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ABSTRACT 
Five different measures of gametic disequilibrium in current use and a new one based on R. C. 

Lewontin's D',  are examined and compared. All of them, except the measure based on Lewontin's 
D ' , are highly dependent upon allelic frequencies, including four measures that are normalized in 
some manner. In addition, the measures suggested by A. H. D. Brown, M. F. Feldman and E. Nevo, 
and T. Ohta can have negative values when there is maximum disequilibrium and have rates of decay 
in infinite populations that are a function of the initial gametic array. The  variances were large for 
all the measures in samples taken from populations at equilibrium under neutrality, with the measure 
based on D' having the lowest variance. In these samples, three of the measures were highly correlated, 
Dz, D* (equal to the correlation coefficient when there are two alleles at each locus) and the measure 
X(2) of Brown et al. Using frequency-dependent measures may result in mistaken conclusions, a fact 
illustrated by discussion of studies inferring recombinational hot spots and the effects of population 
bottlenecks from disequilibrium values. 

ITH the advent of new biochemical techniques, W it has been possible to distinguish many alleles 
at a number of loci and to document DNA differences 
at closely linked sites on a chromosome. If population 
data from such studies are examined, the extent of 
the statistical association of the alleles at different loci 
or sites, gametic disequilibrium, may be an indicator 
of the past importance of various evolutionary factors. 
However, these are a variety of gametic disequilibrium 
measures that have been proposed by different re- 
searchers. 

There are a number of criteria that can be used to 
determine the most appropriate measure of gametic 
disequilibrium for a given situation. Several possible 
criteria are that a measure should have (1) a simple 
biological interpretation, (2) statistical tests available 
or easily developed, (3) be directly related mathemat- 
ically to evolutionary factors such as recombination, 
selection, genetic drift, gene flow, etc. and (4) be 
standardized to allow comparison across loci or pop- 
ulations. Obviously, all of these criteria (and probably 
more) are important characteristics for a disequilib- 
rium measure. In addition, it is not obvious whether 
different measures gave similar information, or 
whether different measures may give complementary 
information. 

Below I will examine six different measures of two- 
locus gametic disequilibrium. First, I have compared 
some of the basic properties of the different measures 
focusing on the allelic frequency dependence of the 
measures and the rate of decay of disequilibrium from 
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recombination. Second, I have compared the distri- 
butions of these measures and calculated the correla- 
tion coefficients between them for a large number of 
randomly obtained samples. 

MEASURES OF GAMETIC DISEQUILIBRIUM 

The extent of gametic disequilibrium (I use the 
term gametic disequilibrium instead of the traditional 
term linkage disequilibrium because such nonrandom 
association may be present between unlinked loci) [see 
HEDRICK, JAIN and HOLDEN (1978) for a discussion] 
can be measured in several ways for a specific gamete. 
A widely used measure of gametic disequilibrium for 
a given gamete is 

(1) 

where x, is the observed frequency of gamete AiBj, pi 
and qj are the frequencies of alleles Ai and Bj at loci A 
and B, respectively, and the expected frequency of 
gamete AiBj is piqj, assuming no statistical association 
between the alleles. The  range of this measure of 
gametic disequilibrium is a function of the allelic 
frequencies, making it obvious that a measure that has 
the same range for all allelic frequencies is desirable. 
For this reason, LEWONTIN (1964) suggested using the 
normalized measure 

D, = x.. - p-q. 
rj ' I  

(2) 
D!. = D,. 

rj 
Dmax 

where D,,, = min[piqj, (1  - pJ(l - qj)] when D, 0 
or D,,, = min[pi( 1 - qj), (1 - pi)qj] when D, > 0. 

The gametic disequilibrium between all the alleles 
at two loci can be measured in several ways. For 
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example, the disequilibrium can be expressed as HOLLAND 1975), the measure 
k l  

D 2 =  1 2 D$ (3) 
j = I  

where there are K alleles at locus A and I alleles at 
locus B .  However, this measure, like D,, is highly 
dependent upon allelic frequencies. As a result, other 
measures of association in which the overall disequi- 
librium is normalized and not so dependent on allelic 
frequencies have been suggested. 

One such approach is to standardize the measure 
by the single-locus heterozygosity. For example, the 
Hardy-Weinberg homozygosity at locus A having k 
alleles is 

k 

F A  = pt" 
I= I 

and for locus B with 1 alleles is 
I 

Fn = 9;. (4b) 
j= 1 

The Hardy-Weinberg heterozygosities, H,+ = 1 - FA 
and H B  = 1 - Fs ,  can be used in a standardized 
measure of two-locus association as 

a measure termed R by MARUYAMA (1 982). 

loci that 
First, note that when there are two alleles at both 

D 2  
4p1(1 - pi)qI(l - 41)' 

(5b) D* = 

Because all D, are equal with two alleles at both loci, 
then D 2  = 405 and D* is equal to the square of the 
correlation coefficient as used by HILL and RORERT- 
SON (1968) and FRANKLIN and LEWONTIN (1970). 
Second, note that expression (5a) is different from 
0% as given by HILL (1975) and OHTA (1980), D * ,  
when calculated over a number of samples, is the 
mean of the ratio in (5a) whereas ai is the ratio of the 
means (or expectations), an important difference in 
many situations (MARUYAMA 1982; HEDRICK and 
THOMSON 1986, Table 4). Obviously, ai is mathemat- 
ically more tractable but D* is the experimentally 
observable quantity in each population or pair of loci 
(MARUYAMA 1982). 

Another measure of standardized gametic disequi- 
librium is 

(HILL 1975). In order to make this measure sample- 
size independent when D # 0 (BISHOP, FEINBERC and 

is useful (HEDRICK and THOMSON 1986). D* and Q* 
are equal for K = 1 = 2. YAMAZAKI (1977) proposed 
the related measure 

where it is assumed that k < E .  Because L is a linear 
function of e*, we will not give values for it in the 
following discussion. 

If we define 
k 1  

F A B  = c c x: 
i=l , = I  

(9) 

another measure of association is 

(10) F *  = FAn - FAFB 

by OHTA (1980) and is equivalent to the covariance 
of heterozygosity measure of AVERY and HILL (1979). 
OHTA (1 980) suggested F* could be standardized with 
the product of the Hardy-Weinberg heterozygosities 
as 

This measure is somewhat different from the stand- 
ardized measure of OHTA (1 980) in that for a number 
of samples, she uses the mean of F A B ,  FA and FB over 
samples to calculate her measure (see discussion of D * 
above). 

BROWN, FELDMAN and NEVO (1980) suggested a 
measure of disequilibrium based on the variance of 
heterozygosity, higher variance of heterozygosity 
being the result of higher gametic disequilibrium. If 
it is assumed that K is the number of heterozygous 
loci, then for two loci K = 0 for the double homozy- 
gotes, K = 1 for the single heterozygotes and K = 2 
for the double heterozygotes. The variance of K for 
two loci is then 

(1 2) 
sf = HA + Hn - H; - H i  

k 1  

+ 4 2 2 pIqJ D, + 20' 
1 = I  1=I  

where D2 is as defined in expression (3). Expression 
(4) of SVED (1968) and (1 0) of AWRY and HILL ( 1  979) 
are diallelic cases of (12) for multiple loci. BROWN, 
FELDMAN and NEVO ( 1  980) suggested that expression 
(12) can be standardized into a statistic, which they 
term association intensity, as 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/117/2/331/5997482 by guest on 19 April 2024
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where the 2 refers to the second central moment. 
When there is no disequilibrium, then X(2) = 0. 

Finally, the normalized measure of LEWONTIN can 
also be used for a total disequilibrium measure. For 
example. 

k 1  

D’ = c c piq, IDhl (14) 
1=1 j=1 

gives values of the absolute value of the normalized D 
weighted by the frequencies of the gametes when 
there is no disequilibrium. A similar measure was used 
by KARLIN and PIAZZA (1982) but they used xq values 
for weighting. 

GENERAL PROPERTIES 

Frequency-dependence: An important characteris- 
tic of a gametic disequilibrium measure is that it is 
independent (or nearly independent) of allelic fre- 
quencies. For example, a measure that is highly de- 
pendent on allelic frequencies would not be appropri- 
ate for comparisons between samples or loci with 
different allelic frequencies. To examine the depend- 
ence on allelic frequencies of these six measures, let 
us first assume that there are two alleles at each of the 
two loci and use DI; as a standard because it is inde- 
pendent of allelic frequencies. Assuming that there is 
a given Dl[l value, we can calculate the value of the 
different measures for various allelic frequencies at 
the two loci. For example, if D ~ I  > 0 and plq2 < p241, 
then 

Dri = D ; I  pi42 (15) 
and the various standardized measures, D*,  Q*, F‘, 
X(2) and D ’  can then be calculated (remember D* = 
Q* for two alleles). As an example of what the gametic 
frequencies are for given values, let D i l  = 1, p l  = 0.1, 
and 92 = 0.5, then D I I  = 0.05, X I I  = p1q1 + D11 = 0.1, 
x 1 2  = 0.0, xz l  = 0.4, and x22 = 0.5. The other disequi- 
librium measures are then D* = Q* = 0.11 1, F’ = 
0.1 11, X(2) = 0.030, and D’ = 1.0. 

Using this approach, the values of D* = Q*, F ’ ,  
and X(2) are plotted in Figures 1, 2, and 3, respec- 
tively, for different allelic frequencies when Oil  = 0.5 
(D’  = 0.5 for all allelic frequency combinations). 
When D;1 = -0.5, complementary results occur and 
when ID;ll < 0.5, then similar but not as extreme 
results occur. First, notice that all of these measures, 
even though they are standardized in some manner, 
are highly dependent upon allelic frequencies. For 
example, looking at D* = Q* in Figure 1 and X(2) in 
Figure 3, if one locus has both alleles at intermediate 
frequency, say q1 = q2 = 0.5, and the other locus has 
one allele in much higher frequency, say p l  = 0.05 
and p 2  = 0.95, then the calculated values are much 
lower than if the alleles at both loci were intermediate 
in frequency. 

0.25 
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0.15 
b 
n 

0.10 

0.05 

0.00 
0.0 0.2 0.4 0.6 0.8 1.0 

41 
FIGURE 1 ,-Magnitude of D* for different p1 and q1 values when 

D’ = 0.5. 
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41 
FIGURE 2.-Magnitude of F’ for different p l  and q,  values when 

D’ = 0.5. 

Second, notice that the maximum values for each 
measure occur when the allelic frequencies at the two 
loci are equal. For D* = Q*, this maximum is the 
same for all = q 1  values (Figure 1). However, for 
F’ and X(2) the maximum is greatest when the allelic 
frequencies are low, i.e., F’ and X(2) are large when 
$ 1  = q1 = 0.05 (Figures 2 and 3). Furthermore, F’ has 
the property that when both P I  and ql are low it 
becomes very large, e.g., if p l  = q1 = 0.01, F’ = 24.5, 
compared to when p l  = q1 = 0.5, then F‘ = 0.25. 

Last, notice that in Figures 2 and 3 the values of F’ 
and X(2) may actually be negative. HEDRICK and 
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TABLE 1 

Amount of disequilibrium for the different measures when R = 
I ,  and all xi< = l/k 

k(=l )  
~~ 

2 3 4 k 

D2 0.25 0.222 0.1875 fi 
k2 

D* 1 .o 0.5 0.333 1 - 
k - 1  

Q* 1 .o 0.5 0.333 1 - 
k - 1  

F’ 1 .o 0.5 0.333 1 - 
k - 1  

X(2) 1.0 1 .o 1 .o 1 
D’ 1 .o 1 .o 1 .o 1 

-0.1 ’ I I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

91 
FIGURE 3.-Magnitude of X(2) for different p ,  and q1 values. 

when D ’  = 0.5. 

THOMSON (1 986) showed that this occurs when there 
are two alleles at each locus for F* when 

-2D(p1q1 - piqz - P H I  + pzqz) < 40’.  (16) 
The same conditions are also true for F’ and X(2) .  

T o  determine the maximum value of these different 
measures for given allelic frequencies, expression ( 2 )  
with the substitution D ; I  = 11 I ,  gives D I I  = D,,,. 
Substituting the value of D,,, in the various equations 
gives the maximum possible so, for example, the max- 
imum D* when DII > 0 and P I  (1 - q1) < (1 - p1)qI 
becomes 

To calculate the maximum F’, expression ( 2 2 )  can be 
used. 

When there are multiple alleles, the disequilibrium 
is intuitively highest when there are the same number 
of alleles at both loci (k = I )  and xii = p ,  = qi (all other 
gametes, xq = 0 where i # j ) ,  a situation termed 
absolute association by CLEGG et al. (1976). First, 
assuming only coupling gametes are present in the 
population and all are at equal frequency, i .e . ,  p ,  = qi 
= 1/k, then we can calculate the disequilibrium gen- 
erated for the different measures (see Table 1). In 
this situation, D* = Q* = F’ = 1/(K - 1) and the 
extent of disequilibrium declines for these measures 
as the number of alleles increases. X ( 2 )  and D’ are 
equal to unity for any number of alleles. The depend- 
ence of D*,  Q* and F’ on the number of alleles at a 
locus makes these measures less useful when compar- 
ing samples with different numbers of alleles. This 
problem could be rectified by multiplying them by k 

- 1 when k = 1 (remember YAMAZAKI’S measure L 
does this for Q*). 

Second, let us assume that there is still absolute 
association and only coupling gametes but relax the 
assumption that all gametes have a frequency of l/k. 
Table 2 gives the values for the different measures 
for examples with 2 ,  3, and 4 alleles and general 
expressions for k alleles. The allelic frequencies chosen 
for the examples are ones that fit the expectations for 
a neutrality population with a given number of alleles 
(EWENS 19’79). In this case again, X ( 2 )  and D’ are 
always unity and Q* = l/(k - 1). On the other hand, 
D * and F ’ do not have values solely dependent on the 
number If alleles as they did when all coupling ga- 
metes had equal frequencies. 

Given that there are more than two alleles at both 
loci, and the frequencies of the alleles at the two loci 
are different, i.e., pi # qi, then in general there is no 
way in which D‘  can be unity. However, for three 
alleles it is possible to have D’  = 1 given that P I  2 p 2  
+ p 3  and q1 2 q2 + 4 3 .  Table 3 (center columns) gives 
an example of two such gametic arrays with P I  = 0.5, 
p 2  = p 3  = 0 .25  and q1 = 0 .85 ,  q2 = 0.1, and qs = 0.05 
and similar ones given equal allelic frequencies at the 
two loci ( P I  = q 1  = 0.85,  p 2  = q2 = 0.1, and p 3  = qs = 
0.05 in the left column and $ 1  = q1 = 0.5 and p 2  = p s  
= q2 = 4 3  = 0.25 in the right column). First, notice 
that even though the left and right columns of Table 
3 have equal allelic frequencies at the two loci, the 
values of the measures except D ’ are quite different. 
In fact, in the first column where allelic frequencies 
are consistent with neutrality, both F’ and X(2)  are 
negative while in the right column, they are positive. 
When the allelic frequencies are different at the two 
loci, then F‘ and X(2)  are still negative for the first 
array of gametic frequencies (column 2 )  but positive 
for the second array of gametic frequencies (column 
3). In other words, given that the disequilibrium is 
the maximum possible for these allelic frequencies, 
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TABLE 2 

Amount of diseguilibrium for the different measures when R(=Z) and there is absolute association with xii = pi = qi and the allelic 
frequencies at a locus differ" 

k(=l )  

2 3 4 k 
(0.92, 0.08) (0.85,0.1, 0.05) (0.79,0.15,0.05, 0.01) ( P I ,  p2, p3. . .P*) 

k k k  

0.0217 0.0440 0.0776 c P W  - P Y  + cz p:p; 
1- 1 1 3  

02 

0 2  

D* 

Q* 

1 .o 

1 .o 

0.637 

0.5 

F' 0.173 0.361 

X(2) 1 .o 
D' 1 .o 

1 .o 
1 .o 

0.630 

0.333 

0.540 

1 .o 
1 .O 

1 
R -  1 
- 

1 
1 

The frequencies of the coupling gametes are given in parentheses. 

TABLE 3 

Amount of disequilibrium for different measures for the 
gametic arrays given 

0.7, 0.1.0.05 0.35,0.1,0.05 0.5, 0.0,O.O 0.0, 0.25,0.25 
0.1, 0.0, 0.0 0.25, 0.0, 0.0 0.25,0.0, 0.0 0.25, 0.0, 0.0 
0.05,0.0,0.0 0.25,0.0,0.0 0.1, 0.1,0.05 0.25,0.0,0.0 

02 0.0012 0.0131 0.0306 0.141 
D* 0.0174 0.0792 0.185 0.360 
Q* 0.0078 0.044 1 0.132 0.250 
F' -0.359 -0.0943 0.358 0.280 
X- -0.130 -0.0728 0.277 0.467 

D' 1 .o 1 .o 1 .o 1 .o 
(2) 

~~~~~ ~ ~~ ~ ~ ~~~ 

then F' and X(2) may either be positive or negative 
depending upon the particular gametic array. 

Rate of decay: Another important property of a 
disequilibrium measure is the rate of decay of dise- 
quilibrium as indicated by the measure in an infinite 
or very large population. It is assumed here for sim- 
plicity that some factor such as a population bottleneck 
or hybridization of two populations generates some 
disequilibrium and then the decay of disequilibrium 
is only a function of the amount of recombination c 
between the two loci. It is important to note that 
disequilibrium can be generated continuously by such 
factors as genetic drift (e.g., HILL and ROBERTSON 
1968; OHTA and KIMURA 1969) and selection (e.g., 
LEWONTIN and KOJIMA 1960) and the rate of decay 
may also be affected by inbreeding, the mode of 
reproduction, or selection (e.g., HEDRICK 1980; P. W. 

HEDRICK, unpublished data, 1987; ASMUSSEN and 
CLEGG 1982). 

A well known result (e.g., HEDRICK 1983) is that 

D f t + l  = (1 - c)Dlj..t. (18) 
In other words, the rate of decay per generation is 
the ratio of the disequilibrium in generation t + 1 to 
that in generation t so that for the measure DU, the 
rate of decay is 1 - c. In addition, because 

= (1 - c)tDy.o (19) 
the rate of decay over t generations for the measure 
Dg is (1 - c)~.  

Because HA,  HB, pi, and q, do not change as a result 
of recombination, then 

(204 

(20b) 

( 2 0 4  

(204  

0:+1 = (1 - C)ZD;' 

D3, = (1 - C)ZDT 

Q31 = (1 - c)"? 

0:+1 = (1 - c)DI 

and 

making the rate of decay per generation for D2, D* 
and Q* equal to (1 - c)' and that for D' equal to 1 - 
c.  In addition 

0: = (1 - c)2'D: 

D r  = (1 - c)"D,* 

Q? = (1 - C y Q ;  

Dl = (1 - C)tDG 

(214 

(2 1 b) 

(2 1 4  

(2 1 4  

and 
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TABLE 4 

Rate of decay per generation for F‘ and X ( 2 )  when there is absolute association of alleles (only coupling gametes) 
~- 

k ( = l )  

2” 3” 4“ p. = I l k  
and/or 

Generation q,= 1/1 c = 0.05 c = 0.5 c = 0.05 c = 0.5 c = 0.05 c = 0.5 

1 ( 1  - c)’ 0.942 0.457 0.939 0.443 0.934 0.415 
2 0.942 0.476 0.940 0.467 0.934 0.449 
3 0.942 0.488 0.940 0.483 0.935 0.471 
4 0.943 0.494 0.940 0.491 0.935 0.485 
5 0.943 0.497 0.941 0.495 0.936 0.492 

10 0.944 0.499 0.942 0.500 0.938 0.500 
20 0.946 0.945 0.942 
40 0.949 0.948 0.947 
80 0.950 0.950 0.950 

Asymptotic (1 - c)’ (1 - 4 (1 - 4  (1 - 4 (1 - 4  (1 - 4 (1 - 4  
The  initial gametic arrays used here were the same as in Table 2. 

TABLE 5 

Rate of decay per generation for F’ and X ( 2 )  for the four initial gametic arrays given in Table 3 when e = 0.05 or 0.5 

Generation 

1 
2 
3 
4, 
5 

10 
20 
40 
80 

Asymptotic 

0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 

0.952 
0.952 
0.952 
0.952 
0.952 
0.951 
0.951 
0.950 

(1 - c )  

0.5 12 
0.506 
0.503 
0.501 
0.501 
0.500 

0.990 0.710 
0.986 0.574 
0.983 0.532 
0.980 0.515 
0.978 0.507 
0.969 0.501 
0.960 
0.953 
0.950 
(1 - c )  (1 - E )  

0.926 0.371 
0.926 0.413 
0.927 0.447 
0.927 0.471 
0.928 0.484 
0.931 0.499 
0.936 
0.944 
0.950 
(1 - 4 (1 - c )  

0.889 0.179 
0.888 0.050 

0.886 0.82 
0.885 0.598 
0.878 0.504 
0.842 0.500 
1.024 
0.954 

0.887 -1.750 

(1 - c) (1 - c) 

making the extent of decay for D’, D*, and Q* over 
t generations equal to ( 1  - c)” and that for D’ equal 

The rates of decay for F’ and X ( 2 )  are more com- 
plicated than the other measures but equal to each 
other. The basis for their equivalent rate of decay can 
be seen when x, = D, + p2qJ is substituted [from 
expression ( I ) ]  into expression (1 0) which then be- 
comes 

F* = D 2  + 2 c  

to (1 - c y .  

k l  

plq, D, 
(22) 

r = l  ,=I 

k I 

+ i f: p:q: - c p;” c 9:. 
2=1 ,=I  2=1  , = I  

Notice that expressions ( 1 2 )  and ( 2 2 )  both have dise- 
quilibrium measures of the same sort and ratio, D’ to 
2C&q,D,, indicating the reason for the same rate of 
decay for these measures. Of course, terms composed 
only of p ,  and q, combinations do not change as the 
result of recombination. 

Because both F’ and X ( 2 )  are functions of both D2 
and D,, their rate of decay is a function of the initial 

gametic array. To illustrate their behavior, some ex- 
amples are given in Tables 4 and 5. First, note in the 
first column of Table 4 that when all p t  = l /k and/or 
all q, = 1/Z that the rate of decay per generation for 
F‘ and X ( 2 )  is (1 - c)’just as it is for D2, D* and Q*. 
Second, in the remainder of Table 4 assuming still 
absolute coupling but unequal allelic frequencies, then 
the rate of decay changes but eventually asymptotes 
at 1 - c.  In other words, with initial absolute disequi- 
librium the per generation rate of decay may be (1  - 
c)’ or (1 - E )  depending upon the initial gametic array. 

Finally, in Table 5 the rate of decay is given for the 
arrays in Table 3. Here, all the arrays eventually have 
a decay rate of I - c but some start out in the early 
generations with a much slower decay rate, e.g., array 
( b ) ,  while others have a much faster decay rate, e.g., 
array ( c ) .  The array ( d )  has a most unusual rate of 
decay because both F’ and X ( 2 )  are initially negative 
but with decay, first become positive until generations 
39 and 3 when c = 0.05 and 0.5, respectively, and 
then approach zero from the positive side. For ex- 
ample, the rate of decay ior this array when c = 0.5, 
is first very large, then becomes a large negative value 
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TABLE 6 

Statistics describing the distribution of six measures of total disequilibrium for n = 200 

337 

k = 1 = 2  
D2 
D* 
Q* 
F‘ 
X(2) 
D‘ 

D2 
D* 
Q* 
F’ 
X(2) 
D’ 

4Nu= 1 
DZ 
D* 
e* 
F’ 
X(2) 
D’ 

4Nu = 0.25 

0.014 
0.130 
0.130 
0.661 
0.106 
1 .ooo 

0.027 
0.166 
0.105 
0.486 
0.173 
0.934 

0.060 
0.194 
0.060 
0.319 
0.344 
0.833 

0.044 
0.295 
0.295 
5.36 
0.310 
0.013 

0.054 
0.269 
0.187 
2.95 
0.330 
0.174 

0.054 
0.161 
0.050 
0.609 
0.293 
0.184 

3.86 
2.38 
2.38 

2.27 
12.6 

2.26 
1.79 
2.81 

1.37 
18.3 

-3.08 

0.62 
1.16 
3.35 

0.09 
-1.41 

14.7 

14.3 
4.02 
4.02 

3.66 
200. 

4.18 
2.07 
9.04 

0.43 
9.18 

-0.73 
1.63 

34.5 

-1.08 
1.70 

500. 

549. 

0.002 
0.029 
0.029 
0.091 
0.01 1 
0.913 

0.006 
0.043 
0.031 
0.084 
0.032 
0.772 

0.018 
0.062 
0.027 
0.087 
0.097 
0.575 

0.008 
0.085 
0.085 
3.36 
0.112 
0.225 

0.013 
0.081 
0.065 
1.832 
0.127 
0.301 

0.019 
0.054 
0.023 
0.384 
0.132 
0.208 

7.09 
6.23 
6.23 

23.1 
4.46 

-2.64 

3.98 
4.54 
6.22 

33.8 
2.65 

-0.94 

1.49 
2.27 
3.09 

0.76 
0.32 

30.2 

66.9 
51.1 
51.1 

25.6 
637. 

5.81 

19.8 
31.8 
62.3 

1620. 
9.87 

-0.60 

2.56 
10.1 
28.2 

1690. 
0.81 

-0.27 

for one generation, then a large positive value, and 
finally asymptotes to 0.5. 

SIMULATION TECHNIQUES 

In order to compare the overall values of these 
measures in an objective manner rather than for se- 
lected examples, random samples were obtained using 
the program of HUDSON (1983). These samples are of 
a specified size n from a population under neutrality 
equilibrium where N is the finite population size, U is 
the mutation rate to new alleles, and c is the recom- 
bination rate between the two loci. The samples were 
examined both conditioned on the number of alleles 
at the A locus (k) and the B locus ( I )  and uncondition- 
ally, i.e., for all samples obtained from a given param- 
eter set of 4Nu and 4Nc. The conditional samples used 
were all larger than 1,000 while the unconditional 
samples were between 10,000 and 20,000. The results 
conditioned on allele number will focus on k = 1 = 2, 
the form in which most restriction site or base poly- 
morphism data is generally observed. From extensive 
simulations, HUDSON (1985) has shown that for a 
sample from a neutrality population the disequilib- 
rium values, conditioned on the number of alleles, are 
nearly independent of 4Nu. 

Distributions of measures: HEDRICK and THOMSON 
(1986) discussed at length the distribution of the 
disequilibrium measures, D *, Q* and F *, conditioned 
on the number of alleles in a sample of size n,  giving 
the mean, 95% intervals as well as the distributions of 
F* and Q* for a particular combination of parameters. 

One general conclusion from this examination was 
that these distributions generally have very large var- 
iances so that the 95% interval in the cases of D* and 
Q* extended from the minimum of zero to a quite 
large value. In addition, these measures all appeared 
to be right-skewed, i . e . ,  having long tails of high 
disequilibrium values. The  95% intervals were re- 
duced as the number of alleles in the sample increased 
and as 4Nc became larger. The unconditional distri- 
bution of D* was examined by MARUYAMA (1 982) and 
he found that it had a large variance with a long right- 
hand tail. If 4Nc is small, say <O. 1, then the distribu- 
tion is slightly U-shaped because some samples are at 
maximum disequilibrium [see Figure 5 in MARUYAMA 
(1982)l. Both GOLDINC (1984) and HUDSON (1985) 
investigated the conditional distribution of disequilib- 
rium when there are only two alleles at each locus. 

With this background, let us examine some of the 
distributional properties of the six different disequilib- 
rium measures given above. As an overall perspective, 
Table 6 gives the distributional properties for samples 
of size 200 conditioned on k = 1 = 2 and unconditioned 
for 4Nu = 0.25 and 1 when 4Nc = 0 and 10. The 
statistics used are the mean (i), standard deviation (s) 
and gl and gz,  measures of skewness and kurtosis, 
respectively, that have expectations of zero when the 
distribution is normal (e.g., SOKAL and RHOLF 198 1). 

First, let us compare D2, D * ,  Q*, and X ( 2 ) ,  a group 
of measures that we will find below to be generally 
highly correlated with each other. In fact, Q* is cor- 
related only when k and 1 are low, remember when k 
= 1 = 2, D* = Q* (Table 6). For these four measures, 
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FIGURE 4.-Distribution of X ( 2 )  when n = 200, 4Nc = 10 and 
4Nu= 1 .  

the standard deviation is the same general size as the 
mean or larger, indicating the extreme variance of 
these distributions. Note that when k = I = 2 the 
standard deviation of these four measures is much 
larger than the mean. Second, these measures show 
right skewness (positive g1 values) with the largest g l  
values for Q* and D*. In other words, these measures 
have a few samples with much higher than the average 
disequilibrium, particularly for larger 4Nc values. 
Last, these measures generally have flatter distribu- 
tions than normal distributions, i.e., platykurtic with 
positive g2 values, a characteristic that is more pro- 
nounced for higher 4Nc values. Overall, X(2)  is the 
measure of these four that is the least right-skewed 
and platykurtic, i.e., the measure of these four having 
the most normal distribution. 

The distributions of D* and Q* conditioned on 
sample size are similar to the distributions conditioned 
on both sample size and allele number and given in 
HEDRICK and THOMSON (1 986). As an example of the 
distribution for X(2),  its distribution is given for 4Nu 
= 1, 4Nc = 10, and n = 200 in Figure 4 .  The 95% 
interval extends from 0.002 to 0.392, with a few 
values larger than 0.6. 

The other two measures, F’ and D’, are different 
because F’ can have very extreme values when HAHB 
is low and D ’ is a function of the normalized measure 
05. For example, notice that the mean value of F’ is 
larger for 4Nu = 0.25 than for 4Nu = 1.0. The 
extreme right skewness and platykurtosis of F’ is the 
result of these occasionally large F’ values. D’ has a 
smaller standard deviation relative to its mean than 
does the other five measures. The mean of D’ is 
relatively near the maximum of unity for all cases in 
Table 6 except 4Nc = 10 and 4Nu = 1, and generally 
it shows a left skewness. In other words, when 4Nu = 
0.25 and 4Nc = 0, most of the D’ values are quite 
high but an occasional sample has low disequilibrium 

0.10 

0.08 

5 0.06 
c W 
3 

F 0.04 
0.02 

n M  ”. -” 
0.0 0.2 0.4 0.6 0.8 1.0 

0‘ 
FIGURE 5.-Distribution of D’ when n = 200, 4Nc = 10 and 

4Nu = 1 .  

as measured by D’, giving the left skewness. Figure 5 
gives the distribution of D’ when n = 200, 4Nc = 1 
and 4Nu = 1. Notice the symmetry of the distribution 
of D’ if the D ’ = 1 .O class is ignored, suggesting that 
along with X(2) that D’ is the most normally distrib- 
uted of the measures. 

Correlation of measures. The pairwise correlation 
coefficients of the six different total disequilibrium 
measures was calculated for samples from a population 
at equilibrium under neutrality for a wide range of 
values of n, 4Nu and 4Nc. First, let us examine the 
correlation coefficients for a range of recombination 
values (keeping 4Nu and n constant) because we know 
that the disequilibrium values decrease as 4Nc in- 
creases (Table 6). One way to evaluate the pattern of 
these correlations is to focus on values above a given 
magnitude. As a guide, the correlations above 0.8 and 
between 0.6 and 0.8 are indicated in Table 7 (and 
subsequent tables). 

First, note that in general the magnitude of the 
correlation between any given pair of measures, par- 
ticularly the pairs with high correlations, declines as 
4Nc increases. The major difference occurs between 
4Nc = 10 and 4Nc = 100, suggesting that for the 
range between 4Nc = 0 and 4Nc = 10 (and maybe 
somewhat larger), the correlation patterns are consist- 
ent. The highest correlations are between the meas- 
ures D2,  D* and X(2). If we look at the values of 4Nc 
= 0, 1, and 10, all of the correlations between these 
measures are above 0.6 and 7 of 9 are above 0.8. In 
other words, these three measures form a group that 
appear to give much the same information concerning 
disequilibrium. 

In addition, Q* has a fairly high correlation with 
these three measures. The main difference between 
Q* and these other measures is that Q* is divided by 
the degrees of freedom. This appears to be the main 
reason why it does not have as high a correlation as 
the other members of this cluster (see discussion be- 
low). The other two measures, F’ and D ’ ,  have very 
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TABLE 9 TABLE 7 

Correlation coefficient between six total disequilibrium 
measures for four levels of recombination when 4Nu = 1.0 and 

n=200 

Correlation coefficient between the six total disequilibrium 
measures for three levels of mutation when 4Nc = 10 and n = 

200 

4Nc 

0 1 10 100 

D 2  - D* 

F' 

D' 
D* - Q* 

F' 

D' 
Q* - F' 

.D' 

D' 

X(2) - D' 

Q* 

X(2) 

X(2) 

X(2) 

F' - X(2) 

0.83** 
0.44 
0.17 
0.86** 
0.51 
0.59 
0.46 
0.87** 
0.48 
0.48 
0.60* 
0.24 
0.45 
0.08 
0.45 

0.85** 
0.47 
0.21 
0.85** 
0.45 
0.60* 
0.5 1 
0.87** 
0.45 

0.51 
0.62* 
0.21 
0.51 
0.08 
0.38 

0.82** 
0.40 
0.14 
0.74* 
0.20 

0.53 
0.40 
0.79* 
0.29 
0.45 
0.59 
0.06 
0.46 

-0.05 
0.06 

0.67* 
0.20 
0.09 
0.41 

-0.05 

0.40 
0.50 
0.54 
0.22 
0.43 
0.44 
0.00 

0.63* 
-0.19 

-0.22 

* <0.8 and >0.6; ** >0.8. 

TABLE 8 

Correlation between the six total disequilibrium measures for 
three sample sizes when 4Nu = 1 and 4Nc = 10 

n 

20 200 2000 

Q* 0.46 0.40 0.44 
F' 0.21 0.14 0.20 
X(2) 0.78* 0.74* 0.75* 
D' 0.12 0.20 0.25 

D* - Q* 0.78* 0.53 0.46 
F' 0.67* 0.40 0.41 
X(2) 0.81** 0.79* 0.79* 
D' 0.30 0.29 0.33 

Q* - F' 0.76* 0.45 0.38 
X(2) 0.74* 0.59 0.57 
D' 0.13 0.06 0.06 

F' - X(2) 0.65* 0.46 0.55 
D' 0.03 -0.05 -0.09 

X(2) - D' 0.04 0.06 0.07 

D 2  - D* 0.75* 0.82** 0.84** 

* <0.8 and >0.6; ** >0.8. 

low correlations with the other measures and with 
each other (no values above 0.6). 

Second, let us examine the effect of different sample 
sizes on the correlation coefficient for given 4Nu and 
4Nc values. Table 8 gives these correlations for a 100- 
fold range in sample size from n = 20 to n = 2000. 
Notice again D2, D*, and X(2)  form a cluster of high 
values with Q* being slightly lower. Importantly, the 
correlations between the measures in the high cluster 
appear to be independent of sample size and remain 
high over the 100-fold range in sample size. 

4Nu 

0.25 0.5 1 .o 

0.44 0.44 0.40 
0.06 0.09 0.14 

Q* 
F' 
X(2) 0.58 0.66* 0.74* 
D' -0.14 -0.07 0.20 

D* - Q* 0.84** 0.70* 0.53 
F' 0.45 0.43 0.40 
X(2) 0.87** 0.84** 0.79* 
D' -0.03 0.04 0.29 

Q* - F' 0.53 0.50 0.45 
X(2) 0.77* 0.68" 0.59 
D' -0.06 -0.04 0.06 

F' - X(2) 0.44 0.48 0.46 
D' -0.04 -0.07 -0.05 

X(2) - D' -0.19 -0.16 0.06 

D2 - D* 0.69* 0.77" 0.82** 

* C0.8 and >0.6; ** >0.8. 

TABLE 10 

Correlation between the six total disequilibrium measures when 
k = 1 = 4 for four combinations of n and 4 N c  

n 

20 200 

4Nc 

0 10 0 10 

D2 - D*,Q* 
F' 

D' 
D*,Q* - F' 

D' 

D' 

X(2) - D' 

X(2) 

X(2) 

F' - X(2) 

0.76* 
0.13 
0.74* 
0.01 

0.70* 
0.99** 
0.01 
0.71* 
0.01 
0.01 

0.71* 
0.22 
0.63* 
0.0 1 
0.83** 
0.95** 
0.11 
0.84** 
0.00 

-0.04 

0.76* 
0.04 
0.74* 

-0.32 
0.43 
0.99** 
0.01 

0.44 
0.01 

0.01 

0.61* 
0.03 
0.50 

-0.17 

0.60* 
0.91** 

-0.07 
0.55 

-0.02 
-0.16 

Third, let us examine whether the correlations be- 
tween the measures are dependent upon the mutation 
rate. Table 9 gives the correlations of the disequilib- 
rium measures over a four-fold range of 4Nu for n = 
200 and 4Nc = 10. Again the highest correlations are 
between Dz, D*, and X(2)  with Q* having relative 
higher correlations with D* and X ( 2 )  when 4 Nu is 
lower. This latter result is of course due to fewer 
alleles being present when 4Nu is low so that the 
degrees of freedom does not influence Q* very much. 

Finally, let us examine the correlation between the 
measures when k = 1 = 2. Table 10 gives these values 
for four combinations of n and 4Nc (remember for k 
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TABLE 11  

Summary of properties of different gametic disequilibrium measures for L = I = 2 

Range Decay Rate 

Comments Minimum Maximum Comments Per generation 

0 2  0 AbqJ) (1 - c)’ 
D* 0 A P d  (1 - c)’ 

0 Apg,9J) (1 - c)’ 4* 

D’ 0 1 Independent of p,,qJ ( 1  - c )  
X(2) 

F’ Ap.19~) AbqJ) May be negative; Variable Equal to X(2) 
may be very large 

AbqJ) A P 4 J  May be negative Variable Equal to F’ 

= 1 = 2, D* = Q*, making the correlation between 
these two measures equal to unity). Notice here that 
the correlation between D* or Q* and X ( 2 )  is very 
high, greater than 0.9 in all cases. The correlation 
with D2 is somewhat lower, that with F’ lower yet, 
and that with D’ is near zero in all cases. 

CONCLUSIONS AND DISCUSSION 

Some properties of the six gametic disequilibrium 
measures discussed are summarized in Table 11 when 
there are two alleles at each locus. First, only D’ is 
frequency independent and has the same range for all 
allelic frequencies. Particularly, when comparing sam- 
ples with different allelic frequencies or different pairs 
of loci (see below) a frequency-independent measure 
is quite important. The maximum for all the other 
measures is a function of the allelic frequencies and 
the maximum for F’ can be very large in some in- 
stances. In addition, the minimum of both F ‘  and 
X ( 2 )  has the unfortunate property of being negative. 

An example of a situation in which these character- 
istics may be quite important is when using gametic 
frequencies to infer “recombinational hot spots” (e.g., 
CHAKRAVARTI et al. 1984). Let us assume that four 
loci or restriction sites, A ,  B ,  C and D ,  are tightly 
linked and that there is the maximum disequilibria 
present possible for the observed allelic frequencies. 
Two such gametic arrays are given in Table 12 with 
the calculated disequilibrium values. These arrays 
were chosen so that the frequencies of the alleles at 
loci A and B were equal and those at loci C and D 
were equal but different from A and B. For example, 
for the array given on the left, the frequency of A I  
and B ,  are 0.2 and that of CI and D I  are 0.4. Notice 
that the disequilibrium values for all the measures 
except D’ are smaller between loci B and C than for 
locus pairs A-B and C-D. If one did not know that all 
the measures but D’ were dependent upon allelic 
frequencies, then it would appear that the disequili- 
bria between B and C was actually lower than for A- 
B and C-D. Such values have been used to suggest the 
presence of a recombinational hot spot which in this 
case may be only an artifact of the disequilibrium 
measure. 

TABLE 12 

Value of pairwise disequilibrium for the different measures for 
the frequency of four-locus gametes given in parentheses 

Frequency 
of gametic (0.2, 0.0, 0.2, 0.6) (0.2.0.0, 0.6, 0.2) 
array: 
1.orusnair: A-B B-C C-D A-B B-C C-D 

D 2  0.102 0.006 0.102 0.230 0.058 0.102 
D* 1 .O 0.062 1.0 1.0 0.375 1.0 

1 .o 0.062 1.0 1.0 0.375 1.0 Q* 
F’ 
X ( 2 )  1.0 -0.103 1.0 1.0 0.370 1.0 
D‘ 1 .o 1.0 1.0 1.0 1.0 1.0 

2.125 -0.219 2.125 1.083 0.562 2.125 

Another situation in which a frequency-dependent 
measure may lead to erroneous conclusions is in the 
examination of the effect of an evolutionary factor on 
disequilibrium. For example, FUERST and MARUYAMA 
(1986) used D* to examine the effect of population 
bottlenecks on gametic disequilibrium and came to 
the conclusion that the extent of disequilibrium de- 
pended upon the allelic frequencies after the bottle- 
neck. However, the measure D* is itself a function of 
the allelic frequencies so it is probable that their 
conclusions are not due to the population bottleneck 
but to an artifact in the disequilibrium measure they 
used. 

Second, as stated in Table 11 the rate of decay due 
to recombination per generation in a large population 
is constant for D2, D*, Q* and D’ being the smallest. 
The rate of decay in this situation for F’ and X(2) 
varies over time and asymptotes at (1 - c) or (1 - c ) ~  
depending upon the initial gametic array. 

Some general properties of the six measures are 
summarized in Table 13. For example, when samples 
from a population at equilibrium under neutrality are 
examined, in general F’ has the largest variance (and 
gl and g2 values) and D’ the lowest variance. Overall 
D 2 ,  D”, X(2) and to some extent Q* form a cluster of 
fairly highly correlated measures. F’ is not part of the 
cluster, apparently because of the very large values 
that this measure may have. D’ is uncorrelated with 
the other measures apparently because it is allelic- 
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TABLE 13 

Summary of general properties of the different gametic disequilibrium measures 

341 

Distribution Correlation Biological Statistical 

D2 High withD*,X(2) 
D* High with Dz,X(2)  

F’ High s, gJ& 

D‘ 

Related to homozygosity 
Q* 

X(2) High with D2,D* Related to variance of heterozygosity Test available 
Low s Uncorrelated 

frequency independent while all of the others have 
frequency dependence. Both F ’  and X ( 2 )  have some 
biological relevance (Table 13) while the other meas- 
ures have no particular relationship to biological en- 
tities such as homozygosity or heterozygosity. Addi- 
tionally, X ( 2 )  has a statistical advantage because of the 
presence of a statistical test (BROWN, FELDMAN and 
NEVO 1980). 

From these considerations, in my opinion, one 
should proceed with caution when using a particular 
gametic disequilibrium measure. One should be care- 
ful to use a truly allelic frequency-independent mea- 
sure such as D’. The normalized measures D*, Q*, 
F’ and X ( 2 )  are very frequency dependent. For ex- 
ample, the good biological and statistical properties of 
X ( 2 )  may be outweighed by its frequency-dependence, 
negative values, and variable rate of decay. Further- 
more, the traditional propensity towards D2 and D * 
because of mathematical tractability may be less im- 
portant than their strong frequency dependence. As 
a result, prudence would suggest that D’ or some such 
frequency-independent measure of disequilibrium 
should be used to insure confidence in conclusions 
based on statistical associations of alleles at two (or 
more) loci. 
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