and rps4), using a Bayesian framework and a relaxed molecular clock. Values represent node ages (median heights), followed by posterior probabilities of clades. Blue bars illustrate the node height 95% HPD intervals. The most recent common ancestor of Huperzia and Selaginella is estimated to have existed about 376 Ma, and that of Huperzia and Arabidopsis about 419 Ma. Accession numbers of all sequences used in the phylogeny are given in supplementary table S1, Supplementary Material online.

Phylogeny of a Family of Noncell-Autonomous Transcription Factors: KNOX

To trace the evolution of the KNOX protein family in H. selago we inferred a KNOX gene tree with orthologs from a wide range of plant species with sequenced genomes (see Material and methods for an overview). We supplemented these with transcriptome sequences from the OneKP project to more precisely determine the time of duplication events. The gene tree shows a clear distinction between KNOX I and KNOX II genes (fig. 4). In both groups, Lycopodiophyta sequences represent sister groups to the seed plant sequences. No class II KNOX protein was found in the Ostreococcus lucimarinus genome (Palenik etal. 2007) which is consistent with the conclusion of Gao etal. (2015) that algal KNOX proteins have higher similarity with KNOX I.

Fig. 4.

—Gene tree of KNOX proteins. The gene tree of KNOX proteins shows a clear separation of sequences into KNOX I (top branch) and KNOX II (bottom branch) classes, with Lycopodiophyta sequences in both classes. Lycopodiophyta sequences are highlighted; species from class Isoetopsida are shown in blue (Selaginella sp. and Isoetes tegetiformans) whereas sequences from class Lycopodiopsida (Huperzia selago and Lycopodium deuterodensum) are shown in green. Duplication nodes for Lycopodiophyta are marked with red squares. Bootstrap support is only shown for values>60. Angiosperm sequences are collapsed for clarity. Complete trees are shown in supplementary figure S1, Supplementary Material online. All sequences used are listed in supplementary table S1, Supplementary Material online.

The KNOX tree was rooted based on the duplication event that took place before the last common ancestor of the chlorophytes and streptophytes. The transcriptome of H. selago contains five KNOX I and KNOX II genes. Three KNOX gene duplications took place in the ancestor of Lycopodiophyta, one in class I and two in class II (fig. 4; supplementary fig. S1, Supplementary Material online). The duplication in class I and one of the duplications in class II took place within the Lycopodiales, represented in the tree by H. selago and Lycopodium deuterodensum.

The H. selago Transcriptome Does Not Contain an ARP Homolog

No ARP homologs were found in the H. selago transcriptome using the Arabidopsis protein sequence (GenBank accession O80931.1) and tBlastN. To confirm the lack of of ARP homologs in the H. selago transcriptome, we mapped the Huperzia reads on the ARP mRNA sequence from S. kraussiana (GenBank accession number AAW62520.1). Two different mapping programs, bwa-mem (Li and Durbin 2009) and Stampy (Lunter and Goodson 2011), were used, but despite the high conservation of the first 110 amino acids even between S. kraussiana and Arabidopsis (for comparison on the protein and RNA level, see supplementary fig. S1; Supplementary Material online) no reads mapped to the ARP sequence (data not shown). Hence, no ARP gene seems to be expressed in shoot tips of H. selago.

The H. selago Shoot Tip Transcriptome Contains a YABBY Homolog

YABBY transcription factors are thought to be specific to seed plants with one or two YABBY genes present in the last common ancestor of extant seed plants (Finet etal. 2016), although a precursor has been found in a marine alga, Micromonas (Worden etal. 2009). Surprisingly, we were able to identify a YABBY domain protein in the H. selago transcriptome. It has a clear similarity to the YABBY domain as found in Arabidopsis YABBY proteins (fig. 5). The genomic sequence corresponding to the cDNA was amplified and sequenced (GenBank accession MF175244); the intron–exon structure of HsYABBY is similar to that of Arabidopsis YABBY genes (Siegfried etal. 1999; Supplementary fig. S1 and table S1; Supplementary Material online). Phylogenetic analysis showed that HsYABBY is a sister to YABBY proteins from euphyllophytes (supplementary fig. S1 and table S1; Supplementary Material online). These results suggest that the last common ancestor of Lycopodiophyta and Euphyllophyta thus already contained a YABBY-domain protein that was likely lost in Sellaginellaceae.

Fig. 5.

—Identification of H. selago YABBY. (A) Alignment of H. selago YABBY with angiosperm YABBY proteins. Alignment of H. selago YABBY with Arabidopsis YABBY orthologs. The YABBY domain is marked in green. (B) A schematic tree of YABBY proteins. The full tree is available in supplementary figure S1, Supplementary Material online; all sequences used are listed in supplementary table S1, Supplementary Material online. The angiosperm orthologous groups are collapsed and named after the Arabidopsis gene. H. selago YABBY, belonging to the earliest branching species in the tree, is the outgroup to all YABBY orthologous groups.

HsYABBY Is Expressed in the Surface Cell Layer of the SAM and the Leaf Primordia

In situ RNA–RNA hybridization experiments showed that HsYABBY is expressed in the SAM with the strongest signal in the surface layer where the apical initials (AI) of the simplex SAM type are located, and weaker signal in their subsurface derivatives. However, much weaker or no expression was detected in the AI themselves (fig. 6A and C). In early stages of leaf development, HsYABBY expression could be detected in all cells of the incipient leaf primordia and of sporangia primordia, whereas in older leaf primordia its expression is confined to the surface cells of both the abaxial and adaxial sides (fig. 6A, C, and D). HsYABBY expression could also be detected in the cauline procambium as well as in the leaf trace procambium (fig. 6A).

Fig. 6.

YABBY expression in shoot tips H. selago analyzed by in situ hybridization. (A, B) Median longitudinal sections through the SAM were hybridized with antisense (A, B) and sense RNA (C). The structure of the H. selago SAM is outlined in figure 1A. HsYABBY mRNA can be detected in the SAM (peripheral parts indicated by curved dashed lines, central part indicated by curved line), with the strongest signal in the outermost cell layer and in the peripheral zone, incipient and young leaf primordia (LPs; arrows), and sporangia primordia (arrowheads) and in the axial and leaf trace procambium (diamonds). Considerably weaker signal is seen in the central cells of the outer layer, the apical initials (AIs, indicated by the curved line) and the subapical cells which are part of the meristem. (D, E) Transverse section of the shoot tip hybridized with antisense (D) and sense (E) RNA of HsYABBY. YABBY expression is uniform in the youngest LPs, whereas in older LPs it is confined to both the abaxial and the adaxial epidermis and to the procambium of the leaf trace. The meristem is marked by an asterisk, incipient LPs are outlined by dashed lines; older LPs are marked with arrows. (F) A transversal section through a H. selago leaf stained with Safranin shows its uniform mesophyll cells and amphicribral vascular bundle. An arrow points to the xylem, a dashed arrow to the phloem. Bars denote 100 µm.

Discussion

The sequencing of the shoot tip transcriptome of Huperzia selago revealed in the first place an unusually high amount of orphan sequences, which could be explained by taxonomic isolation. Our phylogenetic studies revealed that the two branching points in the evolution of Lycopodiophyta could be dated to 376 (Lycopodiales vs. Selaginellales/Isoetales) and 341 Ma (Selaginellales vs. Isoetales), respectively, that is, they preceded the separation between gymnosperms and angiosperms. Therefore, considerable diversity can be expected between Lycopodiophyta from different orders. This assumption is supported by fossil discoveries that document a substantial historical lycophyte diversity, including groups that had gone extinct already by the end of the Paleozoic (e.g., Kenrick and Crane 1997). Lycophytes were a common feature of Earth’s vegetation during the late Paleozoic, the large tree-lycopods of the Isoetales being one of the most well-known examples (see, e.g., Larsén and Rydin 2016 for a brief summary of isoetalean diversity). Thus, the treatment of Selaginella sp. as general model species of the Lycopodiophyta is likely to lead to erroneous conclusions.

Lycopodiales and Isoetales contain simplex SAMs whereas Selaginellales contain monoplex SAMs. Simplex SAMs require the formation of secondary plasmodesmata (PD) whereas monoplex SAMs require only primary PD. One aim of this study was to find out whether the family of class I KNOX genes encoding noncell autonomous transcriptional regulators expanded during the evolution of simplex SAMs. A considerable expansion of KNOX genes took place at the basis of angiosperm evolution (Banks etal. 2011; Gao etal. 2015). In angiosperms, at least two different subgroups of class I KNOX proteins exist, STM (only in eudicots), KNAT1 and KNAT2/6 (Gao etal. 2015; fig. 4; supplementary fig. S1, Supplementary Material online). The H. selago shoot tip transcriptome described in this study contained five KNOX genes, whereas four KNOX genes (two class I and two class II genes) had been found in the Selaginella moellendorfii genome (Gao etal. 2015). Our analysis showed a gene duplication of class I KNOXes in the genomes of Lycopodiales (fig. 4). The situation for Isoetales is not clear—either there was no gene duplication, or not all class I KNOX gene sequences of Isoetes sp. are available, which might be due to the fact that no shoot tip transcriptome was analyzed. No clear conclusion can be drawn with regard to the ability of lycophyte KNOX proteins to traffick through PD (supplementary fig. S1; Supplementary Material online).

Two groups of transcription factors can repress the expression of class I KNOX genes. The group of MYB orthologues collectively called ARP functions in the regulation of the proximal-distal leaf length by epigenetically repressing the expression of class I KNOX genes (Machida etal. 2015). The fact that no ARP transcripts could be found in the H. selago shoot tip transcriptome, might be taken to suggest that ARP, while present in Selaginellales, is missing in Lycopodiales. Conifer homologs of ARP can be found in the shotgun transcriptomes in GenBank using tBlastN (supplementary fig. S1; Supplementary Material online). Thus, although no ARP protein is annotated in GenBank for gymnosperms—which, like Lycopodiales, form simplex meristems—it should be pointed out that the absence of ARP genes, or ARP expression, cannot be a feature of plants with simplex meristems.

Transcription factors of the YABBY family have been shown to be involved in the initiation of the outgrowth of the lamina, the maintenance of polarity, and the establishment of the leaf margin. Like ARP proteins, YABBY can repress the expression of KNOX1 genes (Kumaran etal. 2002). So far, YABBY proteins have been believed to be restricted to Spermatophyta (Finet etal. 2016). In gymnosperms, YABBY proteins are grouped in four clades, whereas five clades are present in angiosperms. Based on phylogeny and expression patterns, Finet etal. (2016) concluded that either one or two YABBY genes were present in the last common ancestor of extant seed plants where they presumably were involved in the determination of polarity connected to the evolution of laminar leaves. Yet, we identified a YABBY homologue in the H. selago shoot transcriptome. Its expression pattern in shoot tips showed major differences with those of angiosperm YABBY genes (see e.g., Siegfried etal. 1999) in that HsYABBY transcripts are localized in the SAM with the strongest signal in the surface layer where the AIs of the simplex SAM are located, although not in the AIs themselves (fig. 6), whereas angiosperm YABBY transcripts are never present in the SAM. However, the expression pattern of HsYABBY showed striking similarity with that of ARP from Selaginella kraussiana (fig. 1J in Harrison etal. 2005), the expression of which in the SAM had been explained by its ancestral function being the control of shoot dichotomy. As Huperzia is characterized by dichotomous branching just like Selaginella (Gola and Jernstedt 2011), HsYABBY might have the same function here.

In incipient leaf primordia, HsYABBY expression was detected in all cells, whereas later its expression was confined to the surface layers on both the abaxial and the adaxial side. Again, this is different from the distinct abaxial expression of YABBY in angiosperms, but corresponds perfectly to the expression pattern of ARP in S. kraussiana (Harrison etal. 2005). A further similarity between the expression pattern of SkARP and HsYABBY is the presence of both mRNAs in the leaf trace procambium. HsYABBY is transcribed also in the cauline procambium which was not shown for SkARP. The expression of both SkARP and HsYABBY in procambium cells, where angiosperm ARP or YABBY genes are not expressed, might be linked to the different mechanisms employed for vascularization in lycophytes versus angiosperms (Floyd and Bowman 2006).

Mature microphylls of both Selaginella and Huperzia lack internal polarization into adaxial palisade and abaxial spongy mesophyll; they are composed of uniform spongy cells (Chu 1974; Harrison etal. 2007; fig. 6E). For H. selago microphylls, there is no difference between the upper and lower epidermis regarding stomata count (Chu 1974). Moreover, vascular bundles of both species are concentric and amphicribral (Smith 1938; fig. 6E). This is also the case for the symmetric “abaxialized” leaves of an Antirrhinum majus ARP (PHAN) loss-of-function mutant (Waites and Hudson 1995). Similarly, a gain-of-function mutant of Arabidopsis that constitutively represses the expression of a member of the YABBY family (fil; McConnell and Barton 1998) has symmetric “adaxialized” leaves with a concentric vascular bundle (reviewed by Bowman etal. 2002). In summary, the resemblance between Selaginella sp. and Huperzia sp. microphylls on the one hand, and angiosperm leaves lacking dorsoventral polarization through combined action of ARP and YABBY on the other hand, suggests that either one of the two suppressors of KNOX expression is sufficient for the switch between determinacy and indeterminacy that results in microphyll development.

In summary, either YABBY evolved convergently in both Lycopodiales and seed plants, or the common ancestor of both must have contained both ARP and YABBY genes, both of which encode transcription factors able to suppress the expression of class I KNOX genes. Given the absence of YABBY in Selaginella and the apparent absence of ARP in Huperzia, and the strong similarity of their expression patterns in shoot tips, we propose that in Lycopodiales, the ARP gene or its expression in shoot apices was lost, while in Selaginellales, the YABBY gene was lost. And if YABBY genes evolved in the common ancestor of vascular plants and are expressed in the primordia of both leaves and sporangia of Huperzia, one possible scenario is that like KNOX1 and ARP genes they were part of a sporangium-specific developmental program that was recruited for leaf development in lycophytes, monilophytes and seed plants (Worsdell 1905; Vasco etal. 2016).

Based on the fact that the SAM-like structure in Chara resembles a monoplex SAM (Graham etal. 2000) and that most seedless land plants analyzed have monoplex SAMs, it has been traditionally assumed that the monoplex SAM is plesiomorphic for land plants (Gifford and Foster 1989; Kenrick and Crane 1997). Kidston and Lang (1920) had observed several initials in the SAMs of Rhyniophytes, but due to poor tissue preservation this was not considered reliable proof of simplex SAM ancestry. However, stronger support of the plesiomorphy of SAMs with several, not single, apical initials came from research of Cooke etal. (1996) and Imaichi and Hiratsuka (2007) on the symplastic structure of SAMs in an evolutionary context. As mentioned earlier, monoplex SAMs (SAMs with a single AI) are characterized by containing exclusively primary PDs, whereas SAMs with several AIs have both primary and secondary PDs. Both groups of authors interpreted this as support for a scenario where the loss of the ability to form secondary PDs led to the development of monoplex SAMs from simplex SAMs. This would have happened independently in microphyllous Selaginella and most euphyllous monilophytes. Furthermore, recent molecular evidence (Frank etal. 2015) supports the idea that the simplex SAM might indeed be ancestral for the sporophytes of terrestrial plants and later was lost in the lycophyte Selaginella and in most monilophytes. The existence of YABBY homologues in Spermatophyta as well as in the shoot tips of H. selago, and therefore probably in the common ancestor of vascular plants, also suggests that it might be more parsimonious to assume that simplex SAMs, and thus also secondary PDs, were present in the common ancestor of vascular plants.

Conclusions

The common ancestor of lycophytes and euphyllophytes is likely to have contained two types of transcription factors that could repress the transcription of class I KNOX genes, ARP as well as YABBY. This supports the new paradigm of leaf evolution proposed by Vasco etal. (2016) that supposes a deep homology of all types of leaves. In due course, YABBY was lost in Selaginellales, whereas our data suggest that ARP may have been lost in Lycopodiales.

The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM and thus also had to have evolved secondary PD. If this was the case, secondary PD in Lycopodiales and seed plants should be homologous, and lycophyte KNOX proteins should be able to traffick through secondary PD.

The fact that analyses of the H. selago transcriptome could change our views on different hypotheses about the ancestral SAM type in land plants shows that more genomic/transcriptomic data from plants from different ancestral lineages have to be studied.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

This study was supported by the institutional research projects no. 01201255613 and no. 0126-2016-0001 of the Komarov Botanical Institute RAS and by the Russian Foundation for Basic Research (grants #14-04-01397 and #17-04-00837 to M.A.R.). The Core Facility Center “Cell and Molecular Technologies in Plant Science” at the Komarov Botanical Institute RAS and the Research Resource Centre for Molecular and Cell Technologies of Saint-Petersburg State University are gratefully acknowledged for technical support. Bioinformatics support by BILS (Bioinformatics Services for Swedish Life Science) is gratefully acknowledged. We would also like to thank the two anonymous reviewers who improved the manuscript with their constructive criticism.

Literature Cited

Ambrose
B
,
Vasco
A.
2016
.
Bringing the multicellular fern meristem into focus
.
New Phytol
.
210
(
3
):
790
793
.

Arabidopsis Genome Initiative
2000
.
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
.
Nature
408
:
796
815
.

Banks
JA
, et al. 
2011
.
Selaginella genome identifies genetic changes associated with the evolution of vascular plants
.
Science
332
(
6032
):
960
963
.

Bateman
RM
,
DiMichele
WA.
1994
.
Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom
.
Biol Rev
.
69
:
345
417
.

Beerling
DJ
,
Osborne
CP
,
Chaloner
WG.
2001
.
Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era
.
Nature
410
(
6826
):
352
354
.

Bierhorst
DW.
1977
.
On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns
.
Am J Bot
.
64
(
2
):
125
152
.

Bolger
AM
,
Lohse
M
,
Usadel
B.
2014
.
Trimmomatic: a flexible trimmer for Illumina Sequence Data
.
Bioinformatics
30
(
15
):
2114
2120
.

Bower
FO.
1908
.
The origin of a land flora: a theory based upon the facts of alternation
.
London, UK
:
Macmillan
.

Bowman
JL
,
Eshed
Y
,
Baum
SF.
2002
.
Establishment of polarity in angiosperm lateral organs
.
Trends Genet
.
18
(
3
):
134
141
.

Buvat
R.
1989
.
Ontogeny, cell differentiation, and structure of vascular plants
.
Berlin, Germany
:
Springer-Verlag
.

Byrne
M.
2012
.
Making leaves
.
Curr Op Plant Biol
.
15
(
1
):
24
30
.

Camacho
C
, et al. 
2009
.
BLAST+: architecture and applications
.
BMC Bioinformatics
10
:
421
.

Capella-Gutiérrez
S
,
Silla-Martínez
JM
,
Gabaldón
T.
2009
.
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses
.
Bioinformatics
25
(
15
):
1972
1973
.

Carles
CC
,
Fletcher
JC.
2003
.
Shoot apical meristem maintenance: the art of a dynamic balance
.
Trends Plant Sci
.
8
(
8
):
394
401
.

Chen
H
,
Ahmad
M
,
Rim
Y
,
Lucas
WJ
,
Kim
JY.
2013
.
Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking
.
New Phytol
.
198
(
4
):
1250
1260
.

Chen
H
,
Jackson
D
,
Kim
JY.
2014
.
Identification of evolutionarily conserved amino acid residues in homeodomain of KNOX proteins for intercellular trafficking
.
Plant Signal Behav
.
9
(
2
):
e28355
.

Chenna
R
, et al. 
2003
.
Multiple sequence alignment with the Clustal series of programs
.
Nucleic Acids Res
.
31
(
13
):
3497
3500
.

Chomczynski
P
,
Mackey
K.
1995
.
Short technical reports. Modification of the TRI Reagent procedure for isolation of RNA from polysaccharide and proteoglycan rich sources
.
Biotechniques
19
(
6
):
942
945
.

Chu
MCY.
1974
.
A comparative study of the foliar anatomy of Lycopodium species
.
Am J Bot
.
61
(
7
):
681
692
.

Coen
ES
, et al. 
1990
.
floricaula: a homeotic gene required for flower development in Antirrhinum majus
.
Cell
63
(
6
):
1311
1322
.

Conesa
A
, et al. 
2005
.
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
.
Bioinformatics
21
(
18
):
3674
3676
.

Cooke
TD
,
Tilney
MS
,
Tilney
LG.
1996
. Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. In:
Smallwood
M
,
Knox
JP
,
Bowles
DJ
, editors.
Membranes: specialized functions in plants
.
Cambridge
:
BIOS Scientific
. p.
471
488
.

Darriba
D
,
Taboada
GL
,
Doallo
R
,
Posada
D.
2011
.
ProtTest 3: fast selection of best-fit models of protein evolution
.
Bioinformatics
27
(
8
):
1164
1165
.

Ding
B
, et al. 
1992
.
Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants
.
The Plant Cell
4
(8):
915
928
.

Doyle
JJ
,
Doyle
JL.
1990
.
Isolation of plant DNA from fresh tissue
.
Focus
.
12
:
13
15
.

Doyle
JA.
2008
.
Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower
.
Int J Plant Sci
.
169
:
816
843
.

Drummond
AJ
,
Suchard
MA
,
Dong
X-P
,
Rambaut
A.
2012
.
Bayesian phylogenetics with BEAUti and the BEAST 1.7
.
Mol Biol Evol
.
29
(
8
):
1969
1973
.

Eisel
D
,
Seth
O
,
Grünewald-Janho
S
,
Kruchen
B.
2008
.
DIG application manual for nonradioactive in situ hybridization
.
4th ed. Mannheim, Germany: Roche Diagnostics GmbH, Roche Applied Science
.

Evkaikina
AI
,
Romanova
MA
,
Voitsekhovskaja
OV.
2014
.
Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study
.
Front Plant Sci
.
5
:
31
.

Finet
C
, et al. 
2016
.
Evolution of the YABBY gene family in seed plants
.
Evol Dev
.
18
(
2
):
116
126
.

Finn
RD
, et al. 
2016
.
The Pfam protein families database: towards a more sustainable future
.
Nucleic Acids Res
.
44
(
D1
):
D279
D285
.

Floyd
SK
,
Bowman
JL.
2006
.
Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants
.
Curr Biol
.
16
(
19
):
1911
1917
.

Frank
MH
, et al. 
2015
.
Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages
.
New Phytol
.
207
(
3
):
893
904
.

Friis
EM
,
Crane
PR
,
Pedersen
KR.
2011
.
Early flowers and angiosperm evolution
. New York, NY: Cambridge University Press.

Gaillochet
C
,
Daum
G
,
Lohmann
JUO.
2015
.
cell, where art thou? The mechanisms of shoot meristem patterning
.
Curr Opin Plant Biol
.
23
:91–23.

Gao
J
,
Yang
X
,
Zhao
W
,
Lang
T
,
Samuelsson
T.
2015
.
Evolution, diversification, and expression of KNOX proteins in plants
.
Front Plant Sci
.
6
:
882
.

Gene Ontology Consortium
.
2001
.
Creating the gene ontology resource: design and implementation
.
Genome Res
.
11
:
1425
1433
.

Gibson
AK
,
Smith
Z
,
Fuqua
C
,
Clay
K
,
Colbourne
JK.
2013
.
Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum
.
BMC Genomics
14
(
1
):
135
.

Gifford
EM
,
Foster
AS.
1989
.
Morphology and evolution of vascular plants
.
New York, NY
:
Freeman
.

Gifford
EM.
1983
.
Concept of apical cells in bryophytes and pteridophytes
.
Annu Rev Plant Physiol
.
34
(
1
):
419
440
.

Goff
SA
, et al. 
2002
.
A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)
.
Science
296
(
5565
):
92
100
.

Gola
EM
,
Jernstedt
JA.
2011
.
Impermanency of initial cells in Huperzia lucidula (Huperziaceae) shoot apices
.
Int J Plant Sci
.
172
(
7
):
847
855
.

Goodstein
DM
, et al. 
2012
.
Phytozome: a comparative platform for green plant genomics
.
Nucleic Acids Res
.
40
(
Database issue
):
D1178
D1186
.

Grabherr
MG
, et al. 
2011
.
Full-length transcriptome assembly from RNA-Seq data without a reference genome
.
Nat Biotechnol
.
29
(
7
):
644
652
.

Gradstein
FM
,
Ogg
JG
,
Schmitz
M
,
Ogg
G.
2012
.
The Geologic Time Scale 2012. Oxford, UK: Elsevier
.

Graham
LE
,
Cook
ME
,
Busse
JS.
2000
.
The origin of plants: body plan changes contributing to a major evolutionary radiation
.
Proc Natl Acad Sci U S A
.
97
(
9
):
4535
4540
.

Granoff
JA
,
Gensel
PG
,
Andrews
HN
.
1976
.
A new species of Pertica from the Devonian of eastern Canada
. Palaeontographica B. 155:119–128.

Gunning
BES.
1978
.
Age-related and origin-related control of the numbers of plasmodesmata in cell walls of developing Azolla roots
.
Planta
143
:
181
190
.

Haas
BJ
, et al. 
2013
.
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
.
Nat Protoc
.
8
(
8
):
1494
1512
.

Hake
S
,
Freeling
M.
1986
.
Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent mesophyll cells
. Nature 320:621–623.

Hao
S-G
.
1988
.
A new Lower Devonian genus from Yunnan, with notes on the origin of leaves
.
Act Bot Sinica
.
30
:
441
448
.

Harrison
CJ
, et al. 
2005
.
Independent recruitment of a conserved developmental mechanism during leaf evolution
.
Nature
434
(
7032
):
509
514
.

Harrison
CJ
,
Rezvani
M
,
Langdale
JA.
2007
.
Growth from two transient apical initials in the meristem of Selaginella kraussiana
.
Development
134
(
5
):
881
889
.

Heidstra
R
, et al. 
1994
.
Root hair deformation activity of nodulation factors and their fate on Vicia sativa
.
Plant Physiol
.
105
(
3
):
787
797
.

Hilton
J
,
Bateman
RM.
2006
.
Pteridosperms are the backbone of seed-plant phylogeny
. J Torrey Bot Soc. 133:119–168.

Hoffman
LA
,
Tomescu
AMF.
2013
.
An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada)
. Am J Bot. 100:754–763.

Holt
AL
,
van Haperen
JM
,
Groot
EP
,
Laux
T.
2014
.
Signaling in shoot and flower meristems of Arabidopsis thaliana
.
Curr Opin Plant Biol
.
17
:
96
102
.

Imaichi
R
,
Hiratsuka
R.
2007
.
Evolution of shoot apical meristem structures in vascular plants with respect to plasmodesmatal network
.
Am J Bot
.
94
(
12
):
1911
1921
.

Jaillon
O
, et al. 
2007
.
The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla
.
Nature
449
(
7161
):
463
467
.

Judd
WS
,
Campbell
CS
,
Kellogg
EA
,
Stevens
PF
,
Donoghue
MJ.
2002
.
Plant systematics: a phylogenetic approach
, 2nd edn.
Sunderland
:
Sinauer Assoc
.

Karlgren
A
,
Carlsson
J
,
Gyllenstrand
N
,
Lagercrantz
U
,
Sundström
JF.
2009
.
Non-radioactive in situ hybridization protocol applicable for norway spruce and a range of plant species
.
J Vis Exp
.
26
:
e1205
.

Katoh
K
,
Standley
DM.
2013
.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability
.
Mol Biol Evol
.
30
(
4
):
772
780
.

Kenrick
P.
2003
.
Palaeobotany: Fishing for the first plants
.
Nature
425
(
6955
):
248
249
.

Kenrick
P
,
Crane
PR.
1997
.
The origin and early evolution of plants on land
.
Nature
389
(
6646
):
33
39
.

Kessler
S
,
Sinha
N.
2004
.
Shaping up: the genetic control of leaf shape
.
Curr Op Plant Biol
.
7
(
1
):
65
72
.

Kidston
R
,
Lang
WH.
1920
.
On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang
.
Trans R Soc Edinb
.
52
(
03
):
643
680
.

Korall
P
,
Kenrick
P
,
Therrien
J.
1999
.
Phylogeny of Selaginellaceae: evaluation of generic/subgeneric relationships based on rbcL gene sequences
. Int J Plant Sci. 160:585–594.

Kumar
S
,
Jones
M
,
Koutsovoulos
G
,
Clarke
M
,
Blaxter
M.
2013
.
Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots
.
Front Genet
.
4
:
237
.

Kumaran
MK
,
Bowman
JL
,
Sundaresan
V.
2002
.
YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis
.
Plant Cell
14
(
11
):
2761
2770
.

Langmead
B
,
Trapnell
C
,
Pop
M
,
Salzberg
SL.
2009
.
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
.
Genome Biol
.
10
(
3
):
R25
.

Larsén
E
,
Rydin
C.
2016
.
Disentangling the phylogeny of Isoetes (Isoetales), using nuclear and plastid data
.
Int J Plant Sci
.
177
(
2
):
157
174
.

Lee
H
, et al. 
2016
.
The genome of a Southern hemisphere seagrass species (Zostera muelleri)
.
Plant Physiol
.
172
(
1
):
272
283
.

Letunic
I
,
Bork
P.
2016
.
Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees
.
Nucleic Acids Res
.
44
(
W1
):
W242
W245
.

Li
B
,
Dewey
CN.
2011
.
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
.
BMC Bioinformatics
12
:
323
.

Li
H
,
Durbin
R.
2009
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
25
(
14
):
1754
1760
.

Lunter
G
,
Goodson
M.
2011
.
Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads
.
Genome Res
.
21
(
6
):
936
939
.

Machida
C
,
Nakagawa
A
,
Kojima
S
,
Takahashi
H
,
Machida
Y.
2015
.
The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis
.
Wiley Interdiscip Rev Dev Biol
.
4
:
655
671
.

Matasci
N
, et al. 
2014
.
Data access for the 1, 000 Plants (1KP) project
.
Gigascience
3
:
17
.

McConnell
JR
,
Barton
MK.
1998
.
Leaf polarity and meristem formation in Arabidopsis
.
Development
125
(
15
):
2935
2942
.

Merchant
SS
, et al. 
2007
.
The Chlamydomonas genome reveals the evolution of key animal and plant functions
.
Science
318
(
5848
):
245
250
.

Mistry
J
,
Finn
RD
,
Eddy
SR
,
Bateman
A
,
Punta
M.
2013
.
Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions
.
Nucleic Acids Res
.
41
(
12
):
e121
.

Newman
IV.
1965
.
Pattern in the meristems of vascular plants. III. Pursuing the patterns in the apical meristem where no cell is a permanent cell
.
J Linn Soc Bot
.
59
(
378
):
185
214
.

Nystedt
B
, et al. 
2013
.
The Norway spruce genome sequence and conifer genome evolution
.
Nature
497
(
7451
):
579
584
.

Palenik
B
, et al. 
2007
.
The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation
.
Proc Natl Acad Sci U S A
.
104
(
18
):
7705
7710
.

Perales
M
,
Reddy
V.
2012
.
Stem cell maintenance in shoot apical meristems
.
Curr Opin Plant Biol
.
15
(
1
):
10
16
.

Philipson
WR.
1990
.
The significance of apical meristems in the phylogeny of land plants
.
Plant Sys Evol
.
173
(
1–2
):
17
38
.

Pires
ND
,
Dolan
L.
2012
.
Morphological evolution in land plants: new designs with old genes
.
Philos Trans R Soc Lond B Biol Sci
.
367
(
1588
):
508
518
.

Popham
RA.
1951
.
Principal types of vegetative shoot apex organization in vascular plants
.
Ohio J Sci
.
51
:
249
270
.

Pryer
KM
, et al. 
2001
.
Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants
.
Nature
409
(
6820
):
618
622
.

Qiu
YL
, et al. 
2007
.
A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes
.
Int J Plant Sci
.
168
(
5
):
691
708
.

Rambaut
A
,
Drummond
AJ.
2007
. Tracer. MCMC trace analysis tool. Version 1.4: Computer program distributed by the authors. Available from: http://beast.bio.ed.ac.uk/ (last accessed June 8, 2014).

Rensing
SA
, et al. 
2008
.
The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants
.
Science
319
(
5859
):
64
69
.

Rowe
NP.
1988
.
A herbaceous lycophyte from the Lower Carboniferous Drybrook Sandstone of the Forest of Dean, Gloucestershire
.
Palaeontology
31
:
69
83
.

Rydin
C
,
Källersjö
M
,
Friis
EM
,
Kne of the Forriis EM
2002
.
Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems and the monophyly of conifers
.
Int J Plant Sci
.
163
(
2
):
197
214
.

Ruzin
SE.
1999
.
Plant microtechnique and microscopy
.
New York
:
Oxford University Press
. p.
322
.

Schnable
PS
, et al. 
2009
.
The B73 maize genome: complexity, diversity, and dynamics
.
Science
326
(
5956
):
1112
1115
.

Siegfried
KR
, et al. 
1999
.
Members of the YABBY gene family specify abaxial cell fate in Arabidopsis
.
Development
126
(
18
):
4117
4128
.

Simão
FA
,
Waterhouse
RM
,
Ioannidis
P
,
Kriventseva
EV
,
Zdobnov
EM.
2015
.
BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
.
Bioinformatics
31
:
3210
3212
.

Smith
GM.
1938
.
Cryptogamic botany. Vol. II. Bryophytes and pteridophytes
.
New York
:
McGraw-Hill Book Company, Inc
. p.
380
.

Stamatakis
A.
2014
.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
.
Bioinformatics
30
(
9
):
1312
1313
.

Steeves
TA
,
Sussex
IM.
1989
.
Patterns in plant development
. 2nd ed.
Cambridge, UK
:
Cambridge University Press
.

Swofford
DL.
2002
.
PAUP*: Phylogenetic analysis using parsimony (*and other methods)
.
Sunderland (MA
):
Sinauer Associates
.

Taylor
TN
,
Taylor
EL
,
Krings
M.
2009
.
Paleobotany - The biology and evolution of fossil plants
.
New York, NY: Academic Press
.

Tuskan
GA
, et al. 
2006
.
The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)
.
Science
313
(
5793
):
1596
1604
.

Vasco
A
, et al. 
2016
.
Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes
.
New Phytol
.
212
(
3
):
745
758
.

Visser
EA
,
Wegrzyn
JL
,
Steenkmap
ET
,
Myburg
AA
,
Naidoo
S.
2015
.
Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome
.
BMC Genomics
16
(
1
):
1057
.

Waites
R
,
Hudson
A.
1995
.
phantastica: a gene required for dorsiventrality of leaves in Antirrhinum majus
.
Development
121
:
2143
54
.

Weng
JK
,
Tanurdzic
M
,
Chapple
C.
2005
.
Functional analysis and comparative genomics of expressed sequence tags from the lycophyte Selaginella moellendorffii.
BMC Genomics
6
:
85
.

Wickett
NJ
,
Mirarab
S
,
Nguyen
N
,
Warnow
T
,
Carpenter
E
,
Matasci
N
,
Ayyampalayam
S
,
Barker
MS
,
Burleigh
JG
,
Gitzendanner
MA
, et al. 
2014
.
Phylotranscriptomic analysis of the origin and early diversification of land plants
.
Proc Natl Acad Sci U S A
.
111
:
E4859
E4868
.

Worden
AZ
, et al. 
2009
.
Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas
.
Science
324
(
5924
):
268
272
.

Worsdell
W.
1905
.
The principles of morphology II. The evolution of the sporangium
.
New Phytol
.
4
(
7
):
163
170
.

Xu
C
, et al. 
2015
.
De novo and comparative transcriptome analysis of cultivated and wild spinach
.
Sci Rep
.
5
(
1
):
17706
.

Yamaguchi
T
,
Nukazuka
A
,
Tsukaya
H.
2012
.
Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development
.
Plant Cell Physiol
.
53
(
7
):
1180
1194
.

Author notes

Associate editor: Susanne S. Renner

These authors contributed equally to this work.

Data deposition: Raw sequence reads used for the de novo transcriptome assembly were deposited at NCBI GenBank (accession PRJNA281995). Huperzia selago phylogenetic markers: KX761189, KX761188, KX761187 KNOX cDNAs: KX761181 - KX761185 YABBY cDNA: KX761186 YABBY genomic: MF175244.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Supplementary data