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ABSTRACT 
We consider the distribution of  pairwise sequence differences of mitochondrial DNA or of other 

nonrecombining portions of the genome in a population that has been of constant size and in a 
population that has been growing in  size exponentially for  a long time. We  show that, in a population 
of constant size, the sample distribution of  pairwise differences will typically deviate substantially from 
the geometric distribution expected, because the history of coalescent events in a single  sample of 
genes imposes a substantial correlation on pairwise differences. Consequently, a goodness-of-fit  test 
of observed pairwise differences to  the geometric distribution, which  assumes that each pairwise 
comparison is independent, is not a valid test of the hypothesis that  the genes were sampled from a 
panmictic population of constant size. In an exponentially growing population in  which the product 
of the  current population size and  the growth rate is substantially larger than one, our analytical and 
simulation results show that most  coalescent events occur relatively early and in a restricted range of 
times. Hence, the  “gene  tree” will be nearly a  “star phylogeny” and  the distribution of  pairwise 
differences will be nearly a Poisson distribution. In that case, it is  possible to estimate r ,  the population 
growth rate, if the mutation rate, p, and  current population size, No, are assumed  known. The 
estimate of r is the solution to r i /p  = In(N0r) - 7 ,  where i is the average pairwise difference and = 
0.577 is Euler’s constant. 

T HE analysis of within-species variation in DNA 
sequences has the potential for providing insight 

into population  genetic processes. New statistical 
methods  are  needed  to analyze within-species se- 
quence  data,  however, because DNA sequences pro- 
vide new kinds of information about  the genome. 

In this paper, we point  out some features of a 
commonly used way to describe within-species varia- 
tion in DNA sequences,  particularly of mitochondrial 
DNA  (mtDNA). We will be  concerned with two re- 
lated questions: first, is it possible to use the sample 
distribution of pairwise differences in DNA sequence 
to test the hypothesis that  the sequences were  drawn 
from a panmictic population  of  constant size, and 
second, can the sample distribution of pairwise differ- 
ences  indicate that  the genes  sequenced were drawn 
from a  population that has been  growing  exponen- 
tially in  size for a  long  time? T o  answer  these ques- 
tions, we will review and develop the necessary ana- 
lytic theory  for  pairs  of  genes  and  then  present  results 
obtained  from  a simulation program  that yields the 
distribution of pairwise differences for samples of 
genes. 

A typical data  set consists of the sequences or fine 
scale restriction maps of mtDNA  from several individ- 
uals. The numbers of differences in sequence  between 
all pairs of individuals can  be used to summarize 
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information in the  data (AVISE, BALL and ARNOLD 
1988). It is also possible to  estimate  the times until 
each pair of mtDNA  had  a most recent  common 
ancestor by using an estimate of the substitution rate 
per base pair.  For  mtDNA in animals, the  rate of 0.01 
substitutions per base pair per million years is usually 
used (BROWN,  GEORGE and WILSON 1979; AVISE, 
BALL and ARNOLD  1988). 

To illustrate this procedure we generated  a sample 
data set using a simulation program  described below. 
In Figure 1, we plot the frequencies of sample pairs 
that  differ at i sites, i 3 0. The conversion to diver- 
gence times would be  obtained by multiplying i /L  by 
10’ years where L is the  number of base pairs in the 
sequence  examined. This way of describing  differ- 
ences among sequences  provides  a  convenient way to 
summarize some of the information in the  data set. 

CONSTANT  POPULATION SIZE 

Whether  the  graph of pairwise differences in Figure 
1 is consistent with the hypothesis that  the sample of 
mtDNAs is drawn  from  a panmictic population of 
constant size depends  on what the null hypothesis 
predicts. WATTERSON (1975)  and  others have shown 
that  under a neutral infinite-sites model with constant 
population size and  no recombination  among the sites, 
the distribution of the  number of differences between 
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FIGURE 1 .“Graphs of pairwise differences in 50 DNA sequences 

in a simulated data  set  compared with the  geometric  distribution 
under  the model of  constant  population size. The  “All pairs” curve 
shows the  frequency  distribution  of  the  numbers of differences 
between all 1225 pairs; the  “Without  Replacement”  curve shows 
the  frequency  distribution  for  the 25 pairs, 1 vs. 2, 3 us. 4, etc.;  and 
the  “Expectation”  curve plots  Equation 1 for 0 = 10. 

a  pair of genes follows a  geometric  distribution: 

where 8 = 2 N p  with N being the size  of the haploid 
population and p being the mutation rate  per  gener- 
ation.  For  mtDNA in higher animals, N is the effective 
size  of the female population. The mean of i, i, is 8, 
and  the variance of i, a:, is 8(1 + 8) (WATTERSON 
1975). 

This result is equivalent to  an exponential distri- 
bution of divergence times of pairs of genes 

(TAJIMA 1983). The relationship between the distri- 
bution of pairwise differences and  the distribution of 
coalescence times is obtained by noting  that  for  a 
given coalescence time, the  number of mutations that 
have occurred follows a Poisson distribution with 
mean 2 p t .  We can find the mean and variance of i 
from  the  distribution of coalescence times, a  proce- 
dure we will use later. Given that two genes  have  a 
coalescence time t, the mean number of differences is 
i ( t )  = 2 p t .  The variance is&o 2 p t  which implies that 
the mean square value is, i’(t) ~ 2 p t  + 4 p 2 t 2 .  We can 
then use ( 2 )  to find t = N and t2  = 2 N 2 ,  from which 
we find, by averaging  over t ,  the mean and variance 
of i to be 8 and  8(l + 0) as before. We mention this 
now because in an exponentially  growing  population, 
we will derive  the mean and variance of i directly 
from  the  analog of Equation 2. 

The distribution given by Equation  1 would be 
useful for  testing the null hypothesis if a  large number 
of pairs of sequences were drawn,  each  pair  from  a 
different  replicate  population. That is not  the kind of 
sample that is available, however, and we will show 

FIGURE 2.-The cladogram of a simulated data  set.  The  correct 
cladogram is obtained using a  parsimony criterion because the  data 
were  generated using the assumption that no  site changed  more 
than  once.  In this cladogram,  the  branch  lengths  do  not  represent 
time. 

that (1) is not  the  distribution  expected when pairs of 
genes in a single sample are compared. Differences 
between sample pairs  from  the same population are 
correlated because of their  common history (BALL, 
NEICEL and AVISE 1990). That history can be repre- 
sented by a  gene  tree with each node indicating a 
coalescent event.  Figure 2 shows the  gene  tree  for  a 
simulated  data  set,  for which we know the  extract 
tree. 

In Figure 1, we also plot Equation 1  for comparison 
with the  data. The data were generated by simulating 
the null model with 8 = 10. We can see there is poor 
agreement  between  the  data  and  the  expectation un- 
der the null model. Figure 2 shows  why. The clado- 
gram is roughly  balanced,  meaning  that there  are 
approximately  equal  numbers of descendent genes on 
either side of the  root. As a  consequence,  the  number 
of  base pair  differences  between  genes  from opposite 
sides of the  root will all reflect  the fact that they are 
separated by the maximum time possible. Because 
almost half of the pairwise comparisons are from genes 
on opposite sides of the  root  there  are two modes in 
the distribution shown in Figure 1. The sample distri- 
bution  appears  to  differ substantially from  the  expo- 
nential  distribution even though they were  generated 
by simulating the null model. 

To determine what would be  expected under  the 
null hypothesis, we simulated 2 0  independent repli- 
cates of samples of genes  from  a single panmictic 
population and plotted  graphs of pairwise differences, 
as in Figure 1. The simulation method was based on 
the coalescent process for  a  neutral infinite-sites model 
without  recombination. Each sample is obtained by 
first producing  the genealogy of the sample under  the 
assumption of a  large  constant  population size and  no 
selection. Once  the genealogy is produced,  mutations 
are randomly placed on  the genealogy. Assuming an 
infinite-site model, in which each mutation  occurs at 
a previously unmutated site, the genotypes of  the 
sampled sequences are  then  determined  from  the 
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FIGURE 3,"Frequency  distributions  of pairwise differences  for 20 replicate simulations. The distributions of all 1225 pairs in samples of 
50 genes  from a panmictic population  are  plotted. The  data were generated using a simulation program  described in the  text.  In each graph, 
the abscissa is the  number of sites at  which two samples differ  and  the  ordinate is the  fraction of pairs that  differ. 

genealogy with its mutations. The method is described 
in the appendix to HUDSON (1983),  and described in 
greater detail in HUDSON (1990). We would be happy 
to distribute copies of the  programs (written in C )  that 
generated these results. 

The simulation results are shown in Figure 3, for 
the case where 0 = 2Np was 10. If we assume p = 2 X 
1 0-4 (corresponding  to  a  region  1000  nucleotides  long 
with a per site neutral  mutation rate of 0.01 per 
million years and 20-year generations)  then 0 = 10 
corresponds to N = 25,000. In Figure 3, we can see 
that a variety of shapes can be  found, including bi- 
modal and even trimodal  distributions and distribu- 
tions with modes at zero or  at higher values. None of 
them resembles the geometric  distribution shown in 
Figure  1. Even  with this small sample of simulated 
results, we found  a wide variety of distributions of 

pairwise differences are consistent with the predic- 
tions of the null hypothesis. 

Bimodal distributions of sequence  differences are 
reasonably common  indicating  that  roughly balanced 
trees, such as the  one shown in Figure  2, are common. 
TAJIMA (1983) showed that  the  number of genes  on 
the  right  (or left) side of the  root in a  random  gene 
tree  generated by the coalescent process in a panmictic 
population follows a  uniform  distribution: that is, if 
there  are n genes  sampled, the probability of i genes 
on the left branch is l/(n - 1) for i  = 1, . . ., n - 1. 

EXPONENTIALLY  GROWING  POPULATION 

It is likely that many species have undergone  a 
sustained increase in population size, possibly because 
of a  prior  catastrophic  decline in  size or because a 
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species is expanding its geographic  range for  the first 
time.  For such species, a model of exponential  growth 
at a  constant rate is simple and reasonable. A model 
of exponential  growth of human  populations was sug- 
gested to us  by J. BROOKFIELD (personal  communica- 
tion). 

We examined the consequences of exponential pop- 
ulation growth by considering first the  theory of pairs 
of genes, for which relatively simple analytic results 
can  be  obtained, and a simulation model of the coa- 
lescent process for samples of n genes, as we did  above. 
We will show that, in contrast to  the model with 
constant  population size, sample  distributions of pair- 
wise differences do provide useful information about 
the history of coalescent events and  that  under some 
conditions,  the  average pairwise difference, i, leads to 
an estimate of the population  growth  rates. 

Assume that  the  (haploid)  population of interest is 
of current effective size No and has been  growing 
exponentially at a rate r. The population size at time 
t in the past is then N( t )  = NOe-". Following the usual 
theory of coalescent processes (KINGMAN 1982),  the 
probability that two genes sampled do not coalesce in 
generation t given that they  did  not coalesce before t 
is approximately [ 1 - l/N(t)]  and  the probability that 
they do coalesce in generation t is approximately 
l/N(t).  Therefore  the probability that  the first coales- 
cence is  in generation t, P( t ) ,  is approximately 

or  approximately 

where now P(t)dt is the probability of a coalescent 
event between t and t + dt. Assuming exponential 
growth,  Equation 4 reduces to 

e'' 
No 

P( t )d t  = - exp (5) 

as was pointed out  to us by J. BROOKFIELD (personal 
communication). This distribution is related to  the 
Gompertz  hazard  distribution (JOHNSON and KOTZ 
1970). It is convenient to simplify (5 )  by measuring 
time in units of l / r  (T = r t )  and defining a = Nor to 
obtain 

P ( T ) ~ T  = - exp - - er ( ')dT. (6) 
a 

We can compute  the  mean coalescence time  from 
(6): 

0.4 1 5 a= 10 

P 

0 10 20 
z 

FIGURE 4.-The probability density of T (=rt), the time to coa- 
lescence of two genes in an exponentially growing population. This 
density is given by Equation 6. (a = 2Nor, where r is the growth 
rate of the population per generation.) 

where Ei( e )  is the exponential  integral (GRADSHTEYN 
and RYZHIK 1965, 44.331.1). If a>> 1,  then  -Ei(-l/ 
a) z ln(a) - y, where y is Euler's constant  (0.577 . . .) 
(GRADSHTEYN and RYZHIK 1965,  §8.214.1), in  which 
case 7 z In(a) - y = ln(Nor) - y. The distribution P(t)  
is slightly asymmetric: by differentiating P ( T )  and set- 
ting  the  result  to  zero,  the modal value of T is found 
to be  ln(a), which exceeds .T by y when a >> 1. 

To find  the  variance, we have to evaluate 

which appears  not to be expressable in terms of tab- 
ulated  functions. It is relatively easy to compute  either 
of the integrals in (8) numerically. 

The function P(T) is plotted in Figure  4  for  different 
values of a. This figure conveys the  important idea 
that if a >> 1,  then coalescence events tend  to occur 
in a  restricted range of times, concentrated  at t = 
In(Nor)/r.  This conclusion was reinforced by our cal- 
culations of the coefficients of variation  (c.v.) of coa- 
lescence times, which were small (c.v. z 0.25  for a = 
lo3) and decreased with increasing a (c.v. = 0.09  for 
a = 10'). At t = ln(Nor)/r, the population size is 
approximately l / r  and is independent of No. 

Our results for coalescence times can be expressed 
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in terms  of  the  numbers of pairwise differences be- 
tween samples if we assume a  constant  mutation  rate. 
As discussed above, the average number of differences 
given a coalescence time of t, i(t), is 2 ~ t ,  and  the 
mean  square number of differences given t is i2(t) is 
2pt + 4/1't2, because the distribution of the  numbers 
of mutations is assumed to be Poisson. Averaging 
these values _over t ,  We find L= 2pt and  the variance 
in i, 0; is 2pt + 4p2t2 - 4p2t2. We can  express ut in 
terms  of the_ mean and variance of t: 6,' = 2pt + 

= i + i2(ut/l)'. We  contrast this result with that - 
for a  population  of  constant size for which 0,' = i + i2. 
In  an  exponentially  growing  population, the value of 
ue differs  from the variance under a Poisson distribu- 
tion, i, by a term  that  depends on the  square  of  the 
coefficient of variation of t ,  which is small  if a >> 1 .  
Therefore, if a >> 1 ,  the distribution of i is nearly 
Poisson which is the distribution of i if the phylogeny 
of genes sampled were a "star" phylogeny with all 
genes coalescing at  the same time. Hence we conclude 
that in an exponentially  growing  population, the phy- 
logeny of genes is likely to be nearly  a  star phylogeny, 
meaning that all coalescent events will occur  near  the 
root and few  if any will occur  later. In  that case, we 
might guess that correlations  induced by the phylo- 
geny are relatively unimportant. Our simulations will 
support  that guess. 

As an illustration of our  result,  consider  a naive 
model of human  population  growth. Assume NO = 1 O9 
and assume that 50,000 years ago,  the size of the 
female  population was 5000. Age structure will make 
the effective sizes smaller but we  will assume by the 
same  proportion at every time. If exponential  growth 
had  been  occurring at a  constant rate  and  the  gener- 
ation  time is 20 years, then r = 0.00488 per  genera- 
tion.  Under  these assumptions, a = 4.88 X lo6 and f 
x (in(&) - y ) / r  = 3030 generations or approximately 
60,600 years ago. The standard deviation of coales- 
cent times for  these parameter values is approximately 
333 generations or 6,700 years. 

The function P(t) describes the distribution of the 
coalescence time  for  a single pair of genes sampled 
from  an  exponentially  growing  population.  For  rea- 
sons we discussed above, that  does  not  provide us  with 
the  joint distribution  of coalescence times between 
pairs of genes in a  sample of n genes because that 
requires  taking  into  account  the  correlation  imposed 
by their  common history. To examine  the effects of 
this  correlation we carried  out  the same kind of sim- 
ulation  that we did for  the constant  population size 
case. The simulations of the coalescent process with 
an exponentially  growing  population are very similar 
to those with a  constant  population size except  that 
the distribution of the times between coalescent events 
are different. The required  generalization  of Equa- 
tions 3-6 follows from  the fact that  the probability 

that  the first coalescence among i lineages occurs in 
generation t is approximately 

Recall that as one traces the genealogy of the sam- 
pled sequences back  in time, coalescent events  occur 
and  the  number  of linages that  are being  traced  de- 
creases by one  for each coalescent event. The time 
interval, t,, measured in units of l / r ,  during which 
there  are i lineages can be generated by 

1 + ae"' - -2 
i(i + 1) 

where 
i+ 1 

Ti = 2 t k  
h=n 

is the  time of the coalescent event  that  reduced  the 
number of lineages to i and U is a  random variable 
uniformly distributed  on  the  interval (0,l) .  

In ten  replicate simulations, with a = lo4 and 0 = 
1 . 1  X 1 04, we found  that  the  distribution of pairwise 
differences is unimodal and approximately Poisson  in 
form.  Two of the  ten replicates are shown in Figure 
5. As our analytic results suggest, a history of expo- 
nential growth  tends to force coalescent events  to 
occur in a relatively restricted  range of times. As a 
consequence,  correlations  between coalescence times 
created by their history are relatively unimportant. 
Another consequence of having a "star" genealogy is 
that each  mutation  that  occurs  on  the genealogy is 
likely to be  inherited by only a single gene in the 
sample. In  other words, the polymorphisms at individ- 
ual nucleotide sites will consist of one  mutant nucleo- 
tide and  the rest of the sample will have the ancestral 
nucleotide at  the site. A significant excess of this 
pattern of polymorphism is potentially detectable by 
the test of TAJIMA (1989) which is based on  the total 
number of segregating sites and  the average pairwise 
difference to  the simulated data. In fact,  for each of 
our ten replicates, TAJIMA'S test indicated  that the 
data were  not consistent with the hypothesis that they 
were  drawn  from  a  randomly  mating  population of 
constant size. 

To illustrate how similar the distributions of pair- 
wise differences are, in our replicates, to a Poisson 
distribution, we show results  from two replicates in 
Figure 5 .  The distribution in part A was chosen be- 
cause its mean and variance were similar (i  = l  l .474, 
ai2 = 10.254) and because the distribution looked most 
like a Poisson. We can use the  standard x2 statistic as 
a  description  of goodness of tit. For part A, x2 = 
32.67, which, if used in a statistical test, would indicate 
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A B - Observed - Expected 
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FIGURE 5.-Comparison of the observed numbers of pairwise differences in two simulations with the numbers expected under  a Poisson 
distribution with the same mean. The two data sets are two of ten replicate samples generated as described in the  text. In these simulations, 
LY = lo4 and 0 = 1.1 X lo4.  In part A, i = 11.474 and u: = 10.254 and in part B, i = 11.814 and 6: = 16.331. Both distributions differ 
significantly from a Poisson, for  part A, x:, = 32.67 (P < 0.025) and  for part B, X?!, = 135.1 ( p  < 0.005). 

a marginally  significant  deviation (1 7 d.f.; P < 0.025). 
The distribution in part B was chosen  because it 
appeared to differ substantially from a Poisson (i = 
1 1.8 14, a? = 16.33 1) and indeed the differences be- 
tween the observed and expected distributions are 
much greater (x’ = 135.1; 19  d.f.; P < 0.005). These 
P values are meaningful  only  as a measure of fit to a 
Poisson  because the pairwise differences are of course 
not independent. Even for  the distribution shown  in 
Figure 5B, however, the observed distribution does 
not appear to be very different from a Poisson. 

Another way to  interpret these  results is to  note 
that in Figure 5, none of the pairwise differences were 
zero, which means that  there were no  short branches 
in the gene tree. In the  other replicates, less than one 
in one thousand pairwise  comparisons  had zero differ- 
ences.  In contrast, there were always large fractions 
of the pairwise  comparisons  with zero differences for 
the model  of constant population size,  as  shown  in 
Figure 3. 

We conclude then  that if the observed distribution 
of pairwise differences is close to  a Poisson, that it is 
consistent  with the hypothesis that  the population 
from which  those  genes  were  sampled  has been grow- 
ing exponentially in  size. 

Estimating  population growth rates: Our results 
for the model  of exponential population growth sug- 
gest that it is possible to estimate the population 
growth rate, r,  under some conditions. In particular, 
if the distribution of  pairwise differences were similar 
to a Poisson distribution, that would indicate that  the 

gene tree is nearly a star phylogeny  which we have 
shown is consistent  with a model of exponential 
growth with a = Nor >> 1. 

To  estimate r,  we have to assume that No and p are 
known. Then we  use the approximate estimate of the 
mean  pairwise  coalescent time, t = (In(Nor) - ~ ) / r ,  to 
obtain the estimate of the mean  pairwise difference, 

r = 2p[ln(Nor) - T]/T-. (9) 

If the value  of i is estimated from the  data, then 
Equation 9 can be  solved  numerically for r.  To illus- 
trate this result, we again use hypothetical data. As- 
sume that 2000 base  pairs  have  been  sequenced and 
that i = 10.5. Assume that  the population from which 
the sample was taken has an effective size  of the female 
population of No = lo6. If the mutation rate per site 
per year is the mutation rate  per generation is 
2 X lo”, when the generation time is 20  years, and 
the value  of p in (9) is 2000 X 2 X lo-’ = 4 X 
Using a program that solves (9) numerically, we find 
that r is approximately 4.15 x 1 O-4. We will distribute 
a copy  of this program upon request. 

In making  such an estimate of r ,  it is important to 
realize that an approximately Poisson distribution of 
pairwise differences does not imply that  there has 
been exponential growth of the population at a con- 
stant rate. There  are  other possible explanations as 
well. A very rapid increase  in population size  followed 
by a period of large and constant population size 
would  also result in a starlike gene tree because  all 
coalescent events would occur relatively  quickly  be- 
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t 
FIGURE 6.-An illustration of different population growth tra- 

jectories that could lead to a nearly starlike gene tree  and hence  an 
;Ipproximately Poisson distribution of pairwise differences in se- 
quence. Consequently it  is not possible to use the observation of an 
approximately Poisson distribution of pairwise differences to con- 
clude that there was exponential growth during  the history of the 
population sampled. 

fore  the time of rapid increase. Hence a distribution 
of pairwise differences that is nearly  Poisson  would 
result. If that assumption about population growth is 
accepted, the value  of i can be used to estimate the 
time of the sudden increase in population size: t = 
i/(2p). Using the numbers in the preceding paragraph, 
a value of i of 10.5 when 2000 base  pairs are se- 
quenced is consistent  with a time of very rapid increase 
in population size  of 10.5/(8 X = 13,125 gen- 
erations or 262,500 years ago. Figure 6 illustrates 
different growth trajectories that would  all  lead to 
nearly a Poisson distribution of  pairwise differences. 

Yet another possibility  is natural selection  in  favor 
of one mitochondrial genotype over previously  exist- 
ing ones.  Such  selection  would result in a rapid in- 
crease in the number of  individuals carrying the fa- 
vored mitochondrial type. As KAPLAN, HUDSON and 
LANGLEY (1989) have  shown, the fixation of an ad- 
vantageous gene in the recent past can result in the 
coalescence  of  most  lineages near  the time of fixation. 
For a population genetics perspective, there is no 
difference between a rapid increase in population size 
and a rapid increase  in the size  of the population 
carrying the only mitochondrial type to leave  descen- 
dents. We simulated this  possibility  as  well and found 
that distributions of  pairwise differences are very  sim- 
ilar to those found for  an exponentially growing  pop- 
ulation. Results  of those simulations are available on 
request. 

DISCUSSION 

Our analysis  has been motivated by repeated obser- 
vations that observed distributions of  pairwise differ- 
ences in  DNA  sequences  in  samples of mitochondrial 
DNAs differ substantially from the geometric distri- 
bution expected in populations that have remained 
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constant in size. AVISE, BALL and ARNOLD (1988) 
summarized data  for  hardhead catfish,  American  eels 
and redwing blackbirds and found that  the distribu- 
tions of pairwise differences differed substantially 
from expectations based on rough estimates of effec- 
tive population sizes obtained from censuses (AVISE, 
BALL and ARNOLD 1988, Figures 2, 3, and 4). They 
concluded that effective population sizes were in fact 
much  smaller than current census  sizes,  suggesting 
that past bottlenecks in population size  had occurred. 
The distribution of  pairwise differences for redwings 
does have a unimodal distribution of a form similar 
to those in Figure 5. 

Distributions of pairwise differences that are similar 
to a Poisson distribution are also found for human 
data. CANN, STONEKING and WILSON ( 1  987, Figure 1)  
show a unimodal distribution of  pairwise differences 
detected using a battery of restriction enzymes among 
146 mtDNAs from individuals  in  five  races. The mean 
difference was found to be approximately 0.57%. 
DIRIENZO and WILSON (1  99 1) found similar patterns 
within  some human populations but not in others. 
They plotted the distribution of  pairwise differences 
of 6 populations (Sardinians, Middle Easterners, Jap- 
anese, American Indians, !Kung, and Pygmies)  (DI- 
RIENZO and WILSON 199 1 ,  Figure 3). The !Kung and 
Pygmies  samples are clearly not similar to a Poisson 
but  the  others  are. As we have  emphasized, this simi- 
larity does not ensure that  there has  been exponential 
growth of these populations in the recent past but it 
does indicate that demographic events in the past  have 
forced coalescent events into a narrow time  window. 
DIRIENZO and WILSON (1991) applied TAJIMA’S 
( 1  989) test  of neutrality to the Sardinian and Middle 
Eastern samples. They found that  the Sardinian sam- 
ples  (sample  size 69) were not consistent  with the 
neutral hypothesis but  the Middle  Eastern  samples 
(sample  size 42) were  consistent. 

CONCLUSIONS 

We conclude that plotting frequency distribution of 
pairwise differences in  sequence or equivalently  pair- 
wise divergence times  of  genes  sampled  provides an 
indication of the  structure of the phylogenetic tree 
representing the history  of those genes. It is difficult, 
however, to compare such a graph with a geometric 
distribution and reject the null  hypothesis that the 
genes sampled  were from a randomly mating popula- 
tion of constant size. The information in  this  kind  of 
data is probably better  extracted in other ways. J. 
FELSENSTEIN (personal communication) has  suggested 
one test of  constancy  of  effective population size. 

Our results for an exponentially growing popula- 
tion  suggest that  the distribution of  pairwise differ- 
ences  can provide useful information if the distribu- 
tion is nearly a Poisson distribution. In  that case there 
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is a star-like gene tree with  all the nodes clustered in 
time. That  pattern would  also be detected in the gene 
tree directly if branch lengths were  known. It is pos- 
sible then to use our analytic  results to estimate the 
population growth rate  under  the assumption that the 
population  has  been growing exponentially for  a long 
time. The observation of a nearly  Poisson distribution 
of pairwise differences does not however  imply that 
there has  been exponential growth. That distribution 
would  be  consistent  with other models  of population 
growth that force most  of the coalescent events into  a 
narrow time period. 
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