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ABSTRACT 

The average inbreeding coefficient f of a population can be estimated in 
several different ways based solely on the genotypic frequencies a t  a single 
locus. The means and variances of four different estimates have been com- 
pared. While the four estimates are equivalent when there are two alleles, the 
best estimates when there are three or more alleles are based upon total heter- 

A X-y 
ozygosity ( f l  = - where x and y are the expected and observed number 

X 

of heterozygotes) and the proportion of alleles that are homozygous ( f z  = 
1 

where t = the number of alleles, aii = the num- 

ber of AiA,  homozygotes, and hi = the number of A,A heterozygotes). 
Both are minimally biased estimates of f and have identical sampling vari- 
ances when all alleles are equally frequent. However, when alleles have dif- 
ferent frequencies, the choice between these two estimates depends on the 
gene frequencies and the true inbreeding coefficient of a population; f, is the 
best estimate when the true average inbreeding coefficient is suspected to be 
low or f '= 0, while fl is best in populations with large average inbreeding co- 
efficients. Approximate sampling variances of these two estimates are given for 
any f and any number of alleles with arbitrary gene frequencies; these approxi- 
mations are accurate for samples as small as n'= 100. The chi-square and 
maximum likelihood estimates of f are not as good for realistic sample sizes. 

INBREEDING depression can threaten the survival of a small population. In- 
breeding depression was recognized early by plant and animal breeders 

(WRIGHT 1977), but this problem has only recently been recognized in zoo 
populations (RALLS, BRUGGER and BALLOU 1979; SENNER 1980) and in the man- 
agement and restocking of endangered populations in the wild. Unfortunately, 
pedigrees are not usually available for individuals within these populations SO 

that inbreeding cannot be directly detected. However, the average inbreeding 
coefficient ( f )  of a population can be measured indirectly from genotypic data. 

Inbreeding is expected to increase the number of homozygotes, thus decreas- 
ing the number of heterozygotes in a population. A comparison of the number 
of observed heterozygotes and the number expected under random mating can 
be used to measure the average inbreeding of a population. However, the ex- 
pected number of heterozygotes may be determined in several different ways; 
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for example, it may be calculated from a founding population’s gene frequencies 
(reflecting genetic drift) or from the parental gene frequencies (minimizing the 
effects of drift). To be pragmatic, a typical field study involves capturing a sam- 
ple from a wild population and assaying the captured animals for genetic poly- 
morphisms. In this situation the expected number of heterozygotes is calculated 
from the gene frequencies observed in that sample, and the number of hetero- 
zygotes over repeated samples could be used to measure genetic drift. 

The interpretation of the average inbreeding coefficient will depend on the 
way in which it is measured. When inbreeding is measured from a single sample, 
the estimate of inbreeding (3) measures the deviation from random pairing of 
the genes, and it is this case which we will now consider further. 

When only a single locus is assayed, an unrealistically large sample size is 
needed to detect small but significant deviations in heterozygosity (WARD and 
SING 1970); at a locus with two alleles, the x2-test can detect an inbreeding 
coefficient of f = 0.0001 (a realistic value for human populations) at the 5% 
significance level only 50% of the time in a sample as large as 4 X lo8; almost 
twice the population of the U.S. However, it is now feasible to assay many im- 
munogenetic and biochemical polymorphisms simultaneously. The average in- 
breeding coefficient f can be estimated at each locus, and these estimates then 
averaged, weighted by the reciprocal of each estimate’s sampling variance ( KIDD 
et al. 1980). An even more accurate estimate of inbreeding can be obtained from 
the joint distribution of heterozygosity at many loci. This has been demonstrated 
for two tightly-linked loci (YASUDA 1968) and the approach can be extended to 
multiple loci. 

Multi-locus measures of average inbreeding are more closely related than 
single locus measures to the individual inbreeding coefficients measured from 
pedigrees. Inbreeding measured from genotypic data is conceptually different 
from inbreeding measured from pedigrees; average inbreeding measured from 
genotypic frequencies is independent of an individual’s pedigree, while inbreed- 
ing from pedigrees is independent of an individual’s genotype. To illustrate, in- 
dividuals with the same pedigree inbreeding coefficient may differ as to whether 
their genes are identical by descent (WEIR, AVERY and HILL 1980). Moreover, 
since genes which are identical by descent cannot usually be identified, the ob- 
served number of homozygotes (or heterozygotes) is affected not only by con- 
sanguinity (inbreeding) but also by selection, genetic drift, assortative mating, 
and other evolutionary forces (COCKERHAM 1973). However, if a large number 
of loci could be assayed, including linked loci and many loci with rare alleles, 
it might be possible to estimate an individual’s (pedigree) inbreeding coefficient 
solely from genotypic data. 

Nevertheless, as a first step toward an accurate and efficient measure of in- 
breeding in a small population, it is expedient to initially resolve the best single 
locus measure of inbreeding and to determine its sampling variance. This paper 
will compare the sampling means and variances of various measures of inbreed- 
ing calculated from the genotypic data at a single locus. 
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COMPABISON O F  INBREEDING ESTIMATES 341 

A measure of inbreeding: One locus with two alleles 
Assume that a random sample is drawn from a real population. We may wish 

to compare this sample with what would be expected from an “idealized inbred 
population”. An idealized inbred population is defined as an infinitely large 
population with no mutation, migration, or selection (so that gene frequencies 
remain constant) and with random mating except for a fixed amount of inbred 
matings resulting in an average inbreeding coefficient of f .  The sampling of  a 
whole population may be considered as a random sample from an infinitely large 
pool of zygotes. In an idealized inbred population, only the fixed amount of in- 
breeding (consanguinity) will affect the proportion of heterozygotes. For an 
autosomal codominant locus having two alleles A,  and A,  with frequencies p 
and q ( p  + q = l ) ,  the proportions of  homozygotes are p2 -I- pqf and q2 + pqf 
for AIA, and A2A,, and the proportion of A,A, heterozygotes is 2pq ( 1  - f )  
(CROW and KIMURA 1970). In a random sample of n individuals, let a,,, 2a1,, 
and aZ2 be the numbers of individuals who have genotype AIA,, A,A,, and A,A2 
respectively (al ,  + 2a12 -k a2, = n)  . The observed and expected numbers of each 
genotype in a sample can be summarized in the following table: 

genotype: AiA, AiAz AA2 
observed number: all 2a12 az2 
expected number: (p2-!-pqf) rz 2pq (1-f)n (q2+pqf >‘n 

Sampling from an idealized population is equivalent to multinomial sampling 
with probabilities Q, = p 2  + pqf,  Q, = 2pq (1 - f ) ,  and Q3 = q2 + pqf.  The true 
values of p ,  q (=I-p) and f are presumably unknown (even if a whole popula- 
tion is sampled), but unbiased estimates of the gene frequencies are 

a12 + a22 and 4 = 
n n 

p̂’ all + alz 

Using these estimates for p and q, f is often estimated from the deviation in 
heterozygosity from that expected under random mating: 

where y = 2a12 is the observed number of heterozygotes and x = 2p4n is the 
number expected assuming random mating ( f  

While the estimate 3 is a consistent statistic (1 approaches f as n gets larger), 
1 is biased (the expected value of 3 is not f ) .  The expected value E ( ] )  is not 
known precisely, but the expected value of the numerator (x-y) can be calcu- 
lated exactly. 

0). 
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In general, for a sample of size n from a multinomial distribution with m dis- 
tinct classes, i t  is well known that the number observed in the itn class, ai (a, t 
a2 + . . . + a, = n) , has mean and variance 

E(a, )  = nQi , 
V ( G )  = nQi(l-Qi) 

and cov(ai,aj) = -nQiQj (i#j) 

where Q+ is the probability of a random individual belonging to the ith class. The 
higher degree moments and product moments of the multinomial distribution 
are given by KENDALL and STUART (1977, p. 149). 

At a locus with two alleles, the expected number of observed heterozygotes is 
E ( y )  = E (ea,,) = 2pq ( 1-f) n from binomial sampling theory. Similarly, the 
mean number of heterozygotes from an idealized population with random mat- 
ing has the expected value 

E ( x )  = 2npq - pq(l+f) 

E (x-y) = 2wfn  - p q  ( 1 +f) 

* 

Thus, the expected departure in heterozygosity is 

= - pq[l-(2n--l)f] . 
While only the numerator of Eq, (1 ) is evaluated here, by the Taylor's series 

expansion (KENDALL and STUART 1977, p. 246), the expected value of 1 is: 

where 0 (i) are terms of order ( ) . The expected value of 3 was computed 

exactly for  sample sizes n = 50 and n = 100. When f = 0, E(?)  is independent 
of the gene frequencies and 

This equation also holds for a wide range of values for f when the two alleles are 
equally frequent. However, if f = 0.2 for example, the bias is approximately 
- l /n when p = 0.9. 

The sampling variance of 1 can also be approximated by the Taylor's series 
expansion (KENDALL and STUART 1977, p. 247), 
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In Figure 1,  the variance of f, V(j) times the sample size is plotted against f for 

n VCF> 

A A  

FIGURE 1.-The sampling variance of f, V(f),  times the sample size (n) as a function of the 
average inbreeding coefficient f for  a population with two alleles a t  a locus. When f = 0, 

A 1  
V ( f )  =--¶ but when j # O ,  V ( j )  depends on the gene frequency, shown here for p = 0 . 5 ,  

n 
0.25 and 0.10. 
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three different values of the gene frequency, p .  The range o f f  is limited between 

- -_. and 1 (where p < q )  since the homozygote frequencies cannot be nega- 
1-P 

tive, i.e. p 2  + p ( 1 - p ) f  > 0. In general, the sampling variance of depends both 

on f and p ;  however, when f = 0, then V(3)  is independent of the gene frequen- 
cies and, as shown by YASUDA (1968) , 

1 
n 

N-  

When f # 0, then V ( f )  can vary dramatically and it greatly increases with small 
increases in f when one allele is rare. 

Measures of inbreeding: Multiple alleles 
Assume that locus A has k codominant alleles (A l ,  A,, . . . , Ak) in an idealized 

inbred population where the frequency of A; is p i  (pl + p, + . . . + pic = 1 ) .  A 
random sample from this population will follow a multinomial distribution with 

classes (k homozygote 
k(k+ 1 )  

2 
viduals are randomly sampled, 
genotype are 

genotype: 
observed number: 
expected number: 

and k ( k L 1 )  heterozygote types). If n 

the observed and expected numbers of 

indi- 

each 

An unbiased estimate of the gene frequency p i  (i = 1,2, . . , k) is 
I k  

and the sampling variance of this estimate is given by 

The gene frequency estimate is analogous to the two allele case. However, the 
average inbreeding coefficient f can be estimated in several different ways, each 
yielding a different numeric value. LI and HORVITZ (1953) described eight 
methods of estimating f from the genotypic data in a single sample. While all 
eight yield estimates with identical values of f for a two-allele locus, they give 
12 different values for a three-allele locus (two methods yield three possible 
values). Since they did not calculate the sampling variances of these estimates, 
they could not recommend one estimate over the others. 
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COMPARISON OF INBREEDING ESTIMATES 345 

Unfortunately, all eight methods proposed by LI and HORVITZ produce biased 
estimates of f .  HALDANE (1954) suggested a ninth method which he believed 
unbiased but he was misled by an error in computation (SMITH 1970). No un- 
biased estimate of inbreeding has yet been demonstrated. 

The four most natural measures proposed by LI and HORVITZ are the estimates 
based on total heterozygosity and on the proportion of alleles that are homozy- 
gous, the x2-estimate, and the maximum likelihood estimate; the sampling prop- 
erties of these four estimates will now be compared both theoretically and by 
computer simulation. Other measures will be considered in the discussion. 

The total heterozygosity, fl: The number of heterozygotes in a population 
sample is easily calculated for a locus with codominant alleles. If we assume 
that the sample is drawn from an idealized inbred population, the total number 
of heterozygotes is expected to be (1-f) times the number expected under ran- 
dom mating, so that f may be estimated by an extension of Equation (1) : 

where y = 2 2 aii is the observed number of heterozygotes and x = 2n z &ii 

is the number expected under random mating. 
In a large sample, the variance of this estimate can be approximated as in 

Equation (2) from the sampling properties of x and y and their covariance (see 
Appendix 1 ) , so that 

i<j  i<i 

In a population with two alleles, V(jl) reduces to Equation (3) as expected. In 
addition, two other special cases are often encountered and will be useful for 
comparison, i.e., populations in which 

1 
i) all alleles are equally frequent ( p i  ’= - for i = 1, . . . , k) so that 

k 

ii) f = 0 50 that 

The proportion of alleles homozygous, j2: Rather than just consider the total 
number of heterozygotes o r  homozygotes, the observed numbers of each homo- 
zygote class can be compared separately to the number expected under random 
mating. If we divide the proportion of each homozygote by the gene frequency 
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of its corresponding allele, the sum of these ratios should equal 1 + f(k-I) in an  
idealized inbred population. This formula can be solved for f to produce a sec- 
ond estimate of a population's average inbreeding coefficient 

k - 1 aii - 1] -- 
k-1 [,.I 

2 a,j 
j=1 

Alternatively, each homozygote could be weighted by a value wi, but ROBERT- 
SON and HILL (1981) have shown that (for f=O) f 2  has the smallest variance 
of all estimates having the form 

o r  equivalently 

This measure essentially estimates f from each homozygote and averages the 
different estimates, weighted to minimize the total variance. 

Again, the variance V ( f 2 )  cannot be calculated exactly but can be approxi- 
mated (see Appendix 2) so that 

h " 1  
l - f  { 2 ( k - l )  -2(2k-l)fs+k2f2 +f(2-f) .z -} . ( 7 )  V ( f z )  = 2n(k-1)2 %=I pi 

Again, V ( j 2 )  reduces to Equation ( 3 )  in a population with two alleles. The two 
other cases of special interest are: 

i) when all alleles are equally frequent ( p i  = - for every i) then 1 
k 

Thus, the variances V ( f l )  and V ( f 2 )  are the same in large samples from such a 
population; and 
ii) when f = 0, then 

so that this variance is independent of gene frequencies when f = O ;  this case 
agrees with that discussed by ROBERTSON and HILL (1981). 
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The  Chi-square Estimate, f 3 :  The chi-square goodness of fit test has been used 
in two different methods of estimating the average inbreeding coefficient f. One 
estimate is the value of f which minimizes the x2-value when testing the observed 
numbers of each genotype against the number expected in an idealized inbred 
population with average inbreeding coefficient f (WRIGHT; quoted in LI and 
HORVITZ 1953). For two alleles, a value of f can always be found which exactly 
fits the data (i.e. the x2 has zero degrees of freedom) and this estimate of f agrees 
with the other two-allele estimates. This method uses a maximum likelihood ap- 
proach but maximizes a less precise probability distribution of the genotype 
numbers than the maximum likelihood method discussed in the next section and 
seems, therefore, inferior. 

More commonly, f is estimated from the x2-value of testing the observed num- 
bers of each genotype against those expected under random mating (f = 0). By 
setting ait = [p: -I- pi ( l -p i ) f ]n  as in an infinitely large sample, the value of x2 
becomes 

with k ( k - l ) / 2  degrees of freedom. Solving this formula for f, 
of average inbreeding is taken as the positive root 

X2 

a third estimate 

(8) 

This estimate is very appealing since the chi-square value can simultaneously 
provide an estimate of f and a significance test of the hypothesis, f = 0 (WARD 
and SING 1970). However the estimate j3 differs in interpretation from the pre- 
vious two estimates. While and j z  may be positive or negative in value (nega- 
tive values indicating an excess of heterozygotes) the chi-square estimate f 3  is 
always greater than or equal to zero. I t  is not practical to adjust the sign of this 
estimate to agree with the other two estimates, since and j2 may also differ 
in sign when there is an excess of one heterozygote and a deficiency of another. 
While and i2 try to measure a uniform or overall departure in the number 
of heterozygotes or homozygotes, f 3  detects any departure from random mating 
proportions, even if the total number of heterozygotes remains constant. 

Since j3 is the positive root of a quadratic equation, its sampling properties 
are much more difficult to determine. However, the squares of these three esti- 
mates of f can easily be compared. The variances of and are approximately 

v<& 4f  V(f4) (i = 1,2) . 
The statistic x2 approximately has a non-central chi-square distribution with 
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non-centrality parameter h = nf2(k-I) (WARD and SING 1970; HABER 1980), 
so that 

~ ( k )  = ~ k ( ~ r - 1 )  + 4nfz (k- l ) ] /n2(k-1)z  
- 4f2 + k 

n(k-1)  n2((k-l) . 
However, the chi-square distribution is only approximate and the variance of e can be more precisely approximated by again using the Taylor’s series 

expansion so that 
n 1- 

n( k-1 ) 
4 f ” V ( f 2 )  . (9) 

Thus, the sampling variance V(j2) is approximately equal to V ( p ) .  As a result, 
we would expect the variance V(f3) to be less than or equal to V ( f z )  since f 3  is 
never less than zero and thus has a narrower range than f2.  Note that the vari- 
ance of the noncentral chi-square distribution provides a good approximation 
of the variance V ( &  only when n is large, f is small, and the pz’s are moderate. 
When f is close to zero, the first term of Equation ( 9 )  vanishes and the terms of 

order - must be evaluated, 

3 ,  2 ,  

1 
n2 

T h e  maximum likelihood estimate. $A: Maximum likelihood estimates are often 
preferred because they are sufficient statistics and will attain the minimum 
variance as the sample size gets infinitely large (e.g. FREUND 1962). However, 
maximum likelihood estimates may be biased and do not necessarily have the 
minimum variance in samples with a more realistic size. Unfortunately, the 
maximum likelihood estimate of the average inbreeding coefficient cannot be 
explicitly written, but must be solved numerically by iteration. If the likelihood 
of the observed numbers of each genotype are maximized simultaneously for 
the gene frequencies p z  ( i  = 1 ,  . . , k) and f ,  thc gene frequency estimates are not 

generally equal to the natural unbiased estimates = - Z aij. However, if the 

gene frequencies are fixed by these unbiased estimates, then the maximum likeli- 
hood estimate f4 may be obtained by solving the following equation for O: 

1 k  

p 3=1 

0 A where f4 ’= - (LI and HORVITZ 1953). Since f4  cannot be explicitly written, 
its sampling properties are most difficult to evaluate and will be calculated only 
empirically, 
Simulation results 

A computer simulation was used to confirm and extend the comparisons 
among these four estimates of inbreeding. An idealized inbred population was 

l - t O  
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sampled and each of the four estimates was calculated. This sampling was 
repeated 500 times and the mean and variance for each estimate was calculated. 
The populations were assumed to have three alleles with fixed gene frequencies 
(either pl  = 0.2, p z  = 0.3, p 3  = 0.5 or  pl = p z  = 0.475, p 3  = 0.05) while the size 
of the sample or the actual average inbreeding coefficient f was allowed to vary. 

Figure 2 shows the average values of the four estimates when the sample sizes 
varied between 50 and 500, in steps of 50. The data are 500 repeats of a computer 
simulated sampling from an idealized inbred population with gene frequencies 
pl = 0.2, p z  = 0.3, p 3  = 0.5 and with average inbreeding coefficient f = 0.05. The 
average values of the estimates il and fz are nearly identical and show very little 
bias, even in samples as small as n = 100. The average value of the maximum 
likelihood estimate j4 differs from the first two only when n = 50. However, the 
chi-square estimate f 3  drastically overestimates f for small samples and even 
overestimates by 50% for samples as large as n = 500. This was expected since f3 
is always greater than or equal to zero and will detect any deviations from a ran- 
dom assortment of genes. An almost identical curve was produced by sampling an 
idealized inbred population with gene frequencies pl = p z  ;= 0.475, p 3  = 0.05 and 

0' 1 I 1 I I 
0 1 00 200 388 400 588 

S o m p I r  r l zo  

FIGURE 2.-The average values for each of the four estimates of f in a computer simulation 
where the true value of the average inbreeding coefficient is f =  0.05. For each sample size 
between 50 and 500 (in steps of 50) ,  sampling was repeated 500 times from an idealized inbred 
population (pl = 0.2, p z  = 0.3, p 3  = 0.5, and f = 0.05) and the results averaged. 
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average inbreeding coefficient f = 0.05. Similar but less drastic results were 
observed by setting f = 0.2. In these simulations, the sample variances of 

1 
the four estimates (not shown) were approximately a constant function of - n 
in the range n = 100 to 500. Thus, the approximations of V(ji) ,  by ignoring the 

terms of order -, appear valid for sample sizes as small as n = 100. 
Simulations were also performed to study the relationships among the four 

estimates as a function of the true value of f. For these simulations, the size of 
each sample was fixed at 200, which seemed large enough to minmize bias and 
allow safe prediction yet small enough to be realistic. 

Figure 3 shows the deviation of the average values of each estimate of in- 
breeding frum the true value of f (i.e. the average bias) as a function of f .  The 
data are 500 repeats of the sampling of an idealized inbred population with gene 
frequencies pl = 0.2, p z  = 0.3, p 3  = 0.5 and the average inbreeding coefficient 

= -0.25) to 1 in steps of 0.05. The varying from its minimum value (- 

x2 estimate i3 drastically overestimates f when f is small or negative ( f 3  0.26 
when f = -0.25). When f is large, samples rarely produce negative estimates of 

1 
n2 

Pmin 

1 - pm,n 

- . I '  I I I I I 
-.25 0 .25 .5 -75 1 

f 

FIGURE 3.-The difference between the average values for each of the four  estimates of f and 
the true value of f (1-f) as a function of f .  For each value of f between -0.25 and 1 (in steps 
of 0.05), samples of size 200 were repeated 500 times from an idealized inbred population ( p l  = 
0.2, p z  = 0.3, and p a  = 0.5). 
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f so that f3  more often agrees with the other three estimates. The maximum likeli- 
hood estimate p underestimates f for small negative values of f .  The estimate 
fl and f 2  (and f4 for f 2 -0.1) have almost identical expected values although they 
will differ for any given sample; all three on the average, slightly underestimate 
inbreeding. 

Figure 4 shows the product of the variance and the sample size for each esti- 

mate since the sampling variances are all approximately proportional to -. The 

simulation is the same as that used to generate Figure 3. Estimates F1 and i2 have 
almost the same variance although V(f,)  < V(fl) for low values of f. The x 2  
estimate f 3  has the lowest variance, particularly around f I= 0, but it nearly 
coincides with V(f , )  when f is large enough to effectively eliminate samples 
with negative values of j2. The variance of the maxi"  likelihood estimate, 
while high for the smallest negative values off,  nearly coincides with the variance 
of f1 for positive values of f. Figure 5 shows the theoretical values of V (jl) and 
V ( f 2 )  from Equations (5) and ( 7 ) ;  They are in excellent agreement with the 
variances in the computer simulation. In this population, the second estimate j2 
is better for small values of f and is slightly better for large f while V (  fl) = 
V ( f 2 )  when f = 0.207. 

1 
n 

KEY - fl 
42 ----- I:-. E I 

n VC?> 

-.25 0 .25 .5 .75 I 
f 

FIGURE 4.-The sampling variances V(7)  times the sample size (n) for each of the four 
estimates of j from the same computer simulation as in Figure 3. 
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1 . 2 5  

1 -  
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- 

- 

1.5r  

n VC?> 

f 

FIGURE 5.-The theoretical sampling variances V(jl) and V(f,) times the sample size (n) as 
a function of the average inbreeding coefficient f for a population with three alleles ( p l  c 0.2, 
p 2  = 0.3, and p 3  = 0.5). 

The differences between the estimates are more pronounced when one allele is 
rare. Figures 6 and 7 show the observed and theoretical sampling variances for 
these estimates when p l  = pz = 0.475 and p 3  = 0.05. Again, the theoretical vari- 
ances of fl and f z  are in excellent agreement with the variances in the computer 
simulation. The difference between V(j,) and V ( f 2 )  is more pronounced than in 
the previous population and the two variances are equal for a smaller value of f ;  
V(fl) = V(f , )  when f = 0.077. The chi-square variance V ( f 3 )  is again the lowest 
for small f and nearly coincides with V(f^z) for high f ;  the maximum likelihood 
variance V ( f 4 )  is highest for small f and nearly coincides with V(fl)  for high f.  

These four estimates have been compared by computer simulated sampling 
from an idealized inbred population with two different sets of gene frequencies 
and varying values of the average inbreeding coefficient f. In nature , however, 
macy factors may affect genotype frequencies so that each heterozygote may 
depart from random mating proportions in a different way. To test this situation 
Figure 8 shows the variances for the four estimates of inbreeding as a function 
of sample size from a population with gene frequencies pl= 0.2, p2 = 0.3 and 
p 3  = 0.5 but genotype frequencies: 

AiAi AiA, Ai& A A ,  AA3 ASAS 
0.04 0.24 0.08 0.03 0.30 0.31 
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FIGURE 6.-The sampling variances V ( f )  times the sample size (n) for each of the four 
estimates of f as a function of f. For each value of f between fmin = -0.05 and 1 (in steps of 
0.05), samples of size 200 were repeated 500 times from an idealized inbred population ( p l  = 
p z  = 0.475 and ps = 0.05). 

This population has an excess of some heterozygotes and a deficiency of others, 
while the total heterozygosity is that expected under random mating. The maxi- 
mum likelihood estimate j4 has the largest variance, while the other three esti- 

mates have similar variances which are roughly constant functions of - between 
n = 50 and 500. The average values of the estimates (not shown) are also con- 
stant between n = 50 and 500. As expected f1 = 0, but f 3  = i. = -0.05 and 

1 
n 

j3 0.35. 

DISCUSSION 

Four estimates of f have been considered here. While a locus with three alleles 
has been considered, the results presented here are qualitatively the same for 
larger numbers of alleles. No single estimate is always the best when there are 
more than two alleles. The two best estimates are those based on total heterozy- 
gosity (jl) and the proportion of alleles that are homozygous ( f 2 ) .  Both are nearly 
unbiased, even in small samples, and both have identical variances when all 
alleles are equally frequent, However, when alleles have different frequencies in 
the population, then has a smaller variance for large values of f whereas f 2  has 
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FIGURE 7.-The theoretical sampling variances V(j , )  and V(,) times the sample size (n)  as 
a function of f for a papulation with three alleles (pl I= p z  = 0.475 and p s  = 0.05). 

a smaller variance for small f including f = 0. Moreover, as the gene frequencies 
become more disparate, the two variances differ more drastically and are equal a t  
a value closer to f = 0. 

The chi-square estimate (I3) has a variance which is less than the variance of 
j2 and nearly equal for large f, as expected (Figures 4 and 6). However, j3 is 
always positive and measures any departure from random mating. Thus, it tends 
to overestimate the average inbreeding coefficient, particularly for a small f and 
a small sample size. Consequently, j3 is not a good estimate of the average 
inbreeding coefficient of a population, despite its popular use. 

The maximum likelihood estimate ( f 4 )  is also more biased than f1 or f z  (Figures 
2 and 3 )  and has the largest variance for small values of f .  Otherwise the variance 
V ( f 4 )  is nearly identical to V ( f z ) .  This differs from the finding of YASUDA (1968) 
that the variance of f4 approximates V ( j 2 )  at f = 0. 

LI and HORVITZ (1953) proposed three additional measures which have not 
been discussed here. Their estimate, based on the gametic determinant, actually 
estimates f "  (for k = 3) and is thus subject to the same problems as the chi-square 
estimate. The remaining two methods, based on the product-moment correlation 
and on the reduction to two alleles, do not give unique estimates of f ;  the first 
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FIGURE 8.-The sampling variances V(7) times the sample size (n) for a population with 
three alleles and genotype frequencies P(A,A, )  = 0.04, P(A,A,) = 0.24, P(A,A,) = 0.08, 
P ( A 2 A 2 )  = 0 3, P(A,A,)  = 0.30 and P(A,A,) = 0.31. For each sample size between 50 and 500 
(in steps of 50), sampling was repeated 500 times. 

depends upon the choice of allelic values and the second upon the partition of 
alleles into two classes. Moreover, reduction to two alleles would appear to in- 
crease the variance since the variances of the estimates examined here are in- 
versely related to the number of alleles. consequently these other measures seem 
less desirable than the four studied here. 

There are, of course, other possible measures of average inbreeding which 
may prove less biased or have smaller sampling variances. For example, the x2 
estimate j3 might be improved. EMIGH (1980) recently considered 11 different 
tests for random mating proportions, including x 2  and six other statistics closely 
related to the x'. His interest was in tests of hypothesis (i.e., f = 0) and tests of 
significance, not in estimation of f .  EMIGH compared the power and sensitivity of 
these statistics extensively for two alleles and suggested any one of nine tests in 
various situations, For three alleles, he reduced the situation to tests for the three 
inbreeding coefficients possible by reducing the locus to two alleles. However, all 
of these statistics are designed as goodness-of-fit tests; they could be used to derive 
estimates of f but they would not be qualitatively different from that based on the 
x 2  test, f 3 .  Nevertheless, other measures of average inbreeding in a population have 
not yet been examined and must remain fo r  future work. 
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Finally, in any real situation, the true values of f and p l ,  . . . , p k  are unknown. 
Thus, the choice of il or iz may be based on prior knowledge of their values or on 
preliminary calculations. Whichever estimate is used, its sampling variance V (  3) 
can be approximated by substituting il or  iz €or the unknown value of f .  

Paper No. 2472 from the Laboratory of Genetics, University of Wisconsin-Madison. This 
work was supported by Public Health Service grant RR 01216. I am greatly indebted to C. E. 
KAHN, JR. for  developing the computer simulations, to A. ROBERTSON for  the initial approach, 
to the anonymous reviewers for helpful suggestions, and to one reviewer for the exact formula 
for V ( z )  for two alleles. 
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APPENDIX 1 

357 

* x - y  Variance of fl  = ~ 

X 

The observed number of heterozygotes y follows a binomial distribution with 
probability Q = ,X 2pipj (1-f). Thus, 

and V ( Y )  nQ(1-Q) 

The expected value of z is also found easily: 

r < i  
E ( y )  = n [  i~j2pipj(l--f)l  =nQ 

k 

2=1 
k 

*=I 

E ( x )  =?&(I- z 3;) 

= n - n ,E [V($i) + EZ(&)] 
= (2n--1 - f >  i?j pip j  

The variance V ( x >  cannot be calculated exactly, but it can be approximated by 
use of the Taylor's series expansion (KENDALL and STUART 1977). First, notice 
that 

and COV($i, $j) = - - pipi (l+f) 
2n 

The sampling variance of z is then 

Similarly, cov (z, y )  can be calculated as 

cov(z, y )  =2n(l-f)  .z. p ip i (~ i -p j )~  + O(1) 
%<3 
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APPENDIX 2 

Noting first that 

2npi 
Z a S j  

j=1 

aii ajj I 1-f 1 
and cov ( ~ 7  r) - - [pi+(l-pi)fl [ P ~ f ( l - P i ) f l  4-0 (2)  7 

the sampling variance of the estimate f 2  can be approximated in a large sample by 

2n 
Z ail Z ail 

1=1 2=1 

N { 2(k-1) - 2(2k--l)f -I- kZfZ -I- f (2- f )  .2 k l  - }. 
2n (k-1 ) p i  
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