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ABSTRACT 
The advent of complete  genetic  linkage maps  consisting of codominant DNA markers  [typically 

restriction  fragment  length  polymorphisms  (RFLPs)] has stimulated  interest in the systematic  genetic 
dissection of discrete  Mendelian  factors  underlying  quantitative  traits in experimental  organisms. We 
describe here a set of analytical  methods  that  modify  and  extend the classical theory  for  mapping 
such quantitative  trait loci (QTLs).  These  include: (i) a method of identifying  promising  crosses  for 
QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method  (interval  mapping) 
for exploiting the full power of RFLP  linkage  maps  by adapting the approach of LOD score  analysis 
used in human genetics,  to  obtain  accurate  estimates of the genetic  location  and  phenotypic effect of 
QTLs; and (iii) a method  (selective  genotyping)  that allows a substantial  reduction in the  number of 
progeny  that  need to be  scored with the DNA markers. In addition  to the exposition  of the  methods, 
explicit  graphs are provided  that allow experimental  geneticists to estimate, in any particular  case, 
the  number of progeny  required to map QTLs  underlying a quantitative trait. 

T HE conflict  between the Mendelian  theory of 
particulate  inheritance  and  the  observation  that 

most traits  in  nature  exhibit  continuous variation was 
eventually resolved by the concept that  quantitative 
inheritance can result  from the segregation of multi- 
ple genetic  factors,  modified by environmental effects 
(JOHANNSEN 1909; NILSSON-EHLE, 1909; EAST 19 16). 
Breeding  studies  confirmed  numerous  predictions of 
this  theory (EAST 19 16) and  pioneering genetic map- 
ping  studies (SAX 1923; RASMUSSON 1933; THODAY 
196 1 ; TANKSLEY, MEDINA-FILHO and RICK 1982; ED- 
WARDS, STUBER and WENDEL 1987) showed that it 
was even possible occasionally to  detect genetic link- 
age to  the putative quantitative trait loci (QTLs). Un- 
fortunately, systematic and  accurate  mapping of 
QTLs has not  been possible because of the difficulty 
in arranging crosses with genetic  markers densely 
spaced throughout  an  entire  genome. Recently,  such 
studies  have  become possible in principle with the 
advent of  restriction  fragment  length  polymorphisms 
(RFLPs) as genetic  markers (BOTSTEIN et al. 1980) 
and  the increasing availability of  complete  RFLP maps 
in many organisms. 

Systematic genetic dissection of  quantitative  traits 
using complete RFLP linkage maps would be valuable 
in a  broad  range of biological endeavours. Agricul- 
tural  traits  such as resistance to diseases and pests, 
tolerance to  drought,  heat, cold, and  other adverse 
conditions, and  nutritional value could  be  mapped 
and  introgressed  into domestic  strains  from  exotic 
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relatives (RICK 1973; HARLAN 1976). Aspects of mam- 
malian physiology such as hypertension,  atheroscle- 
rosis, diabetes,  predispositions to cancer  and  terato- 
mas, alcohol sensitivity, drug sensitivities and some 
behaviours  could be investigated in animal  strains 
differing widely for these  traits  (TANASE et al. 1970; 
DE JONG 1984; PAIGEN et al. 1985; PROCHAZKA et al. 
1987; HESTON 1942; KALTER 1954; MALKINSON and 
BEER 1983; SHIRE 1968; STEWART and ELSTON 1973; 
ELSTON and STEWART 1973; FESTINC 1979). Evolu- 
tionary  questions  about  speciation could  be eluci- 
dated by determining  the  number  and  nature of the 
genes involved in reproductive  barriers (COYNE and 
CHARLESWORTH 1986). An  example  of  such  genetic 
dissection is reported in  a  companion paper (PATER- 
SON et al. 1988): In  an interspecific cross in tomato, 
QTLs affecting fruit weight,  concentration of soluble 
solids and  fruit  pH  are  mapped  to within about 20- 
30 cM by means  of  a  complete RFLP linkage  map. 

The purpose  of this paper is to discuss the  general 
methodology for  mapping QTLs in experimental or- 
ganisms. Although  the basic idea has been  clear since 
SAX (1  923), the systematic approach  made possible by 
complete RFLP linkage maps raises a number of  ques- 
tions. With  complete  coverage of the  genome assured 
by the  map, is it possible to design a cross so as to 
make it highly likely that  QTLs will be  found?  Can 
the estimation  of Q T L  effects and positions be made 
more  accurate  through the use of flanking  markers? 
When  searching an  entire  genome  for  QTLs, what 
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precautions are  needed  to avoid false positives? In 
view of the time and expense of complete  RFLP 
genotyping, how can the  number of progeny  that must 
be genotyped  be minimized? T o  address these issues, 
we explore below  ways to: 

( i )  Identzjjpromising crosses for  QTL mapping. Genetic 
dissection of a  quantitative  trait will succeed only when 
some of the  QTLs segregating in the cross have rela- 
tively large  phenotypic effects. By exploiting  a classical 
formula of SEWALL  WRIGHT, we show that it is often 
possible to recognize such crosses in advance and 
thereby  to  ensure  that QTLs will in fact be identified. 

(ii)  Exploit the full  power of complete linkage maps. 
The traditional  approach to mapping QTLs (SAX 
1923; SOLLER and BRODY 1976) involves studying 
single genetic  markers one-at-a-time. In  general, the 
drawbacks of the  method  include  that  (a)  the  pheno- 
typic effects of QTLs  are systematically underesti- 
mated,  (b)  the  genetic locations of QTLs are not well 
resolved because distant linkage cannot be distin- 
guished from small phenotypic  effect, and (c) the 
number of progeny  required  for  detecting QTLs is 
larger  than necessary. By adapting  the  method of 
LOD scores used in human genetic linkage analysis, 
we show  how to remedy  these  problems by the ap- 
proach of interval  mapping of QTLs.  In  addition,  the 
traditional  approach neglects the  problem  that  testing 
many genetic  markers increases the risk that false 
positives will occur. We determine  the  appropriate 
degree of statistical stringency to prevent such errors 
in mapping  QTLs. 

(iii) Decrease the number of progeny to be genotyped. 
In typical  cases, a  reduction of up  to sevenfold can be 
achieved by combining two approaches:  interval map- 
ping and selective genotyping. Selective genotyping in- 
volves growing  a  larger  population, but genotyping 
only those individuals whose phenotypes  deviate sub- 
stantially from  the  mean. Additional methods  for in- 
creasing the power of QTL mapping  include  reducing 
environmental noise by progeny  testing and  reducing 
genetic noise by studing several genetic  regions si- 
multaneously. 

Although the RESULTS section is mathematical in 
parts,  the DISCUSSION presents the methodology in 
terms of explicit graphs  that allow an experimental 
geneticist to design crosses to dissect a  quantitative 
trait by using a  complete  RFLP linkage map. 

RESULTS 

The basic methodology  for  mapping QTLs involves 
arranging  a cross between two inbred  strains  differing 
substantially in a  quantitative  trait:  segregating  prog- 
eny are scored  both  for  the  trait and  for  a  number of 
genetic  markers. Typically, the segregating  progeny 
are  produced by a B1 backcross (F1 X Parent) or an FZ 
intercross (F1 X F1).  For simplicity, only the backcross 

'B 1 
FIGURE 1 .-Phenotype distributions. Schematic drawing of phe- 

notypic distributions in the A and B parental, FI hybrid and B, 
backcross populations. 

will be discussed in detail. As we note below, the F2 
intercross is analogous and requires only about half as 
many progeny. 

Definitions  and  assumptions: Let A and B be 
inbred  strains  differing  for  a  quantitative  trait of 
interest, and suppose that  a B1 backcross is performed 
with A as the  recurrent  parent. Let 

(PA, ~ 5 ) ~  (PE, d), ( P F ~ ,  d l )  and ( P B ~ ,  ni l )  

denote  the mean and variance of the phenotype in the 
A, B,  F1 and B1 populations, respectively (Figure  1). 
Let D = p~ - P A  > 0 denote  the phenotypic  difference 
between the strains. The cross will be analyzed under 
the classical assumption (MATHER and JINKS 197  1; 
FALCONER 198 1)  that  the  phenotype results from sum- 
ming the effects of individual QTL alleles, and  then 
adding normally distributed  environmental ( i e . ,  non- 
genetic) noise. In  particular, we assume complete co- 
dominance and  no epistasis. These assumptions imply 
that 

PFl = %(PA + @B),  ( 1 4  

P B ~  = ?&A + PFJ, and (1b) 

( 1 4  g: = cg = af, < UBI. 
2 

The variances within the A ,  B and F1 populations 
equal  the environmental  variance, a& among  geneti- 
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cally identical individuals, while the variance within 
the B1 progeny also includes genetic variance, u: = 
u& - ui. Frequently,  phenotypic  measurements must 
be mathematically transformed so that parental  phe- 
notypes are approximately normally distributed  and 
the relations (labc)  are approximately satisfied. For 
example, WRIGHT (1968)  obtained an excellent fit to 
the  theory by applying a  log-transformation  (appro- 
priate when the  standard deviations scale with the 
mean) to  tomato  fruit weight. 

By the phenotypic effect 6 of  a QTL, we will mean 
the additive  effect of substituting both A alleles by B 
alleles. A single allele has effect 1/26, since additivity is 
assumed. In a backcross, the segregation of a QTL 
with effect 6 contributes  an  amount 6'/16 to  the 
genetic variance u:. The variance  explained by the 
QTL. is written u& = 6'/16, while the residual  vari- 
ance 1s uB, = u& - u&. 

Choosing  strains 
The ability to  map QTLs underlying  a  quantitative 

trait  depends  on  the  magnitude of their  phenotypic 
effect: the smaller the effect that  one wishes to detect, 
the  more  progeny will be  required.  Before  attempting 
genetic dissection of a  quantitative  trait, it would thus 
be  desirable to identify crosses segregating  for QTLs 
with relatively large  phenotypic effects and  to estimate 
the  magnitude of the effects. In fact, this can often  be 
accomplished by exploiting  a classical formula of 
WRIGHT. 

WRIGHT (quoted by CASTLE 192 1 ;  WRIGHT 1968) 
proved  that the  number k of QTLs  segregating in a 
backcross between two strains with phenotypic  differ- 
ence D can be  estimated by the  formula: 

k = D2/16u:,   (2)  

provided  that the following assumptions hold: (i) the 
QTLs have effects of equal  magnitude, (ii) the  QTLs 
are unlinked, and (iii) the alleles in the high  strain all 
increase the  phenotype, while those in the low strain 
decrease the phenotype. (To see this, recall that  the 
variance explained by a single such QTL would be 
a& = (D/k)'/16 and  thus  the total  genetic variance 
explained by the k QTLs would be a: = ( l / k )  

The quantity k is called the number of effective factors 
in the cross. If the assumptions are satisfied, then each 
QTL affects the  phenotype by (D/k )  and e,xplains 
( l / k )  of the genetic variance in the backcross. Unfor- 
tunately, if these assumptions are  not satisfied (as will 
be likely in practice; c j  PATERSON et al. 1988),  the 
number  of effective factors k may seriously underes- 
timate the  number of QTLs.  In  principle, the  number 
of QTLs is unlimited.  In this case, must there exist 
any QTLs affecting  the  phenotype by (Dlk)? More 
generally, for any 0 5 e I 1, must there exist QTLs 
affecting the phenotype by c(D/k)? And, how much of 

( D 2 / 1 6 ) . )  

the  total  phenotypic  difference D and  the genetic 
variance u: can be  attributed  to such QTLs? Propo- 
sition 1 (proven in APPENDIX [All)  supplies an answer: 

Proposition 1. Consider a cross in which the phenotypic 
dzfference between the strains is D and the number of 
effective factors is k. Assume that the QTLs are  unlinked 
and  that the alleles  in the "high" strain  all increase the 
phenotype.  Let S. denote the set consisting of those QTLs 
that  alter the phenotype by at least e(D/k). No matter how 
many QTLs are segregating and no matter  what their 
individual phenotypic effects, the QTLs in S, must together 
account for  a fraction 2 D, of the total  phenotypic dzffer- 
ence D between the strains  and  must together explain a 
fraction 2 V, of the genetic variance  in the second gener- 
ation, where 

D, = [?he + d(1 - e)k + ' / e 2 ] / k  and 

V, = 1 - ~ ( 1  - De). 

Considering the case e = 1 ,  the proposition states 
that  the  QTLs with phenotypic effect (D/k )  must 
account  for  a  phenotypic  difference of at least (D/k) .  
In other words, there must exist at least one QTL 
having phenotypic effect 1 (Dlk ) .  

Suppose that we are willing to search  for QTLs 
with somewhat smaller effects. How much of the 
phenotypic  difference can be attributed  to  QTLs with 
effect 2 %(D/k)? Taking E = 'A and considering  various 
values of k ,  we have: 

phenotypic difference D genetic variance uG 6 
accounted  for by QTLs explained by QTLs 

with effect 2 %(D/k) with effect 2 %(D/k) 

Minimum proportion (X) of Minimum proportion %) of 

2 64 
3 50 
4 42 
5 37 

82 
75 
71 
69 

A small value of k thus implies that  the cross must be 
segregating  for QTLs with relatively large effects 
(?%(D/k)), which together account  for  a substantial 
proportion of the phenotypic  difference and explain 
a substantial proportion of the genetic variance in the 
backcross. 

In  other words, WRIGHT'S formula  can  be used to 
indicate the presence of some QTLs with large ef- 
fects-even though  the  number k of effective factors 
may not  be  a reliable estimate of the total number of 
QTLs. Note that Proposition 1 provides only a lower 
bound on  the total effect attributable  to  the QTLs in 
S,: in general,  these QTLs will have an even greater 
effect. 

How serious  a limitation is posed by the two as- 
sumptions  remaining in Proposition l ?  

(i) The first assumption is not essential: admitting 
the possibility of linked QTLs simply  allows that some 
large QTL effects may eventually prove to be due  to 
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several nearby genes. Such questions may be safely 
neglected at first. 

(ii) The second assumption is more  important.  For- 
tunately, it is possible to choose crosses in  which  it is 
likely to be satisfied. The ideal situation would be two 
strains  arising  from  brief,  intense artificial selection 
for  and against the  trait in a  large outbred population, 
followed by inbreeding: in such a case, classical  selec- 
tion theory (e.g., FALCONER 198 1)  shows that  a  “high” 
strain is unlikely to fix a “low” allele at  QTLs with 
relatively large effect; moreover, the  force of selection 
will be  greatest on the  QTLs with the largest effects. 
Many such strains have been  developed by artificial 
selection to study various physiological traits. As a 
reasonable alternative, one could use strains  that ap- 
pear  to have resulted  from  natural selection for  the 
trait. 

Judicious choice of strains can essentially ensure 
that some QTLs will be  detected in a  reasonable  prog- 
eny size calculable in advance.  When  studying  strains 
resulting  from selection, a sensible approach  might  be 
to use enough  progeny to map QTLs having effect 6 
between !h(D/k) and (D/k) .  Of course, one could 
choose to study more  progeny and might well be 
rewarded with the  detection of QTLs with smaller 
effects. 

Unselected strains  exhibiting extreme phenotypic 
differences may also merit  attention. Despite the lack 
of a mathematical guarantee,  QTLs with large effects 
may nonetheless be  segregating.  When there is no 
prior evidence of both high and low alleles in the same 
strain,  one may  wish to proceed as in the previous 
paragraph.  When  there is evidence (as when many 
segregating  progeny  exhibit  phenotypes more ex- 
treme  than  either  parent; ($ PATERSON et al. 1988), 
the analysis above  does  not apply and  the detection 
level must be chosen somewhat arbitrarily. 

Assuming that  the desired  detection level 6 has been 
chosen (by Proposition or arbitrarily), we next con- 
sider the  method  for  mapping  QTLs  and  the  number 
of progeny  required. 

Mapping QTLs: traditional  approach 
The traditional  approach  (SAX  1923; SOLLER and 

BRODY 1976; TANKSLEY, MEDINA-FILHO and RICK 
1982; EDWARDS, STUBER and WENDELL 1987)  for 
detecting  a QTL near  a  genetic  marker involves com- 
paring the phenotypic means for two classes of prog- 
eny: those with marker  genotype AB, and those with 
marker  genotype AA. The difference between the 
means provides an estimate of the phenotypic effect 
of substituting  a B allele for  an A allele at  the  QTL. 
T o  test whether the  inferred  phenotypic effect is 
significantly different  from 0, one applies a simple 
statistical test-amounting to linear regression ( i .e . ,  
one-way analysis of variance) under  the assumption of 

normally-distributed residual environmental variance. 
Consider  a QTL that  contributes &,, to  the genetic 

variance. Supposing that such a QTL were located 
exactly at a  marker locus, the  number of progeny 
required  for  detection would be  approximately 
(SOLLER and BRODY 1976) 

(zm)2(aL/a:xp), (3) 
where this progeny size affords  a 50% probability of 
detection if such a QTL is actually present and a 
probability a of a false positive if no  QTL is linked. 
Here, 2, is defined by the equation ProbabiZzty(z > Z,) 
= a where z is a  standard  normal variable ( i .e . ,  2, is 
the  number of standard deviations beyond which the 
normal  curve  contains probability a). SOLLER and 
BRODY (1  976) suggest allowing a false positive rate of 
a = 0.05. For a given  false positive rate,  the  required 
progeny size thus scales essentially inversely with the 
square of the phenotypic effect of the  QTL  or, equiv- 
alently, inversely with the variance explained. 

Although it captures  the key features of QTL map- 
ping, the  traditional  approach has a  number of short- 
comings: 

(i) If the QTL does  not lie at the  marker locus, its 
phenotypic effect may be seriously underestimated. If 
the recombination  fraction is 8, the  inferred  pheno- 
typic effect of the QTL is biased downward by a 
factor of (1 - 28). [Proof: If the two QTL genotype 
classes have phenotypic means 0 and  1,  then  the 
two marker  genotype classes will have means 8 and 

(ii) If the  QTL does  not lie at  the  marker locus, 
substantially more progeny may be  required.  In  par- 
ticular, the variance explained by the  marker 
decreases by a  factor of (1 - 28)* and  the  number 
of progeny consequently increases by a  factor of 
1/(1 - 28)’. For an  RFLP map with markers every 
10, 20, 30 or 40 cM throughout  the genome, the 
progeny size would need  to  be increased by 22%, 
49%,  82% or 123%, respectively, to account  for the 
possibility that  the QTL might lie in the middle of  an 
interval-z. e . ,  at  the maximum distance from  the  near- 
est RFLP. (These calculations use the Haldane map- 
ping  function,  corresponding to no interference.) 

(iii) The approach  does  not  define the likely posi- 
tion of the  QTL. In particular, it cannot distinguish 
between tight linkage to a QTL with  small effect and 
loose linkage to a QTL with large  effect. 

(iv) The suggested false positive rate of a = 0.05 
neglects the fact that many markers are being tested. 
While the chance of a false positive at any given 
marker is only 5%,  the chance  that at least one false 
positive will occur somewhere in the genome is much 
higher. 

These difficulties stem from  the fact that single 
markers are analyzed one-at-a-time. T o  remedy  these 
problems, we generalize the  approach so that we may 

(1 - 0 1  
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exploit the full power of an  RFLP linkage map  to scan 
the intervals  between  markers  as well. 

QTL mapping:  interval  mapping using LOD 
scores 

Method of maximum  likelihood: The traditional 
approach, involving linear regression of phenotype on 
genotype, is a special  case of the method of maximum 
likelihood. Formally, the  phenotype 4i and genotype g, 
for  the  ith individual are assumed to be  related by the 
equation 

#Ji = a + bgi + e ,  

where g, is encoded  as  a (0, 1)-indicator variable equal 
to  the  number of B alleles, E is a random normal 
variable with mean 0 and variance u', and a ,  b, and u' 
are unknown  parameters.  Here, b denotes  the esti- 
mated  phenotypic  effect of a single allele substitution 
at a  putative QTL. 

The linear  regression solutions (4, 6, i?) are in fact 
maximum likelihood estimates (MLEs) for  the  parame- 
ters-that is, they are  the values which maximize the 
probability L(a, b,  u2) that  the observed  data would 
have occurred.  Here, 

L(a ,  b ,  = Hi z((4i - (a  + bgi)), u'), (4) 

where %(x, u') = (2*u2)-"exp(-x2/2u2) is the probabil- 
ity density for  the  normal  distribution with mean 0 
and variance 6'. Under  the  method of maximum 
likelihood, the MLEs are compared to  the constrained 
MLEs obtained  under  the assumption that b = 0, 
corresponding  to  the assumption that  no QTL is 
linked. These constrained MLEs are easily seen to be 
(;A, 0, GiJ. The evidence  for  a QTL is then summa- 
rized by the LOD score: 

LOD = loglo(L(ci, 6, ;')/I,& 0, ;&)), 

essentially indicating how much  more  probable the 
data  are  to have arisen assuming the presence of a 
QTL than assuming its absence. (The choice of loglo 
accords with longstanding  practice in human genetics 
(MORTON 1955),  although log, would be slightly more 
convenient below.) If the  LOD score exceeds a  pre- 
determined  threshold T, a QTL is declared to be 
present. The important issues are: (i) What LOD 
threshold  T  should be used in order  to maintain an 
acceptably low rate of false positives? (ii) What is the 
expected  contribution  to  the  LOD  score (called the 
ELOD)  from each additional  progeny? The number 
of progeny  required is then  T/ELOD  to  provide even 
odds of detecting  the QTL with the desired false 
positive rate. 

When only a single genetic  marker is being  tested, 
these  questions are easily answered. (i) By a  general 
result about maximum likelihood estimation in large 
samples (KENDALL and STUART 1979),  LOD is asymp- 

totically distributed as !h(Ioglo e)X', where x' denotes 
the x' distribution with 1 d.f. A false positive rate of 
a will thus result if the  LOD  threshold is chosen so 
that  T = %(loglo e)(Z,)'. For  the 5% error  rate sug- 
gested by SOLLER and BRODY (1976),  the  threshold is 
T = 0.83. We postpone  temporarily the question of 
the  appropriate threshold when many markers are 
being  tested. (ii) For  a QTL contributing uzXp to  the 
backcross variance, the expected  LOD  score per prog- 
eny (ELOD) is 

ELOD = !hIOg10(1 + U ~ ~ ~ / U : ~ , )  ( 5 4  

z '/2(1oglo e)(dxp/aRs) (5b) 

= 0.22(u:x,/u:as) (54  

where (sa) follows from well-known results about lin- 
ear regression and (5b) follows from  Taylor expansion 
for small values of ( U ~ , ~ / U ? ~ ~ ) .  Combining  these two 
results, the  number of progeny  required so that  the 
LOD  score is expected to exceed  T is 

T/ELOD ( Z a ) ' ( d e s / d x p ) .  (6) 

This confirms that  the maximum likelihood approach 
agrees with the result (3) from  the  traditional  ap- 
proach  above, when examining effects at a single 
marker locus. The more  general  framework of maxi- 
mum likelihood, however, allows the  method  to  be 
extended  to  more complex situations described below. 

Interval  mapping: If genetic  markers have been 
scored throughout  the genome, the  method of maxi- 
mum likelihood can  be used as above to estimate the 
phenotypic effect and  the  LOD score  for  a  putative 
QTL  at any given genetic location (cf:  LANDER and 
BOTSTEIN 1986a,  b). The main difference is that  the 
QTL genotype gi for individual i is unknown; the 
appropriate likelihood function is therefore 

L(a, b ,  u') = J&[Gi(O)Li(O) + Gi(l)L(l)], (7) 

where Li(x) = ~ ( ( 4 ~  - (a  + bx)) ,  u') denotes  the likeli- 
hood  function  for the individual i assuming that gi = 
x and Gi(x) denotes  the probability that g, = x condi- 
tional on  the genotypes and positions of the flanking 
markers. (Given a  map  function, G is  easily computed. 
For  example, if the flanking  markers  both have gen- 
otype AA in an individual and they lie at recombina- 
tion  fraction f3 and 8' from  the  putative QTL, then 
the probability of the QTL genotype  being AB is 80', 
assuming no interference.)  Note  that (7) reduces to 
(4) in the special  case that  the QTL lies at a  marker 
locus and  the genotype g, is thus known with certainty. 

Finding the maximum likelihood solution 
(a* ,  b* ,  u'*) to (7) can be  regarded as a  linear  regres- 
sion problem with  missing data:  none of the independ- 
ent variables (genotypes) are known; only probability 
distributions for each are available. Standard com- 
puter  programs for linear regressions cannot  be used: 
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instead, one must write  a  computer  program  to max- 
imize the likelihood function explicitly. While any 
maximization method (e .g . ,  Newton's method) can be 
used, we have found it convenient to use recent tech- 
niques for maximum likelihood estimation with  miss- 
ing  data  (LITTLE  and RUBIN 1987)-specifically, the 
EM algorithm (DEMPSTER, LAIRD  and RUBIN 1977; 
LANDER  and  GREEN  1987). We have written  a com- 
puter  program MAPMAKER-QTL (S. LINCOLN and 
E. S. LANDER,  unpublished)  to  compute  LOD scores 
for  putative QTLs in a backcross population. (A more 
complete  program, also capable of handling F2 inter- 
crosses, is under development and will be made avail- 
able.) 

T o  illustrate the  method, we have analyzed simu- 
lated data  from many backcrosses. Figure 2 presents 
a QTL likelihood map, showing how the  LOD  score 
varies throughout a  genome,  for  a simulated data set 
involving 250 backcross progeny  segregating for five 
QTLs with various allelic effects. Based on the as- 
sumed  genome size and density of  markers,  a LOD 
score of 2.4 is required (see below) for  declaring the 
presence of a QTL.  In  the example, the  four largest 
QTLs  are detected while the fifth does  not  attain 
statistical significance. The approximate position of 
the QTLs is indicated by one-lod  support intervals, 
defined by the points on the genetic  map at which the 
likelihood ratio has fallen by a  factor of 10  from  the 
maximum. 

QTL likelihood maps are closely analogous to lo- 
cation score maps used in human genetics, which 
display the classical LOD score for  a qualitative trait 
and which often indicate gene positions by means of 
one-lod support intervals (OTT 1985). 

Among  the  advantages of the  approach are: 
(i) The  QTL likelihood map  represents clearly the 

strength of the evidence for QTLs  at various points 
along the  entire genome. 

(ii) In contrast to  the traditional  approach,  the in- 
ferred phenotypic effects are asymptotically unbiased. 
This is an immediate consequence of the fact that they 
are MLEs for  a  correctly specified model (KENDALL 
and STUART  1979). 

(iii) The probable position of the  QTL is given by 
support intervals, indicating the  range of points  for 
which the likelihood ratio is within a  factor of 10 (or 
100, if desired) of the maximum. 

(iv) Interval  mapping  requires fewer progeny  than 
the  traditional  approach  for the detection of QTLs. 
In meioses in which the flanking markers do not 
recombine,  the  genotype of the QTL is known almost 
certainly-up to  the chance of a  double crossover 
(e.g., at most 1 % in the case  of a 20 cM RFLP map). 
In essence, the flanking markers can be  thought of as 
a single tightly linked virtual marker in such meioses. 
Supposing that  genetic  markers are available every d 

cM and considering the (worst) case  of a QTL in the 
middle of an  interval, one can show (APPENDIX [A2]) 
that 

ELODinterval mapping (1 - 28)' ELODo/(l - $), (8a) 

where $ is the recombination  fraction  corresponding 
to d cM, 8 is the recombination  fraction  corresponding 
to %d cM, and ELODo is the expected  LOD  score  for 
a  marker located exactly at  the  QTL. By contrast, 
recall that 

ELODsinglemarkers (1 - 28)' ELODO.  (8b) 

Interval  mapping  thus decreases the  required  number 
of progeny by a  factor of (1 - $). For maps with d = 
10,20, 30 and 40 cM, the savings are 9%, 16%,  23% 
and  28%, respectively (where, as earlier, we assume 
the  Haldane  mapping  function). 

(v) QTL likelihood maps can also be used to distin- 
guish a  pair of linked QTLs from  a single QTL, 
provided  that they are not so close that recombination 
between them is very rare.  Holding fixed the position 
of one QTL,  the increase in LOD score caused by a 
second putative QTL can be  computed  for each po- 
sition along the chromosome. An example is shown in 
Figure 3. 

In addition to being  tested on numerous  simulated 
data sets, interval mapping has recently been  applied 
in a  companion  paper (PATERSON et al. 1988) to an 
interspecific backcross in tomato: six QTLs affecting 
tomato  fruit weight, four  QTLs affecting the concen- 
tration of soluble solids, and five QTLs  affecting  fruit 
pH were mapped to about 20-30 cM. 

In general,  interval  mapping should prove valuable 
for analyzing and presenting evidence for  QTLs  and 
for  decreasing the  number of progeny  required  to 
detect  QTLs of a given magnitude. 

Appropriate  threshold  for LOD scores: When an 
entire genome is tested for  the presence of QTLs,  the 
usual nominal significance level  of 5% is clearly inad- 
equate.  Indeed, applying this standard which corre- 
sponds to a  LOD  score of 0.83 would have resulted 
in a  spurious QTL being declared on chromosome 10 
in Figure 2. 

The appropriate  threshold  depends  on  the size of 
the genome and on the density of markers  genotyped. 
T o  determine  the  correct  LOD  threshold,  the issue 
is: If no QTLs  are segregating, what is the chance  that 
the  LOD score will exceed the threshold T somewhere 
in the genome? It is useful to consider two limiting 
situations: (i) the sparse-map case, in  which consecutive 
markers are well-separated, and (ii) the dense-map case, 
in  which the spacing between consecutive markers 
approaches  zero. 

In the sparse-map case, occurrences of spuriously 
high LOD scores are essentially independent. To 
achieve an overall significance  level  of a when M 
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FIGURE 2.-LOD scores for a hypothetical quantitative trait. The LOD scores are based on simulated data for 250 backcross progeny in 
an organism with I2 chromosomes of 100 cM each. For each individual, crossovers were generated assuming no interference and genotypes 
recorded at RFLP markers spaced every 20 cM throughout  the genome (indicated by tick marks on the chromosomes below each graph). 
The quantitative phenotype for each individual was generated by summing individual allelic effects at five QTLs  and  adding random 
environmental normal noise.  Alleles at  the  QTLs had effects %6 = 1.5, 1.25, 1.0, 0.75 and 0.50 and were located, respectively, on 
chromosomes 1, 2, 3 , 4  and 5 at (arbitrarily chosen) genetic positions 70,49,  27.8 and 30 cM from the left end (indicated by black triangles 
on the chromosomes) Random environmental noise had standard deviation 1. N o  QTLs were located on chromosomes 6-12. The  dotted 
line at LOD = 2.4 indicates the required significance level. The  four largest QTLs attained this LOD threshold. The grey bars indicate one- 
log support intervals for the position of the  QTLs: outside this region, the  odds  ratio has fallen by a  factor of 10. The thin lines extending 
from the gray bars indicate two-log confidence intervals. Maximum likelihood estimates of the phenotypic effect are indicated to the right of 
the confidence intervals. Data were analyzed with MAPMAKER-QTL computer package ( S .  E. LINCOLN and E. S .  LANDER, unpublished). 
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FIGURE 3.-LOD scores for  a chromosome containing two 
QTLs. Data for 250 backcross progeny were simulated with a 
chromosome of 200 cM containing two QTLs with phenotypic 
effects %a = 0.9 at 50 cM and 130 cM from the left. The black 
curve shows the LOD scores, which suggests the presence of two 
QTLs. T o  test this, the gray curves were generated by computing 
the difference of  (i) the LOD score with a QTL fixed at one position 
and a second QTL varying along the chromosome (computed by 
bivariate missing data regression) minus (ii) the LOD score with 
simply a QTL fixed at the position. After controlling for each peak, 
there remains strong evidence for the presence of a second peak. 
If the two QTLs  are brought closer together, the number of 
progeny required to resolve them increases. 

intervals are tested,  a nominal significance level of 
a / M  should  be  required  for each individual test,  cor- 
responding to a LOD threshold of  %(loglo e)(&M)'. 

In the dense-map case, occurrences of spuriously 
high LOD scores at nearby  markers are  no  longer 
independent events. As the  number M of intervals 
tested tends to infinity (with each interval  growing 
smaller), the  required nominal significance level for 
each individual test approaches  a  nonzero limit inde- 
pendent of M .  In fact, we prove in the APPENDIX [A31 
that, in the limit  of an infinitely dense-map and a  large 
progeny size, the LOD score varies according to  the 
square of an ORENSTEIN-UHLENBECK diffusion proc- 
ess. Well-known in  physics and  engineering,  the 
ORENSTEIN-UHLENBECK diffusion describes a particle 
executing Brownian motion while being coupled to 
the origin by a weak spring. The extreme value prop- 
erties of this diffusion have been extensively studied 
(LEADBETTER, LINDGREN and ROOTZEN 1983) and  the 
results immediately translate  into  statements about 
how high a LOD score will be  expected to occur by 
chance, given the size  of the genome. Specifically, for 
a high threshold T ,  we have (see APPENDIX [A3]) the 
following result: 

20 chr - 
15 chr - 
10 chr - 
5 chr - 

2 7, 

1 chr - 

Spaclng between AFLPs (In cM) 

FIGURE 4.-LOD thresholds. Appropriate  LOD threshold so 
that  the chance of a false  positive occurring anyhere in the genome 
is at most 5%, as a function of genome size and density of RFLPs 
scored. Chromosomes are assumed to be 100 cM in length- 
although approximately the same LOD threshold applies to any 
genome of the same total genetic length. The open circles at 0 cM 
correspond to  the dense-map approximation and those at 20 cM 
correspond to  the sparse-map approximation (see text), while each 
filled circle represents empirical results from 10,000 simulated 
trials. For example, a LOD threshold of about 2.4  would be re- 
quired when  using a 15 cM RFLP map of the  tomato  genome 
(-1000 cM). 

Proposition 2: Consider an organism  with C chromo- 
somes and genetic length G, measured in  Morgans.  When 
no QTLs are  present, the probability  that the LOD score 
exceeds a high level T is (C + 2Gt) x'(t), where  t = 
(2  log 1O)T and  x2(t) denotes the cumulative  distribution 
function of the x' distribution  with 1  d$ In  order to make 
the probability less than a that a false  positive occurs 
somewhere in the genome, the appropriate LOD threshold 
is  thus = T ,  = (2  log  lO)t,, where t, solves the equation a 
= (C + 2Gt,)x2(t,). 

For  both  the sparse-map and dense-map cases, a 
standard x' table may thus  be used to calculate the 
LOD score  threshold  corresponding to a 5% chance 
that even a single false positive will occur. For inter- 
mediate situations, we used extensive numerical sim- 
ulation to  determine  the  appropriate LOD thresholds 
as a  function of genome size and  marker spacing 
(Figure 4). Typically, a LOD threshold of between 2 
and 3 is required  to  ensure  an overall false positive 
rate of 5 % .  For instance, analyzing the domestic to- 
mato (C = 12, G = l l )  with a 20 cM RFLP  map 
requires  a LOD threshold of 2.4-equivalent to ap- 
plying a nominal significance level  of about a' = 0.001 
for each individual test performed. If the nominal 5% 
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significance  level (LOD > 0.83) were  used instead, 
one can  show that  the probability  would  exceed 90% 
that  a false  positive  would arise somewhere in the ge- 
nome. (Although a formal proof relies on the prop- 
erties of ORENSTEIN-UHLENBECK diffusions,  this  essen- 
tially  follows  because 1 - (1 - 0.05)"'0~20 z 0.94.) 
Indeed,  a LOD score  of 1.5 occurred by chance on 
chromosome 10 in the simulated data shown  in Figure 
2. 

Number of progeny  required: Given the ELOD for 
a QTL as a function of  its phenotypic effect (Equation 
8) and  the LOD threshold T (Figure 4), a progeny 
size  of T/ELOD will ensure a  50% chance of detecting 
linkage to such a QTL no matter where it  lies  in the 
genome. If  it is desired to increase the chance of 
success to loop%, standard arguments (KENDALL and 
STUART 1979) show that  the progeny size  should  be 
further increased by a factor of [ 1 + (ZI-~/Z~,)]~,  where 
a' is the nominal  significance  level corresponding to 
a LOD score of T. 

A technical note: The approximate progeny sizes 
given  above (Equations 3, 5a, 5b, 6, 8a and  8b) are 
exact in the case  of QTLs with  small  effects.  Slight 
modifications are required for QTLs with large ef- 
fects;  see APPENDIX [A4]. 

Increasing  the  power of QTL mapping 
Although interval mapping increases the efficiency 

of QTL mapping, large numbers of progeny may  still 
be required. We therefore discuss additional methods 
to increase the power  of QTL mapping, the most 
important of  which is selective genotyping. 

Selective genotyping of the  extreme  progeny: 
Some progeny contribute more linkage information 
than others. As a general principle, the individuals 
that provide the most  linkage information are those 
whose genotype can  be  most  clearly inferred from 
their phenotype. For example, LANDER and BOTSTEIN 
(1986b) have pointed out  that  the vast majority  of 
linkage information about human  diseases  with  incom- 
plete penetrance comes from the affected individuals: 
since the genotype of unaffected individuals is uncer- 
tain, they provide relatively little information. 

Applying  this principle to quantitative genetics, the 
highest  ELODs are provided by the progeny that 
deviate most from the phenotypic mean.  When the 
cost  of  growing progeny is  less than the cost  of  com- 
plete RFLP genotyping (as is frequently the case), it 
will thus be more efficient to increase the number of 
progeny grown but to genotype only those with the 
most extreme phenotypes. The increase  in  efficiency 
can be estimated as  follows,  with a more precise ar- 
gument given  in the APPENDIX [A5].  Since  regression 
minimizes squared deviations from the mean, the 
ELOD conditional on an individual's phenotype 4 is 
proportional to (4 - pBI)*. Thus,  the proportion of 

individuals  with extreme phenotype 4 such that 
14 - pi31 I 2 L is 

m 

Q(L) = 2 1 z ( x ) d x ,  

while the proportion of the linkage information con- 
tributed by such  individuals is 

S(L) = 2 x2z(x) dx 

= Q(L)[1 + 2LZ(L)/Q(L)l = Q(L)[1 + L21 (9) 

using integration by parts and the asymptotic approx- 
imation  z(L)/Q(L) = Y2L for large L (accurate to within 
only about 10-1 5% for small L). Accordingly, the 
same  total  linkage information would  be obtained by 
growing a population that was larger by a factor of 
h(L) = l/S(L), but only genotyping individuals  with 
extreme phenotypes. The number of progeny to gen- 
otype  would  fall by a factor of g(L)  = S(L) /Q(L)  
[ l  + L2]. Graphs of Q(L), S(L), h(L) and g(L) are 
shown  in Figure 5. We observe that: 

(i) Progeny  with phenotypes more than 1 SD from 
the mean  comprise about 33% of the total population 
but contribute about 8  1 % of the total linkage infor- 
mation. By growing a population that was only about 
25% larger and genotyping only  these extreme prog- 
eny, the same total linkage information would be 
obtained from genotyping only about 40% as  many 
individuals. 

(ii) Progeny  with  phenotypes more than 2 SD from 
the mean  comprise about 5% of the total population 
but contribute about  28% of the total linkage infor- 
mation. By growing a population that was about 3.6- 
fold larger and genotyping only  these extreme prog- 
eny, the same total linkage information would  be 
obtained from genotyping about 5.5-fold  fewer  indi- 
viduals  (since  h(2) = 3.6 and g(2) = 5.5). 

(iii) It is probably  unwise to  go beyond the  5% tails 
of the distribution. From a practical point of  view, 
true phenotypic outliers may represent artifacts. 
Moreover, the increase in population size required 
for L > 2 outweighs the decreased number of individ- 
uals to genotype. 

The strategy of selective genotyping will substantially 
increase  efficiency  whenever  growing and phenotyp- 
ing additional progeny requires less effort than com- 
pletely genotyping individuals at all  RFLP  markers- 
which is typically the case  in  many  organisms. 

It sould be noted that standard computer programs 
for linear regression cannot be used  (even for single 
marker analysis)  when  only the  extreme progeny have 
been genotyped: phenotypic effects  would  be  grossly 
overestimated because  of the biased  selection of prog- 
eny. As  in the case  of interval mapping, missing-data 
methods are required (LITTLE and RUBIN 1987).  Con- 
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FIGURE 5.-Selective genotyping. A, Progeny having phenotypes exceeding mean by ?L standard deviations make up a  proportion Q(L) 
of population but account for a  proportion S(L)  of the total LOD score for  the progeny. B, If only individuals having phenotypes exceeding 
mean by ?L standard deviations are typed, the  number of progeny genotyped may be decreased by a factor of g(L) if the  number of progeny 
grown and phenotyped is increased by a factor of h(L).  

veniently, the maximum likelihood methods discussed 
above will produce  the  correct results provided  that 
the phenotypes are  recorded  for all progeny: genotypes 
for  the  nonextreme  progeny may  simply be entered 
as missing. Using the MAPMAKER-QTL program, 
we have thus been able to apply the  method  to  both 
simulated and experimental  data sets. 

Decreasing  environmental  variance  via  progeny 
testing: As shown above, the  number of progeny 
needed to map  a QTL is proportional to 

(aL/u:xp) = [(.E + ai)/.:xp] - 1. 
Typically, the  environmental variance exceeds the 
genetic variance. If a: could be reduced, QTL map- 
ping would become considerably more efficient. If the 
environmental noise results from  measurement error, 
one might either average replicate measurements or 
try to develop a  better assay. More  often,  environ- 
mental noise results from  true physiological differ- 
ences between genetically identical individuals. In this 
case, it may be possible to  reduce u; through progeny 
testing: an individual’s phenotype could be  inferred 
indirectly from  the  average  phenotype of n of its self 
or backcross offspring, since the variance of the av- 
erage will be smaller. The effectiveness of this strategy 
may be limited, however, by unknown effects of dom- 
inance and epistasis. The approach will work best with 
recombinant  inbred lines (see below), where isogenic 
individuals can be tested and averaged. 

Simultaneous  search: Just as  environmental noise 
can be  decreased via progeny  testing,  genetic noise 

can be reduced by simultaneously studying several 
intervals containing  QTLs. If the genetic variance is 
large, such an  approach may further decrease the 
number of progeny  required.  In  the APPENDIX [A6], 
we discuss the extension of interval  mapping to such 
simultaneous search (cf: LANDER and BOTSTEIN 1986a, 
b), the question of the  appropriate  LOD score when 
considering sets of intervals, and  the  approximate 
increase in the power of QTL mapping. 

FP intercrosses  and  recombinant  inbred  strains: 
Although the discussion above  concerns the backcross, 
it applies directly to F2 intercrosses and recombinant 
inbred  strains, with the following modifications: 

(i) In  an F2 intercross,  a QTL with phenotypic 
effect 6 contributes variance 6’/8 and thus WRIGHT’S 
formula (2) becomes k = D2/8a%. Since F2 intercrosses 
provide  information  about twice as many  meioses as 
backcrosses of the same size, fewer progeny are re- 
quired  for  detecting QTLs having purely additive 
effects: only 50-60% as many progeny are  needed, 
depending  on  the density of the markers used (calcu- 
lations not shown). If a QTL is partly dominant,  one 
of the backcrosses will be more efficient and  one less 
efficient for mapping it. The magnitude of dominance 
effects can be  estimated by explicitly incorporating 
them  into the maximum likelihood analysis via an 
additional  parameter (see APPENDIX [A3]). 

(ii) Recombinant inbred  strains are analyzed in the 
same  manner as backcrosses, except  that the multi- 
generational  breeding scheme that is used to construct 
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recombinant  inbred  strains increases the effective ge- 
netic length of the genome.  Compared  to  a backcross, 
the density of crossovers is doubled in a  recombinant 
inbred  strain  produced through selfing and is quad- 
rupled in a  recombinant  inbred  strain  produced by 
sib mating (HALDANE  and WADDINGTON 1931).  A 
genetic  length of 2G or 4G must be used in place of 
G when computing the  appropriate LOD threshold-- 
leading to an  increase of 0.3  or 0.6, respectively, in 
the threshold  required.  Although the higher  thresh- 
old will increase the  number of progeny required,  the 
effect is typically offset by the ability to decrease the 
number of progeny by reducing  the  environmental 
variance through replicate  phenotypic  measurements 
within each recombinant  inbred  strain (cf: progeny 
testing  above).  Recombinant  inbred  strains will thus 
typically be  more efficient for Q T L  mapping  than 
equal  number of backcross progeny.  However, this 
advantage may often  be  negated by the considerable 
time and  effort  required  to construct  large  numbers 
of such strains. 

DISCUSSION 

Although it has long  been  recognized that quanti- 
tative traits  often  arise  from the combined  action of 
multiple Mendelian factors, only recently has it be- 
come practical to undertake systematic mapping of 
such QTLs in experimental organisms (PATERSON et 
al. 1988). While such investigations will by no means 
be easy, the methodology  developed here should in- 
crease  their accuracy and efficiency. Specifically, by 
integrating  information  from  genetic  markers spaced 
throughout a  genome,  the  method of interval  mapping 
described  above allows (i) efficient detection of QTLs 
while limiting the overall occurrence of false positives; 
(ii) accurate  estimation of phenotypic effects of QTLs; 
and (iii) localization of QTLs to specific regions (Fig- 
ure 2). Beyond the increased efficiency due to interval 
mapping, the strategy of selective genotyping can fur- 
ther  reduce  the  number of progeny that must be 
genotyped in order  to  detect a QTL: together,  the 
methods lead to a  reduction of up  to 7-fold in the 
number of progeny to be  genotyped.  (Interval map- 
ping with a 40 cM RFLP  map leads to a 1.28-fold 
reduction  and selective genotyping of the  5% ex- 
tremes leads to a 5.5-fold reduction.) Finally, addi- 
tional savings may be achieved via progeny testing and 
simultaneous search. We summarize below the main 
considerations in designing  a cross for genetic dissec- 
tion of a  quantitative  trait. 

Designing  a  cross for genetic  dissection of a  quan- 
titative  trait: Strains  can be chosen to maximize the 
chance  that  they  segregate  for QTLs having relatively 
large  phenotypic effects, thereby allowing mapping 
with a  manageable number of progeny. The ideal 
situation  occurs when (a) the phenotypic  difference D 

"1 Extremea 

0 . 0 0  0 . 0 5  0 . 1 0  0 .15  0 . 2 0  

Fractlon of backcross varlanca sxplalned 

FIGURE 6,"Required progeny size. The number of  backcross 
progeny that must be genotyped to map a QTL, based on the 
fraction of the backcross variance explained by the segregation of 
the  QTL.  The upper curve shows the traditional approach in  which 
all progeny are genotyped and single markers analyzed. In the 
lower curve, only progeny with 5% most extreme phenotypes are 
genotyped and interval mapping is used to analyze the data. The 
calculations are based on use  of a complete 20 cM RFLP map, a 
50% chance of detection for  QTLs in the middle of intervals, and 
a LOD threshold of 2.5. Note  that  for a QTL with phenotypic 
effect 6, the fraction of the backcross variance explained is 6'/16 
Ui, . 

between the strains is large  compared to  the environ- 
mental or within-strain standard deviation cE; (b) 
breeding  experiments  indicate  that  the  number k of 
effective factors given by WRIGHT'S formula is small; 
and (c) the strains are  the result of selective breeding 
for  the  trait. 

Once  the  strains  have  been  chosen,  the experi- 
menter  must specify the minimum phenotypic effect 
6 that  the cross will be designed to  detect.  When using 
strains  resulting  from selection, a choice of 6 in the 
range between Yz(D/k)  and ( D / k )  should ensure  that 
QTLs accounting for much of the phenotypic  differ- 
ence will be  detected.  When using arbitrary  strains, 
the same choice of 6 can be used, although  the pres- 
ence of QTLs with this effect is not  guaranteed. 

The number N of backcross progeny  that  should  be 
genotyped can then  be calculated based on  the spacing 
d between genetic  markers in the map, the  appropri- 
ate threshold T for the LOD score, and  the desired 
probability /3 of success, assuming either (i) the tradi- 
tional method of  analysis involving single markers and 
genotyping of all progeny or (ii) interval  mapping and 
selective genotyping of the  5% most extreme  progeny. 
Figure 6 shows N as  a  function of the fraction of 
variation v explained by the QTL (where v = 6'/ 
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FIGURE 7.-Required progeny size. The number of backcross progeny that must be genotyped to map a QTL, based on  the  difference D 
between the strains (measured in environmental standard deviations) and the  number R of effective factors. A, The traditional approach: all 
progeny are genotyped and single markers analyzed. B, Only progeny with 5 %  most extreme phenotypes are genotyped and interval mapping 
is  used to analyze the data. The calculations are based on QTLs of equal phenotypic effect (D/k) ,  use of a complete 20 cM RFLP map, a 
50% chance of detection for QTLs in the middle of intervals, and a LOD threshold of 2.5 (corresponding to a nominal significance level 
a' = 0.001). We indicate changes for  different assumptions: multiply by 4 to allow for QTLs having half the average effect; multiply by 
approximately (1.25)( 1 - 20)*/( 1 - 4) to allow for markers every d cM (where 0 and 4 are  the recombination fractions corresponding to %d 
and d cM,  respectively); multiply by approximately 1.50 to allow for a 90% chance of success; multiply by T/2 .5  to allow for  a LOD threshold 
of T; and multiply by about 0.55 if an FP intercross is used instead of a backcross. 

16&), while Figure 7, A and B,  shows N as a  function 
of the phenotypic  difference D between the strains 
and  the  number k of effective factors. Together, in- 
terval mapping and selective genotyping  reduce the 
number of progeny to be  genotyped by up to 7-fold. 
(Both figures assume that d = 20 cM, T = 2.5  and /3 
= 0.50, and Figure 7 assumes that  the  QTLs have 
equal  phenotypic effects. The figure legend indicates 
how to modify the results for  other values.) As a  rule 
of thumb, it appears practical to map QTLs when the 
phenotypic difference D measured in environmental 
standard deviations is on  the  order  of  the  number k 
of effective factors  segregating. 

An example: The Spontaneous  Hypertensive rat 
(SHR)  strain (TANASE et al. 1970), was derived  from 
the Wistar-Kyoto rat (WKY) strain by selective breed- 
ing  for  high systolic blood pressure followed by in- 
breeding. Blood pressure in SHR is about 3  standard 
deviations higher  than in  WKY,  while the  number k 
of effective factors was estimated at  about 3. Assuming 
that  the  rat  genome is about  1500 cM and  that a  20 
cM RFLP  map is available, the  appropriate  LOD 
threshold would be  about  2.7  (Figure 4). Using the 
traditional  approach,  one would need  about  325 back- 
cross progeny or about  175 F2 intercross  progeny. 

With  interval  mapping,  these become about  275  and 
145. If it were practical to grow a  larger  population 
but  genotype only those  progeny with the  5% most 
extreme blood pressures, the  number of progeny to 
genotype could be  reduced  to  about 55  and 30, re- 
spectively. 

In addition to  SHR, a number of other genetically 
hypertensive strains of rat  and mouse have been  de- 
scribed, with estimated effective number of factors 
between 2 and 5 (DEJONG 1984). Study of these  strains 
would elucidate the  number  and location of the most 
important  genes  controlling  naturally  occurring vari- 
ation  for blood pressure in rodent populations. Such 
information might shed light on  hypertension in hu- 
mans as well. 

Other  considerations: In this paper, we have been 
chiefly concerned with methods  for  mapping QTLs 
per se. For applications to  agricultural  breeding  pro- 
grams  aimed at introgressing useful QTLs, additional 
considerations may apply. For  example, (i) to avoid 
QTLs  improving  a  trait of interest  but having dele- 
terious pleiotropic effects, one may  wish to bias the 
choice of parental  strains in certain ways and  to score 
additional  quantitative  phenotypes  pertinent to agro- 
nomic acceptability; and (ii) to minimize the  total 
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length of time for  the breeding time, one may  wish to 
genotype additional progeny in the hope of finding 
ones that have retained a fortuitously large proportion 
of the desired genetic background while  gaining some 
of the desired QTLs (PATERSON et al. 1988). We 
will address such breeding considerations more fully 
elsewhere. 

Conclusion: The availability  of complete RFLP 
linkage  maps should make  it  possible to dissect quan- 
titative traits into discrete genetic factors, thereby 
unifying  two  historically-separated areas of  genetics. 
Once  QTLs have  been mapped, isogenic  lines  can  be 
rapidly constructed differing only  in the region of the 
QTL by using the RFLPs to select for  the desired 
region and against the remainder of the genome 
(TANKSLEY and RICK 1980; SOLLER and BECKMANN 
1983; PATERSON et al. 1988). Using  such  isogenic 
lines, the fundamental tools of genetics and molecular 
biology may be brought to bear on the study  of a 
trait-including testing of complementation and ep- 
istasis; characterization of  physiological and biochem- 
ical differences between  isogenic  lines;  isolation  of 
additional alleles via mutagenesis or further selective 
breeding (at least  in favorable systems); and, eventu- 
ally,  molecular  cloning  of the genes underlying quan- 
titative inheritance. 
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APPENDIX 

[All T o  prove Proposition  1, we use the following lemma. 

Lemma. Let x I ,  . . , x, 2 0, For y 2 0, lets, = c ' x ;  and t, = 
E' x f ,  where the sum is taken over the terms x; 2 y. Ifto/so 5: y, 
then 

s, 2 %[y + Jy2 - 4(ys0 - to)] and t, 2 to - y(s0 - s,). 

Proof: From  the definitions and  the non-negativity of the 
x,, it is clear that 

s,' 5: t, 2 to - y(s0 - s,). 

The  constraint on s, then follows by considering the  outer 
terms  and applying the  quadratic  formula. 0 

In  the  context of  Proposition 1 ,  suppose that  the  QTLs 
in the high  strain change  the  phenotype by X I ,  . . . , xn 2 
0 ,  res ectively. Usin5  the  notation  above, we have D = SO 
and 2 = to/16 = D /16k (because of nonlinkage among 
QTLs  and WRIGHT'S formula).  Taking y = c(D/k) ,  the result 
then follows from  the lemma since D, = sy/so, and V, = t,/to. 

[A21 Suppose that a QTL lies midway between two flanking 
markers.  Let 0 be  the recombination  fraction  between the 
QTL  and  either  marker  and $ = 241 - 0) be  the recombi- 
nation  fraction  between the two markers  (ignoring  interfer- 
ence).  In meioses in which they  have not  recombined (a 
proportion 1 - $ of the total), the flanking markers act  as  a 
single virtual marker linked at recombination  fraction 7, 
where y is the chance that  the  QTL recombines with both 
markers given that  the  markers themselves have not recom- 
bined. By contrast, meioses in which the flanking markers 
have recombined provide zero  information  about linkage of 
the  QTL.  The  ELOD  for interval  mapping is thus (1  - $) 
times the  ELOD  for a single marker linked at y which in 
turn is (1 - 27)' times the  ELOD  for a marker  at 0% 
recombination. 
That is, 

ELODintcrval mapping = ( 1  - $)( 1 - 27)' ELOD. 

Using the relation y = 0'/[(l - 0)' + 0'1 and simplifying 
terms, Equation 8a follows. 

[A31 In  the idealized dense-map case, suppose that  markers 
are available at every point  along a  chromosome.  Suppose 
that  there  are  no  QTLs in the genome. For individual i, the 
phenotype 4; = N(0 ,  1); that is 4, is a random  normal variable 
with mean 0 and variance 1 .  For individual i, let x,(d)  denote 
the  genotype  at a position d cM from  the left end of the 
chromosome (x; = 0 or 1 according  to  the allele inherited), 
let P*(d) denote  the maximum likelihood estimate  of the 
phenotypic  effect of a  putative QTL  at  this position, and let 
LOD(d)  denote  the  corresponding  LOD score. By standard 
formulas for linear  regression, 

where 4 and x are  the means  of 4, and x,, respectively. For 
a  large  population  of size n ,  the  central limit theorem implies 
that 

8 * ( 4  - C 44; (x ;  - %)/n ,  

v ( d )  := &/3*(d) - N(0, l ) ,  

U K , ( d )  = (4, - P*(d)x;(d))2 - n(1 - /3*(d))2, 

dXp(d) - n [ ~ * ( d ) ] ~  

and 

where we write f - g to  denote  that f / g  + 1 as n -+ 00 and 
where ":=" indicates  a  definition. Thus,  LOD(d) is asymp- 
totically proportional  to  the  square of a random  normal 
variable v(d )  (which incidentally proves that  LOD is propor- 
tional to x2) .  More generally,  it is not difficult to see that 
the  LOD  score follows a  stationary normal process--that is, 
the  LOD  score  at multiple  points has a  multivariate normal 
distribution. 

Let d l  and d2 denote points on  the  chromosome, let d = 
d l  - dn ,  and let 0 be  the recombination  fraction correspond- 
ing  to  the genetic  distance d = I dl - dz I. The  correlation 
coefficient between the variables x , (d l )  and X;(&) is easily 
seen to  be p(xi(dl) ,   X;(&))  = 1 - 20. From  the asymptotic 
expression for P*(d) above,  it then follows that 

Assuming HALDANE'S  map  function, 1 - 20 = e-2d. 
T o  summarize, v ( d )  is a  stationary normal process with 

covariance function r (d )  = e-2d. Up  to rescaling d by a factor 
of %, this is the definition of ORENSTEIN-UHLENBECK diffu- 
sion and Proposition 2 follows directly [see LEADBETTER, 
LINDCREN  and ROOTSZEN (1983)  Theorem 12.2.9 and dis- 
cussion following]. While only HALDANE'S  map  function 
yields precisely an ORENSTEIN-UHLENBECK diffusion, the 
proof of Proposition 2 holds in general. The relevant  results 
in LEADBETTER,  LINDCREN and ROOTSZEN (1983) require 
only that r ( d )  - 1 - 2d + ~ ( d ' )  as d + 0, which holds for all 
map  functions. 

These  remarks  carry  over  to  the situation of mapping 
QTLs in an F2 intercross by fitting  both  an additive and a 
dominance  component. The  only substantial difference is 
that  the  LOD score now follows a x 2  process with 2 df. The  
large  deviation theory  for such processes has been  worked 
out  (Berman  1982).  We will discuss its application  elsewhere. 
[A41 If QTLs with very large effects are segregating,  regres- 
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sion  analysis  is not strictly appropriate (whether in the 
traditional approach or in the generalization developed in 
the text) because the phenotypic distribution becomes  bi- 
modal. When the phenotypic distribution is bimodal due  to 
the segregation of a QTL with large effects somewhere in 
the genome, it is no longer possible to use a simple normal 
distribution as the null  hypothesis. (The fit would be so bad 
that  one would always reject the null hypothesis  in favor of 
the presence of a QTL, even at positions unlinked to any 
QTL.) A good remedy is to use an  appropriate null hypoth- 
esis, reflecting the fact that  the phenotypic distribution may 
represent the  mixture of two normals caused by the segre- 
gation of an unlinked QTL.  The LOD score for  a marker 
at 0 cM can  be redefined as the  loglo of 

L(6, 6, 2) /%[L(6 ,  6, 2 )  + L(6, -6, 671 

with L(a, b, u') defined in (4). (This  ratio measures how 
much more likely the  data  are  to have been generated by a 
QTL with the hypothesized effect located at  the marker 
locus than by a QTL with  this  same effect but unlinked to 
the marker.) The ELOD can  be found by numerical inte- 
gration over the distribution for 4. In the limit of a QTL 
with large effect, the expression tends to  the traditional 
LOD score for  a qualitative trait used  in human genetics. 
For QTLs with  small effects, the expression does not differ 
significantly from the LOD score defined above (since the 
mixture of the two normal distributions closely resembles a 
single normal distribution with larger variance). 

For the  QTLs likely to  be  encountered in practice, this 
correction is irrelevant. We have  used it in computing the 
number of progeny required in Figures 5 and 6, however, 
in order  that these graphs exhibit the  correct limiting be- 
havior-rather than tending  to zero. 

[A51 For notational convenience, rescale the phenotype so 
that its  mean in the backcross is 0 and encode the two 
alternative genotypes by the indicator variable g = -1 or 1 
(rather than 0 or 1, as  in the  text). Given a  true QTL, let 
26 be the  amount by which substituting an allele  increases 
the phenotype and let u2 be the residual variance unex- 
plained b  the QTL out of the total backcross variance x' 
= u' + b . Suppose that  a marker is located exactly at  the 
QTL. Conditional on the phenotype 4 of an individual but 
unconditional on its genotype x at  the  marker,  the LOD 
score (comparing the  true hypothesis H1:(O, 6 ,  a') to  the 
alternative Ho:(O, 0, E')) is 

Y 

LOD+ = C r(gl4) loglo[z(4 - bg, u') /z(A E')] 
g=o.1 

where dg = x 14) is the probability that  the individual has 

marker genotype x given  its phenotype 4, given by 

As claimed  in the  text, if b is small, LOD+ is proportional to 
4'. NOW, the probability distribution for 4 has density 

P(4) = %[44 - bg, 0') + 4 4  + bg, 4 1 .  
Conditional on the phenotype of a backcross progeny de- 
viating from the mean by >LZ,  the LOD score is 

Letting v = b'/C' denote  the fraction of variance explained 
by the  QTL, straightforward though tedious integration 
shows that 

S(L) = LOD,+I~LZ/LOD~,~,O (10) 

where u = -v/log.( 1 - v )  = (1 - %v) and where the 
approximation in (IO) is o(v') for small v .  For QTLs with 
small effects, this reduces to Equation 9. 
[A61 Interval mapping can  be straightforwardly extended 
to  the case  of  multiple intervals explaining a quantitative 
phenotype: for m intervals, the bracketed term in Equation 
7 becomes a sum  with 2" terms corresponding to  the possible 
joint genotypes at  the m putative QTLs. Since simultaneous 
consideration of multiple QTLs reduces the unexplained 
variance, it may be  somewhat  easier to detect linkage to  the 
set of  loci than to any one individually (4 LANDER  and 
BOTSTEIN 1986a, b)-although there are possible difficulties 
in parameter estimation and model identifiability. The sub- 
tle issue is the  appropriate threshold for simultaneous search 
for m QTLs. In a genome with no QTLs, how high a LOD 
score might occur by chance? For any particular choice  of 
putative QTLs, the LOD score is asymptotically distributed 
as x' with m degrees of freedom. When considering sets of 
m loci chosen from an entire genome, the LOD score follows 
a mathematical process  known as a x' random field (ADLER 
1981)-about which somewhat less  is known than the 
ORENSTEIN-UHLENBECK diffusion. Approximate arguments 
show that  the level  of  highest excursion of  such a x' random 
field on an entire genome is about m-fold higher than the 
corresponding level for an ORENSTEIN-UHLENBECK diffu- 
sion on the genome. If m QTLs have equal effects, then 
simultaneous search decreases the  number of progeny re- 
quired to achieve  statistical  significance by a factor of about 
(1 - mu')/(l - a'), where a' is the fraction of variance 
explained by each. If the QTLs have unequal effects, it  may 
become  possible to detect those with  smaller effects by first 
controlling for those with larger effects. We will discuss 
simultaneous search for QTLs in more detail elsewhere. 
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