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ABSTRACT 
The relationship between the two estimates of genetic variation at the DNA  level,  namely the 

number of segregating sites and  the average number of nucleotide differences estimated from pairwise 
comparison, is investigated. It is found that  the correlation between these two estimates is large when 
the sample size  is small, and decreases slowly  as the sample  size  increases.  Using the relationship 
obtained, a statistical method for testing the neutral mutation hypothesis is developed. This method 
needs only the  data of  DNA polymorphism, namely the genetic variation within population at  the 
DNA  level. A simple method of computer simulation, that was used  in order  to obtain the distribution 
of a new statistic developed, is also presented. Applying this statistical method to  the five regions of 
DNA sequences in Drosophila  melanogaster, it is found that large insertion/deletion (>lo0 bp) is 
deleterious. It i s  suggested that  the natural selection against large insertion/deletion is so weak that  a 
large amount of variation is maintained in a population. 

A large amount of genetic variation is maintained 
in natural populations. Information  about this 

variation at  the DNA level can be obtained  from DNA 
sequencing or restriction enzyme technique. WATTER- 
SON (1975) has shown under  the  neutral mutation 
model (KIMURA 1968,1983) that  the expectation and 
variance of the  number ( S )  of segregating (or poly- 
morphic) sites in the sample are given by 

E(S)  = u ~ M ,  (1) 

and 

V(S) = a l M  + a2M2, (2) 

respectively, where M = 4Nu, N is effective population 
size, u is the mutation rate  per  generation  per  DNA 
sequence under investigation, 

n-l 1 
a 

n--l 1 

a1 = E 7, (3) 

a 2 =  E 2, (4) 

and n is the sample size (the  number of DNA se- 
quences  studied), so that M can be estimated  from 

i= 1 

A S  
a1 

M = -. (5) 

It should  be  noted  that S itself is not  a  good statistic 
for  estimating the DNA polymorphism, since S de- 
pends on  the sample size. On  the  other  hand, TAJIMA 
(1  983) has shown under  the  neutral mutation model 
that  the  expectation and variance of the average  num- 
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ber (i) of (pairwise) nucleotide  differences  between 
the DNA sequences examined are given by 

E ( i )  = M ,  (6) 

and 

V ( i )  = blM + b2M2, (7) 
respectively, where 

bl = 
n + l  

3(n - 1)’ 

and 

2(n2 + n + 3) 
9n(n - 1) ’ 

(9) b2 = 

This  number (i) not only has clear biological mean- 
ings, but also gives the estimate of M directly. 

The remarkable  and  important difference between 
the  number of segregating sites and  the average  num- 
ber of nucleotide  differences is the effect of selection. 
Deleterious  mutants are maintained in a  population 
with  low frequency. Since the  number of segregating 
sites ignores the frequency of mutants, this number 
might  be  strongly  affected by the existence of delete- 
rious  mutants. On  the other hand, the existence of 
deleterious  mutants with low frequency  does not af- 
fect the average number of nucleotide  differences 
very much, since in this case the frequency of mutants 
is considered. In  other words, if some of the  mutants 
observed have selective effects, then  the  estimate of 
M obtained  from (5) by using the  number of segre- 
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gating sites may not be the same  as the average num- 
ber of nucleotide differences which  also  is the estimate 
of M. 

In this paper I shall  investigate the relationship 
between the number of segregating sites and  the 
average number of nucleotide differences under  the 
neutral mutation model.  Using  this relationship ob- 
tained, I shall  also present a statistical method for 
testing the neutral mutation hypothesis. 

RELATIONSHIP  BETWEEN  THE  NUMBER OF 
SEGREGATING  SITES  AND T H E  AVERAGE 
NUMBER OF NUCLEOTIDE  DIFFERENCES 

Assumption: In this paper we consider a random 
mating population of N diploid  individuals and assume 
that there is no selection and  no recombination be- 
tween DNA sequences. We  also  assume that the num- 
ber of  sites on a DNA sequence is so large that a newly 
arisen mutation takes  place at a site different from the 
sites  where the previous mutations have occurred 
[infinite site  model (KIMURA 1969)l. Under these  as- 
sumptions the expectation and variance of the number 
of segregating sites are given by (1) and (2), and  the 
expectation and variance  of the average number of 
nucleotide differences are given by (6) and (7). 

Covariance  between  the  number of segregating 
sites and  the  average  number of nucleotide differ- 
ences: If  we denote the number of nucleotide differ- 
ences  between the ith and jth DNA sequences by kj, 
the average number of (pairwise) nucleotide differ- 
ences  between the DNA sequences  sampled is given 
by 

E k, 
k =  
A i<j 

($ ' 

(10) 

where n is the number of DNA sequences  sampled. 
Incidentally  can  also  be estimated from 

S 

k^ = hi, (1  1) 

where S is the number of segregating sites, and hi is 
the unbiased estimate of nucleotide diversity (or het- 
erozygosity) for the ith segregating site, which is given 

i= 1 

by 

n ( j )  l - Z x 3  

hi = 
n - 1  , (12) 

where xji is the sample frequency of the jth allelic 
nucleotide in the ith segregating site. When the sam- 
ple  size (n) is large, (1  1) is more practical than (1 0). 

If  we  use (1 0), the covariance  between the number 

of segregating sites and  the average number of nu- 
cleotide differences can be given by 

Cov(S, i)  = COV(S, k,). (13) 

This covariance  can be obtained from the genea- 
logical relationship of DNA sequences. 

When n is 2, S is equal to k, (Figure la), so that 
Cov(S, kq) = V ( k j )  = V ( S ) .  From (2) V ( S )  is equal to 
M + M 2 .  Therefore, we have 

Cov(S, I) = M + M2.  (14) 

The genealogical relationship when n is 3 is shown 
in Figure lb. In  this  case there are two  possible 
common ancestors (namely A and B )  between the two 
DNA sequences  which are randomly  chosen from the 
three DNA sequences.  Since B is the common ancestor 
when C and D are chosen, and A is the common 
ancestor when C and E ,  or D and E are chosen, the 
probability that B is the common ancestor is %, and 
that of A is 2/9. Therefore,  the covariance is given by 

cov(S, i )  = '/s cov(S, k C D )  + ?h cov(s, kCE), 

where S = ~ B F  + ~ B C  + k g D  + R E F .  If we notice that  the 
distributions of k B ,  kBD, and kEF are the same, we can 
get 

cov(S, kCE) = v(kBJ7) + cov(S, kCJJ). 

TAJIMA (1  983) has  shown that 

V ( & )  = M + M2, v ( k B c )  = M/6 + M2/36, 

COV(~BC, ~ B D )  = M2/36, 

so that we have 

cov(S, k m )  = V ( ~ C D )  + ~COV(~BC, ~ B D )  

2 V ( k ~ c )  + ~ C O V ( ~ B C ,  ~ B D )  = M/3 + M2/6. 

Using  these equations, we obtain 

cov(S, f f )  ?h v ( k B F )  + cov(S, kCD) 
(1 5 )  

= M + 5/6 M2. 

Next, we consider the case where the number of 
DNA sequences  sampled is more than 3. n DNA 
sequences take place  when one of n - 1 DNA se- 
quences bifurcates. Suppose that such a bifurcation 
occurred at point A in Figure IC, and  that its descend- 
ants are B and C. Then the covariance  between S and 

is  given  by 

COV(S, i) = 
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Following TAJIMA (1983), we have 
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i j 

C 

C D E  
M  M =-+{-I 2 

B C  
FIGURE 1 .-(a)  Expected  genealogical  relationship  when  two 

DNA sequences are sampled  from a population. (b) Expected ge- 
nealogical  relationship  when  three DNA sequences are sampled 
from a population.  (c) One example of the genealogical  relationship 
among five DNA sequences sampled  from a population. 

where kG is not  equal to kBc. Using the same  method 
as the above, we can have 

cov(S, KBC) = v(kBC) + 2(n - 2)cov(kAB, kAC), (17) 

and 
Cov(S, k,) = Cov(S*, k*) + V(kBc) (1 8) 

+ 2(n - 2)Cov(k~t3, ~ A C ) ,  

where S* and &* are  the  number of segregating sites 
and  the average number of nucleotide  differences for 
n - 1 DNA sequences, respectively. Substituting (17) 
and (1 8) into (1 6), we have 

Cov(S, I;) = 
(n + l)(n - 

n(n - 1) 
2, COV(S*, i*) 

(19) 
+ v ( k B C )  + 2(n - 2)cov(kAB, kAC). 

Following TAJIMA (1 983), we can obtain V(kBc) and 
Cov(k~~,  kAc). HUDSON (1  983) and TAJIMA (1 983) have 
shown that  the probability that n DNA sequences 
randomly  sampled  from  a  population are derived 
from  n - 1 DNA sequences t generations  ago and  the 
divergence  took place t - 1  generations  ago (see t in 
Figure IC) is given by 

where 

Substituting (2 1) and  (22)  into  (19), we have 

COV(S, i )  = COV(S *, i*) (n + l)(n - 2) 
n(n - 1)  (23) . ,  

+ 2M 2M2 + 
n(n - 1) n(n - 

Since Cov(S, I;) is M + M2 when n is 2, we finally have 

As n increases, (24)  approaches 

COV,t(S, i )  = M + % M 2 .  (25 )  

We call this covariance the stochastic covariance. The 
sampling covariance is given by 

COV,(S, i) = COV(S, i) - COV,@, i) =- M2.  (26) 

The correlation coefficient (r)  between S and k̂  is 
defined as 

1 
n 

COV(S, I;) 
r=7* (27) 

V(S)V(k) 
Numerical computations show that this correlation 
coefficient is large when the sample size (n) is small, 
and decreases slowly as the sample size increases. 

Difference between  the  two  estimates of 4Nu: As 
mentioned  earlier,  M (= 4Nu) can  be  estimated  from 
S by using (5) ,  or from l. In this section we consider 
the difference  between  these estimates of M. 
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Let us define d as 

where a l  is given by (3). Then,  the expectation of d is 
0 and  the variance of d is given by 

where V ( i ) ,  V(S), and Cov(S, I )  are given by (7), (2), 
and (24), respectively. Substituting  these  quantities 
into (29), we have 

V(d) = clM + c2M2, (30) 

where 

and 

These  equations  indicate  that, unlike the  other var- 
iances such as the variances of S and I ,  the variance 
of d increases as n increases and reaches to  the asymp- 
totic value which is identical with the variance of ff. 

STATISTICAL  METHOD FOR TESTING  THE 
NEUTRAL  MUTATION  HYPOTHESIS 

Estimating d and V(d):  In  the previous section we 
have obtained the variance of d. Formula (30), how- 
ever,  cannot  be used directly for  estimating the vari- 
ance of d, since we do not know M. M can be estimated 
from S/al  or i. We notice  from (2) and 17) that  the 
variance of S /a l  is smaller than  that of K when n is 
larger  than 3. Therefore, S /a l  should be used for 
estimating M when the  neutral mutation hypothesis is 
correct. Since we assume the  neutral  mutation hy- 
pothesis as a null hypothesis, M is estimated by S/al  
[see (5)]. @/a1)’, however,  cannot  be used for estimat- 
ing M 2 ,  since the expectation of S2 is given by 

E(S2) = V(S) + (E(S)12 (33) 
= a lM + (a: + a2)M2, 

which is not  equal to aTM2. As E(S2)  - E ( S )  = 
(a: + a2)M2, M 2  can be  estimated by 

S(S - 1) 
a: + a2’ 

Therefore, we can estimate V(d) by 

(34) 

?(d) = elS + ed(S - l), (35) 

where 

el = -, 
a1 
c1 

and 

New statistic (D):  In order  to conduct the statistical 
test,  the following statistic is proposed: 

k. - - * s  
d 

D = r - J  
- a1 

* (38) 
v ( 4  elS + e$(S - 1) 

where a l ,  e l ,  and e2 are given by (3), (36), and (37). 
Then, the mean and variance of D are approxi- 

mately 0 and 1, respectively. If we know the distri- 
bution of D ,  then we can use D in testing the  neutral 
mutation hypothesis. For this purpose the following 
computer simulation was conducted. 

Computer  simulation: First, genealogical relation- 
ships of DNA sequences are generated as follows. 
When there  are n DNA sequences, we randomly 
choose two DNA sequences among n DNA sequences, 
combine these two DNA sequences, and obtain new 
n - 1 DNA sequences. Figure 2 shows one  example 
of this process. In the case  of 5 DNA sequences (A, B, 
C, D, and E ) ,  if B and C are chosen, we obtain new 
four DNA sequences (A, BC, D ,  and E ) .  Next,  three 
DNA sequences (A, BC, and DE) are obtained if D and 
E are chosen. Furthermore, if A and BC are chosen, 
then we obtain the genealogical relationship of five 
DNA sequences shown in Figure 2. In this way we 
can  obtain many genealogical relationships of n DNA 
sequences. 

Next, we generate  the  number of mutations in each 
branch. Let Si, be the  number of mutations in the  ith 
branch  among n branches between n DNA sequences 
and n - 1 DNA sequences (Figure 2), and S ,  be the 
total number of mutations in n branches, namely 

n 

s, = st,. (39) 
I= 1 

Then, S ,  follows the geometric  distribution, 

P ( S n )  = p n ( l  - pn)’n? (40) 
where 

1 
M 

1 +- 
n - 1  

pn = (41) 

(see WATTERSON, 1975). The joint probability of SI,, 
S2,, . . . , and S,, for  a given value of S ,  is given by 

i= 1 

namely a multinomial distribution. First, we generate 
S ,  according  to (40). Then, Sin’s (i = I - n) are 
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using (1 l ) ,  so that we have 

ABCDE 

s12 s22 
ABC 

’13  ’23 

s34 s44 

’25 s35 

FIGURE 2.-One example of the genealogical relationship among 
five DNA sequences used for explaining the process of computer 
simulation. 

obtained  according to (42). In this way  we can get  the 
numbers of mutations in all branches for each genea- 
logical relationship. 

Once we have a  set of data, we can easily compute 
the  number of segregating sites (S = S 2  + SS + . . . + 
S,) and  the average number of nucleotide  differences 
(i). Then, we compute D by (38). 

In  this simulation we used three values of M (1, IO, 
and loo), and  four values of n (5,  10, 20, and 30). In 
each case we repeated 1000 times. The mean and 
variance of D in each case are shown in Table 1 ,  and 
the distribution of D is given in Figure 3. As expected, 
we can see that  the mean of D is nearly  zero,  although 
it is negative. The variance of D, however, is smaller 
than 1, especially when M is large.  When we conduct 
a statistical test, this property is not necessarily harm- 
ful since it reduces the possibility of rejection.  From 
Figure 3, we can see that  the distribution of D is not 
symmetrical, so that it does  not follow the unit  normal 
distribution.  For the significant test of neutral  muta- 
tion hypothesis, however, we can use the unit  normal 
distribution  as seen in Table 1. For  example, the 
probability that D is larger  than 2 is 0.023 if the unit 
normal  distribution is used. The result  obtained  from 
this simulation shows that only in the case of M = 1 
and n = 30 the  proportion of D > 2 (0.029) is larger 
than 0.023. 

One of the problems in using the unit  normal 
distribution is that  the actual values of D can  take only 
limited values. The minimum value of d is obtained 
when the frequencies  of two allelic nucleotides are 
l / n  and 1 - l f n  in every segregating site. In this case 
we obtain 

2 
n 

i m i n  = - s, (43) 

The minimum value of D is obtained when S is infi- 
nitely large.  From (38) we can  obtain 

2 1  
”- 

The maximum value can be  obtained in the same way 
as the above, which is given by 

n 1 -- 

when n is an  even number, or 

n + l  1 
”- 

when n is an  odd  number. One of the basic distribu- 
tions which often  appear in biological study is a  beta 
distribution.  Let us consider the beta  distribution  an 
approximate  distribution of D .  Since the mean and 
variance of D are assumed to  be 0 and 1, the  beta 
distribution  can be written  as probability density func- 
tion: 

where 

( 1  + ab)b a = -  
b - u  ’ 

(1 + ab)a 
p =  ’ 

a = Dmin, and b = D,,,. 

Figure 4 shows the beta  distribution, which well agrees 
with the actual  distribution of D obtained  from  the 
computer simulation. Table 1 also shows the beta 
distribution.  From this table we can see that  the beta 
distribution fits the actual  distribution better  than  the 
normal  distribution. Because of the above  reason, the 
beta  distribution is recommended for testing the neu- 
tral  mutation hypothesis. 

Test of the  neutral  mutation  hypothesis: First, we 
compute S and k  ̂ from the actual data,  then  obtain D 
by using (38). Once we have the value of D,  we can 
find the confidence limit from  Table 2, which is 
obtained  under  the assumption that  the distribution 
of D follows the  beta distribution given by (47). 
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TABLE 1 

Comparisons of the  distribution of D obtained by  computer simulation  with  the normal and beta distributions 

D 

n M -3"2 - 2 - - 1  - 1 - 0  0 - 1  1 - 2  2 - 3  3 - 4  Mean  Variance 

5 

10 

20 

30 

1 0.154 0.393 
10 0.162 0.389 

100  0.133  0.416 
Beta 0.222 0.324 

1 0.000 0.226 0.287 
10 0.007 0.179 0.340 

100 0.002 0.165 0.386 
Beta 0.003 0.177 0.336 

1 0.004 0.212 0.32 1 
10 0.005 0.150 0.395 

100 0.004 0.149 0.403 
Beta 0.01 1 0.161 0.342 

1 0.002 0.171 0.354 
10 0.01 1 0.161 0.410 

100 0.007 0.140 0.423 
Beta 0.012 0.157 0.345 

Normal 0.021 0.136  0.341 

0.181 0.272 
0.260 0.189 
0.279 0.179 
0.236 0.218 

0.313 0.164 0.011 
0.338 0.128 0.008 
0.325 0.117 0.005 
0.304 0.156 0.023 

0.296 0.153 0.014 0.000 
0.316 0.117 0.017 0.000 
0.327 0.114 0.003 0.000 
0.315 0.146 0.025 0.000 

0.298 0.145 0.028 0.001 
0.313 0.096 0.009 0.000 
0.321 0.100 0.009 0.000 
0.317 0.142 0.026 0.001 

0.341 0.136 0.021 0.001 

-0.007 0.949 
-0.0 16 0.813 
-0.025 0.755 

0 1 

-0.036 0.941 
-0.072 0.851 
-0.104 0.755 

0 1 

-0.050 0.959 
-0.074 0.839 
-0.080 0.724 

0 1 

-0.002 0.977 
-0.154 0.801 
-0.110 0.751 

0 1 

0 1 

n = 7 0  

0 1  0. I 

0 0 

1 2 ! 0 ! 2 1 4  - 3 - 2 - 1  0 1 2  3 4 - 3 - 2  I O  I 2  7 4 

FIGURE 3.-Distributions of D obtained from computer simulation. 

DISTRIBUTION  OF  NUCLEOTIDE FREQUENCY ber of nucleotides with frequency i /n  in a sample of n 
IN T H E  SAMPLE DNA sequences is given by 

In  this section we investigate the distribution of 
nucleotide  frequency in the sample. Consider a given 
site. If we use the infinite allele model,  then  the 
expected number of nucleotides with frequency 
( p ,  p + dp)  in a  population is given by 

(KIMURA and CROW 1964), where p is the  mutation 
rate  per site  per  generation. Then  the expected  num- (WATTERSON 1974; TAJIMA 1983), when 1 5 2 
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0 .  2 

n = 1 0  

0 1  

2 0  

D 0 2  

n 20 

y. 0 1  

0 

0 .  2 

" = 30 

0 1  

0 

- 3  2 - 1  0 1 2  3 4 

D 

FIGURE 4,"Expected distributions of D obtained by assuming 
that D follows beta distribution. 

n - 1. We  now assume that  there  are m sites on  the 
DNA sequence. Then  the  expected  number of nucle- 
otides whose frequency is i / n  in a sample of n DNA 
sequences with m sites can be  obtained if  we assume 
4Npm = 4Nu = M ,  p + 0, and m 4 m, and is given 
by 

G,(i) = M 7 + - (t . t i ) )  

when 1 5 i 5 n - 1. If we use S/al instead of M ,  then 
we have 

Incidentally the sum of G,(i) for i = 1 to n - 1 is 2S, 
since there  are two allelic nucleotides in each  segre- 
gating site. Using (51), we can compare  the  observed 
distribution of nucleotide  frequency with the expected 
one,  although we cannot  conduct  a significant test by 
using this comparison. 

NUMERICAL EXAMPLE 

AQUADRO and GREENBERG  (1983)  studied  a se- 
quence of about  900 nucleotide  pairs of the  human 
mitochondrial DNA for seven individuals (n = 7). The 
number of segregating sites (S) is 45,  and  the average 
number of nucleotide  differences (ff) estimated was 
15.38.  In this case the values of a ] ,  e l ,  and e2 are 
2.4500,  0.01481,  and 0.004784, respectively. Using 
(38), we obtain D = -0.9382, which is not significantly 
different  from 0 (Table 2), so  that we conclude  that 
the  neutral  mutation hypothesis can  explain the DNA 
polymorphism of human  mitochondrial  DNA. 

Incidentally, the distribution of nucleotide  fre- 
quency in the sample is shown in Figure 5, which 
indicates that  the  numbers of nucleotides with fre- 
quencies '/7 and 6/7 are  larger  than  the expected ones. 

Miyashita and Langley (1988)  examined  a 45-kb 
region of the white locus on the X chromosome in 
Drosofhila  melanogaster, using 64 X chromosome lines 
(n = 64) with  six 6-cutter  and  ten 4-cutter  restriction 
enzymes. They classified the DNA polymorphisms 
into  three  groups, namely restriction site polymor- 
phism, small insertion/deletion (<lo0 bp) polymor- 
phism, and large  insertion/deletion (>lo0 bp) poly- 
morphism. As long as the infinite site mutation model 
is applicable, we can use this method.  In  the cases  of 
restriction site and insertion/deletion, there  are many 
sites where  mutations  can  take place. Therefore, we 
can apply the  present test to these cases. Unlike the 
mitochondrial  DNA, however, some recombination 
may occur on  the  nuclear DNA. In this case the actual 
variance of d is smaller than  that of (30), so that  the 
actual value of D takes more  extreme value than  that 
estimated by (38). Because of this, the present  method 
might be conservative when the nuclear DNA is ana- 
lysed. The result of the present test is shown in Table 
3. Significant deviation of D from 0 is observed 
(P < 0.05) only in the case of large  insertion/deletion 
polymorphism, so that we can reject the null hypoth- 
esis that all the large  insertion/deletion polymor- 
phisms are maintained without selection at  the  5% 
level. 

One of the possible explanations  of this is that  the 
large  insertions/deletions are deleterious so that they 
are maintained with low frequency. This can be seen 
in Figure  6. In this figure only the  numbers of segre- 
gating sites whose frequencies are less than or equal 
to 32/64 are shown, since the  number of segregating 
sites with frequency i / n  is equal to  that of 
( n  - i ) /n .  From this figure we can see that  the  numbers 
of segregating sites with  low frequencies are much 
larger  than  the  expected ones. 

Another possible explanation is that  the population 
does  not  reach to  the equilibrium yet. For  example, if 
a population  experienced  a  bottleneck  recently, many 
sites with low frequency might be  observed. There- 
fore, D is expected to be negative. Since the values of 
D observed in the cases of restriction site and small 
insertion/deletion polymorphisms are positive, the 
bottleneck effect cannot explain the result  that the 
value of D observed in the case  of large  insertion/ 
deletion is significantly smaller than 0. 

Recently, T. TAKANO, S. KUSAKABE and T. MUKAI 
(in preparation) have obtained the same  result. They 
studied the regions of Adh, Amy, Pu (Punch), and Gpdh 
in Drosophila  melanogaster by using eight  6-cutter  re- 
striction enzymes. Eighty-six DNA sequences (n = 86) 
were collected from two Japanese populations 
(Aomori and Ogasawara populations). Their results, 
which are shown in Table  4, indicate that  the value 
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TABLE 2 

Confidence limit of D obtained by assuming the beta distribution 

Confidence limit of D 

n 90% 95% 99% 99.9% 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
110 
120 
130 
140 

-0.876 - 2.081 
-1.255 - 1.737 
- 1.405 - 1.786 
-1.498 - I .728 
-1.522 - 1.736 
-1.553 - 1.715 
-1.559 - 1.719 
-1.572 - 1.710 
-1.573 - 1.713 
-1.580 - 1.708 
-1.580 - 1.710 
-1.584 - 1.708 
-1.583 - 1.709 
-1.585 - 1.708 
-1.584 - 1.709 
-1.585 - 1.708 
-1.584 - 1.710 
-1.585 - 1.709 
-1.584 - 1.711 
-1.584 - 1.710 
-1.583 - 1.712 
-1.583 - 1.712 
-1.582 - 1.712 
-1.582 - 1.712 
-1.581 - 1.713 
-1.581 - 1.714 
-1.580 - 1.714 
-1.580 - 1.714 
-1.579 - 1.715 
-1.579 - 1.716 
-1.578 - 1.716 
-1.578 - 1.717 
-1.577 - 1.717 
-1.577 - 1.717 
-1.576 - 1.718 
-1.576 - 1.718 
-1.575 - 1.719 
-1.575 - 1.719 
-1.574 - 1.720 
-1.574 - 1.720 
-1.573 - 1.721 
-1.573 - 1.721 
-1.572 - 1.721 
-1.572 - 1.722 
-1.571 - 1.722 
-1.571 - 1.722 
-1.570 - 1.723 
-1.568 - 1.724 
- 1.566 - 1.726 
-1.565 - 1.727 
-1.563 - 1.729 
-1.561 - 1.730 
-1.560 - 1.731 
-1.559 - 1.732 
-1.557 - 1.733 
-1.556 - 1.734 
-1.555 - 1.735 
-1.552 - 1.737 
-1.550 - 1.739 
-1.549 - 1.740 
-1.547 - 1.741 

-0.876 - 2.232 
-1.269 - 1.834 
-1.478 - 1.999 
- 1.608 - 1.932 
-1.663 - 1.975 
-1.713 - 1.954 
-1.733 - 1.975 
-1.757 - 1.966 
- 1.765 - 1.979 
-1.779 - 1.976 
-1.783 - 1.985 
-1.791 - 1.984 
-1.793 - 1.990 
-1.798 - 1.990 
-1.799 - 1.996 
-1.802 - 1.996 
-1.803 - 2.001 
-1.805 - 2.001 
-1.804 - 2.005 
-1.806 - 2.006 
-1.806 - 2.009 
-1.807 - 2.010 
-1.807 - 2.013 
-1.807 - 2.014 
-1.807 - 2.017 
-1.807 - 2.018 
-1.807 - 2.020 
-1.807 - 2.021 
-1.806 - 2.023 
-1.806 - 2.024 
-1.806 - 2.026 
-1.806 - 2.027 
-1.805 - 2.029 
-1.805 - 2.030 
-1.804 - 2.031 
-1.804 - 2.032 
-1.804 - 2.033 
-1.803 - 2.034 
-1.803 - 2.036 
-1.803 - 2.037 
-1.802 - 2.038 
-1.802 -, 2.039 
-1,801 - 2.040 
-1.801 - 2.041 
- 1  .SO0 - 2.042 
-1.800 - 2.042 
-1.800 - 2.044 
-1.797 - 2.048 
-1.795 - 2.052 
-1.793 - 2.055 
-1.791 - 2.058 
-1.790 - 2.061 
- 1.788 5 2.064 
-1.786 - 2.066 
- 1.784 - 2.069 
-1.783 - 2.071 
-1.781 - 2.073 
-1.779 - 2.077 
-1.776 - 2.080 
-1.774 - 2.084 
-1.771 - 2.086 

-0.876 - 2.324 
-1.275 - 1.901 
-1.540 - 2.255 
-1.721 - 2.185 
-1.830 - 2.313 
-1.916 - 2.296 
-1.967 - 2.362 
-2.014 - 2.359 
-2.041 - 2.401 
-2.069 - 2.403 
-2.085 - 2.432 
-2.103 - 2.436 
-2.1 13 - 2.457 
-2.126 - 2.461 
-2.132 - 2.478 
-2.141 - 2.483 
-2.146 - 2.496 
-2.152 - 2.501 
-2.153 - 2.512 
-2.160 - 2.516 
-2.162 - 2.526 
-2.165 - 2.530 
-2.167 - 2.538 
-2.170 - 2.542 
-2.171 - 2.549 
-2.173 - 2.553 
-2.173 - 2.559 
-2.175 - 2.563 
-2.175 - 2.569 
-2.177 - 2.572 
-2.177 - 2.577 
-2.178 - 2.580 
-2.178 - 2.585 
-2.179 - 2.588 
-2.178 - 2.592 
-2.179 - 2.595 
-2.179 - 2.599 
-2.179 - 2.601 
-2.179 - 2.605 
-2.179 - 2.608 
-2.179 - 2.611 
-2.179 - 2.613 
-2.179 - 2.617 
-2.179 - 2.619 
-2.178 - 2.622 
-2.178 - 2.624 
-2.178 - 2.627 
-2.177 - 2.638 
-2.175 - 2.649 
-2.173 - 2.658 
-2.171 - 2.666 
-2.170 - 2.673 
-2.168 - 2.681 
-2.166 - 2.687 
-2.164 - 2.693 
-2.162 - 2.699 
-2.160 - 2.704 
-2.157 - 2.713 
-2.153 - 2.722 
-2.150 - 2.730 
-2.147 - 2.736 

-0.876 - 2.336 
-1.276 - 1.913 
-1.556 - 2.373 
-1.761 - 2.311 
-1.909 - 2.524 
-2.023 - 2.519 
-2.105 - 2.640 
-2.174 - 2.649 
-2.223 - 2.729 
-2.267 - 2.741 
-2.299 - 2.798 
-2.329 - 2.81  1 
-2.350 - 2.854 
-2.372 - 2.866 
-2.387 - 2.900 
-2.403 - 2.91 1 
-2.414 - 2.939 
-2.426 - 2.950 
-2.434 - 2.973 
-2.443 - 2.983 
-2.449 - 3.002 
-2.457 - 3.01  1 
-2.461 - 3.029 
-2.467 - 3.037 
-2.471 - 3.052 
-2.475 - 3.060 
-2.478 - 3.073 
-2.482 - 3.080 
-2.484 - 3.092 
-2.487 - 3.099 
-2.489 - 3.1  10 
-2.492 - 3.116 
-2.493 - 3.126 
-2.495 - 3.132 
-2.496 - 3.141 
-2.498 - 3.147 
-2.499 - 3.155 
-2.500 - 3.160 
-2.501 - 3.168 
-2.502 - 3.173 
-2.502 - 3.180 
-2.503 - 3.185 
-2.504 - 3.191 
-2.504 - 3.196 
-2.505 - 3.202 
-2.505 - 3.207 
-2.505 - 3.212 
-2.506 - 3.235 
-2.506 - 3.256 
-2.506 - 3.274 
-2.505 - 3.291 
-2.504 - 3.306 
-2.502 - 3.320 
-2.500 - 3.333 
-2.499 - 3.345 
-2.497 - 3.355 
-2.495 - 3.366 
-2.492 - 3.385 
-2.488 - 3.401 
-2.484 - 3.416 
-2.481 - 3.430 
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TABLE 2-Continued 
~~ 

Confidence limit of D 

n 90% 95% 99% 99.9% 

150 -1.545 - 1.743  -1.769 - 2.089  -2.144 - 2.743  -2.477 - 3.443 
175 -1.542 - 1.746  -1.765 - 2.095  -2.138 - 2.757  -2.470 - 3.470 
200 
250 
300 
350 
400 
450 
500 
600 
800 

1000 

-1.539 - 1.748 
-1.534 - 1.752 
-1.530 - 1.755 
-1.526 - 1.757 
-1.523 - 1.759 
-1.521 - 1.761 
-1.519 - 1.763 
-1.515 - 1.765 
-1.510 - 1.769 
-1.505 - 1.772 

-1.760 - 2.100 
-1.754 - 2.107 
-1.748 - 2.114 
-1.744-2.119 
-1.740 - 2.123 
-1.737 - 2.127 
-1.734 - 2.130 
-1.728 - 2.135 
-1.721 - 2.143 
-1.715 - 2.150 

-2.132 - 2.768 
-2.122 - 2.787 
-2.114 - 2.802 
-2.107 - 2.814 
-2.101 - 2.824 
-2.096 - 2.833 
-2.092 - 2.840 
-2.084 - 2.853 
-2.072 - 2.873 
-2.062 - 2.887 

-2.462 - 3.492 
-2.449 - 3.529 
-2.439 - 3.558 
-2.430 - 3.581 
-2.422 - 3.600 
-2.415 - 3.617 
-2.409 - 3.632 
-2.398 - 3.657 
-2.382 - 3.694 
-2.369 - 3.722 

I 2 3 4 5 6  

FIGURE 5.-Observed and  expected distributions of the number 
of allelic nucleotides for human mitochondrial DNA.  The observed 
distribution was obtained from AQUADRO and GREENBERG (1 983), 
and the expected distribution was obtained by assuming the neutral 
mutation model. 

of D in the case  of restriction site  polymorphism does 
not show a significant deviation from 0, but  that of 
insertion/deletion (>300 bp)  polymorphism  shows a 
significant deviation in the case of Amy. If we pool the 
data of four regions of  DNA, the deviation  of D from 
0 becomes  highly  significant (P < 0.01). In this case 
the value  of D was obtained by the sum  of the values 
of d divided by the square root of the sum  of the 
estimated variances  of d ,  since these four regions can 
be assumed to be unlinked. The distribution of the 
sum  of independent random variables approaches the 
normal distribution as the  number of  variables  in- 
creases, and  the computer simulation conducted ear- 
lier indicates that  the distribution of D is not far from 
the normal distribution. Because  of  these  reasons,  in 
order to find the confidence limit  of D ,  we can  use 
the normal distribution when  several regions of  DNA 
are used. At any rate, if we apply the unit normal 
distribution in this  case, the deviation  of D from 0 is 
highly  significant (P < O.Ol), so that  the neutral mu- 
tation hypothesis is rejected. 

DISCUSSION 

In this paper we have obtained a statistical method 
for testing the neutral mutation hypothesis by using 
DNA  polymorphism.  Unlike HUDSON, KREITMAN and 

TABLE 3 

Estimates of D for the three groups of polymorphisms in the 
white locus in D. melanogaster 

Type of 
polymorphism S k ^ D  

Restriction site 53  11.92 0.2128 (NS) 
Small insertion/deletion 40  10.02 0.6075 (NS) 
Large insertion/deletion I5  0.94 -2.0709 (P 0.05) 

Data from MIYASHITA and LANGLEY (1988). NS, not Significant 
(P > 0.1). 

ACUADE (1 987) where not only  DNA  polymorphism 
data but also  between  species divergence data are 
necessary,  only DNA polymorphism data are needed 
to use this method. In many  cases  only  DNA  poly- 
morphism data are available, so that this method 
might be useful.  When we apply  this method, how- 
ever, some caution is necessary. (1) The DNA  se- 
quences applied to this method must be  a random 
sample from a population. (2) We must  take into 
consideration whether the population is at equilibrium 
or not. For example, as  shown  in the NUMERICAL 
EXAMPLE section, a negative  value of D can  also be 
obtained if the population experienced a bottleneck 
recently. In this  case a comparison  between different 
kinds  of  DNA  polymorphisms  such  as a comparison 
between nucleotide and insertion/deletion polymor- 
phisms  may help our interpretation, since a bottleneck 
affects  all  kinds  of  DNA  polymorphisms. (3) If a 
selectively neutral site is linked to  a site at which 
natural selection is operating, then  the value of D for 
the neutral site  might be affected by the selected  site. 
[For the coalescent  process for  a neutral site  which is 
linked to  a selected site, see KAPLAN, DARDEN and 
HUDSON ( 1  988) and HUDSON and KAPLAN (1988).] 

In  the NUMERICAL EXAMPLE section, we analyzed 
the five regions  of DNA sequences, white, Adh, Amy, 
Pu, and Gpdh. All the values  of D for the restriction 
site  polymorphism  were  positive (Tables 3 and 4). 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/123/3/585/5998755 by guest on 09 April 2024



594 F. Tajima 

6 
G,(il 

4 

2 

0 

1 0  

', S m a l l  i n r e r t l o n / d e l e t i o n  
8 

0 5 10 1 5  2 0  2 5  30 

FIGURE 6.-Observed and expected frequency spectrums of pol- 
ymorphic  variation  in the white locus region of D. melanogaster. The 
observed spectrums were obtained from MIYASHITA and LANGLEY 
(1988), and the expected spectrums were obtained by assuming the 
neutral mutation model. 

Under  the neutral mutation hypothesis, the probabil- 
ity that D is positive is less than !h (see Table l) ,  so 
that the probability that all the five D values are 
positive is  less than l /~z.  Therefore,  there may kc  a 
site at which natural selection,  which  increases the 
genetic variation, is operating. Among the five  values 
of D, the value of D for Adh is quite large, although it 
is not significantly different from 0. The exceptionally 
high  level  of  variation was observed in the Adh coding 
region by KREITMAN and A G U A D ~  (1  986), so that  the 
large D value  may  be  explained by natural selection. 

Negative  values  of D were observed in the case  of 
large insertion/deletion for all  five regions of  DNA. 
[The length of insertion/deletion in T. TAKANO, S .  
KUSAKABE and T. MUKAI (in preparation) is longer 
than 300 bp, so that we call it large insertion/deletion 
according to MIYASHITA and LANGLEY (1 988).] Under 
the deleterious mutation model, we can estimate the 
total number of deleterious mutants per DNA  se- 
quence (or per genome). 

Let qi be the frequency of deleterious nucleotide in 
the ith deleterious site in a population. If we consider 
the deleterious site  as  well  as the neutral site, then  the 
expectation of the number of segregating sites for a 
sample  of n DNA  sequences is given by 

E ( S )  = U ~ M  + 2 [ I  - 9: - (1  - qi)"1. 

If we assume that qi is very  small, then E ( S )  is approx- 
imately  given by 

E ( S )  = alM + n x q i .  (52) 

TABLE 4 

Estimates of D for four regions of DNA in D. melanogaster 

Restriction  site  Insertion/deletion 

Region S k^ D S k ^  D 

Adh 4  1.39 1.52O(Ns) 10 0.82 -1.537(~S) 
Amy 7 1.74 0 . 5 9 9 * ( ~ ~ )  10 0.59 -1.839 ( P c 0 . 0 5 )  
Pu 6 1.25 0.108(Ns) 2  0.07 -1.305 (NS) 

Gpdh 18 4.27 0.559 (Ns) 15 1.10 -1.784(P<O.l)  
Sum 35 8.64 1 . 1 1 1  (NS) 37 2.58  -3.127  (P<O.Ol) 

Data from T. TAKANO, S. KUSAKABE and T. MUKAI (in prepa- 
ration). NS, not significant (P  > 0.1). 

On the  other hand, the expectation of the average 
number of nucleotide differences is given by 

= M + 2 2941 - qi) (53) 
= M + 2 x q i .  

If we define d by (28) as before, then  the expectation 
of d becomes 

(54) 

Therefore,  the total number of deleterious mutants 
per DNA sequence (E 4;) can be estimated by 

d 
Q = ". 

n 
" 2 

(55) 

a1 

The estimates (Q) of E qi for large insertion/deletion 
polymorphism in the five regions of DNA are shown 
in Table 5. In this  case Q is the estimate of the total 
number of deleterious insertions/deletions per DNA 
sequence under investigation.  If we  sum up all the 
five regions, then Q becomes 0.510 per 107 kb. This 
means that on the average there is one deleterious 
insertion/deletion every 200 kb. If this estimate is 
correct for the whole regions of DNA, then it is 
expected that on the average there  are 700 deleterious 
insertions/deletions per genome, assuming 1.4 X lo8 
bp per genome (LEWIN 1975). In  order to explain  this 
large value, we need to assume not only  high mutation 
rate but also  weak selection.  LEIGH  BROWN (1983) 
and AQUADRO et al. ( 1  986) suggest that  the majority 
of large insertions are caused by transposable  ele- 
ments. If this is the case, then the mutation rate of 
deleterious insertion/deletion might be high. If  we 
assume that the mutant is maintained by the mutation- 
selection  balance and that the selection  coefficient of 
heterozygote is hs and the mutation rate of deleterious 
insertion/deletion is u, then the equilibrium frequency 
is u/hs. If the mutation rate per genome is 0.0 1 ,  the 
selection  coefficient  must  be 1.5 x 1 0-5, assuming that 
the selection coefficient is the same for all  sites.  If the 
mutation rate is as  high  as 0.1, then  the selection 
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TABLE 5 

Estimated numbers (0 of deleterious  insertions/deletions for 
the five regions of DNA 

Length 
of DNA 

examined 
Region (kb) d 4 Q/kb 

white 45 -2.228 0.193 0.0043 
Adh 11 -1.170 0.077 0.0070 
Amy 14 -1.400 0.093 0.0066 
Pu 14 -0.328 0.022  0.0016 
Gpdh 23 -1.885 0.125  0.0054 

Sum 107 0.510 0.0048 

Data for white from MIYASHITA and LANGLEY  (1988). Data for 
the  others from T. TAKANO, S. KUSAKABE and T. MUKAI (in 
preparation). 

coefficient is 0.00015. OHTA (1973,  1974) has pro- 
posed the very  slightly deleterious or nearly neutral 
mutation hypothesis, and this  hypothesis  has been 
further developed by KIMURA (1979). The large in- 
sertion/deletion seems to support this  hypothesis. 

I thank T. MUKAI, T. TAKANO and S. KUSAKABE for allowing 
me to use their unpublished data. I also thank T. OHTA,  B. S. WEIR, 
and two anonymous reviewers for their valuable suggestions and 
comments. 
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