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ABSTRACT There has been a great deal of interest in the development of methodologies to map quantitative trait loci (QTL) using
experimental crosses in the last 2 decades. Experimental crosses in animal and plant sciences provide important data sources for
mapping QTL through linkage analysis. The Collaborative Cross (CC) is a renewable mouse resource that is generated from eight
genetically diverse founder strains to mimic the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from
CC recombinant inbred (RI) lines share similar genetic structures of F2 individuals but with up to eight alleles segregating at any one
locus. In contrast to F2 mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly.
Also, RIX mice typically do not share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical
modeling to avoid false-positive findings. Many quantitative traits are inherently complex with genetic effects varying with other
covariates, such as age. For such complex traits, if phenotype data can be collected over a wide range of ages across study subjects,
their dynamic genetic patterns can be investigated. Parametric functions, such as sigmoidal or logistic functions, have been used for
such purpose. In this article, we propose a flexible nonparametric time-varying coefficient QTL mapping method for RIX data. Our
method allows the QTL effects to evolve with time and naturally extends classical parametric QTL mapping methods. We model the
varying genetic effects nonparametrically with the B-spline bases. Our model investigates gene-by-time interactions for RIX data in
a very flexible nonparametric fashion. Simulation results indicate that the varying coefficient QTL mapping has higher power and
mapping precision compared to parametric models when the assumption of constant genetic effects fails. We also apply a modified
permutation procedure to control overall significance level.

DURING the past 2 decades, there has been considerable
development in statistical methodologies for mapping

quantitative trait loci (QTL), since Lander and Botstein
(1989) implemented a maximum-likelihood approach to
the interval-mapping technique (Goldgar 1990; Amos
1994; Jansen and Stam 1994; Zeng 1994; Almasy and
Blangero 1998; Kao et al. 1999; Zou et al. 2001; Xu et al.
2005). In addition to the interval-mapping approach, many
other statistical approaches have been used in QTL map-
ping, such as regression analyses (Haley and Knott 1992)

and Bayesian approaches (Satagopan et al. 1996; Sillanpaa
and Arjas 1998; Yi and Xu 2000; Yi 2004; Hoeschele
2007).

While these methods have been instrumental for QTL
identification, they are not able to capture the temporal
pattern of QTL effect. Many quantitative traits, such as body
size, are inherently too complex to be described by a single
value, because their phenotypes, for example, change with
age. Instead of being measured at one fixed time point, each
subject’s phenotype may be measured at different time
points across samples, which allows us to study genetic
effects that vary with the change of time. For example, ge-
netic correlations among age-specific weights in a laboratory
population of rats were shown to involve variable gene ac-
tion at different ages (Cheverud et al. 1983). Vaughn et al.
(1999) located QTL responsible for age-specific weights in
mice, and they found that some QTL affect the early growth
patterns and some affect the late growth patterns. To study
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genetic determination of such functional traits, Wu and col-
leagues (Ma et al. 2002; Wu et al. 2002, 2004; Lin and Wu
2006) developed the functional mapping approach. They
used growth curve data as an example of functional traits,
and the genetic effect was modeled by a parametric function
such as sigmoidal or logistic function (Ma et al. 2002). While
the parametric nature of functional mapping offers tremen-
dous biological and statistical advantages, a reliance on the
availability of mathematical functions limits its applicability
(Yang et al. 2009).

Varying coefficient models are very useful statistical
tools for exploring dynamic effects. The varying coefficient
models were introduced by Cleveland et al. (1991), and
discussed by Hastie and Tibshirani (1993) in more detail,
to extend the applications of local regression techniques
from one-dimensional to multidimensional settings. In
varying coefficient models, there are many ways to model
the function of the varying effect, such as polynomials,
Fourier series, piecewise polynomials, and more general
nonparametric functions (Hastie and Tibshirani 1993).
For nonparametric varying-coefficient models, various ba-
sis systems can be used, and the most common choice is the
B-spline basis (He and Shi 1998; Pittman 2002; Huang
et al. 2004; Wang et al. 2007, 2008). One advantage of
B-splines over some other nonparametric approaches, like
smoothing splines, is that the smoother matrix is indepen-
dent of the responses. Yang et al. (2009) proposed a non-
parametric functional mapping framework for genetic
mapping of QTL controlling for a dynamic trait, imple-
mented with B-splines.

Although important, QTL mapping in humans is difficult,
time consuming, expensive, and hampered by ethical prob-
lems and uncontrollable environments. These obstacles are
nearly all overcome in laboratory mice. Furthermore, most
human genes have functional mouse counterparts and both
genomes are organized similarly. Hence, the laboratory
mouse has become an important model organism in
mapping QTL related to human disease. Recombinant
inbred (RI) lines have contributed greatly to genetic
dissection of simple and complex traits. A major advantage
of RI panels over other commonly used mapping approaches
is their ability to support genetic mapping and correlations
among many traits, even under different environmental
conditions (Plomin et al. 1991). However, the traditional
inbred mice have a limited amount of variation (Darvasi
1998). Typical mouse RI panels have only 15–35 strains
from a single pair of parental inbred lines (Zou et al.
2005; Tsaih et al. 2005). This is a particularly acute problem
when one wants to examine numerous gene–environment
interactions or study disease progression at many stages and
ages (Zou et al. 2005). Mouse RI panels generally have low
power and precision compared to other resources because of
their small size.

The Collaborative Cross (CC) project (Threadgill et al.
2002; Churchill et al. 2004; Collaborative Cross Consor-
tium 2012) has been carried out to create a large panel

of new RI mouse strains. The CC RI lines are generated
from an eight-way cross using eight genetically diverse
founder strains, which makes the CC RI lines closer to
natural populations than regular RI lines with more genetic
variation. A novel derivative of RI lines, called recombinant
inbred intercrosses (RIX), has been designed that permits
repeated interrogations of a fixed genotype to reduce non-
genetic variance while increasing the power of the original
RI panel (Threadgill et al. 2002; Collaborative Cross Con-
sortium 2012). The RIX panel is created as F1 hybrids of RI
lines. Linkage analyses can be performed, using these
resources, to fine map genetic loci that are responsible
for most inheritable complex traits. Since all RI mice are
homozygous at each locus, the genotypes of the derivative
RIX mice will be known in advance by imputing from the
genotypes of the parental RI lines. RIX mice with identical
genotypes can be regenerated whenever needed. Com-
pared to RI, the RIX design has several advantages that
include twice the number of recombination sites in a single
individual since each is derived from two parental RI, dom-
inance effects can be estimated, there is a large expansion
of different RIX genomes over the parental RI, and, because
of the buffering capacity of their heterogeneous genome
structure, RIX genomes should provide more reliable trait
means than the parental RIs. The RIX approach also has
advantages over classical crosses like the F2 design since
each RIX has a higher recombination density than a single
F2 individual when performing interval mapping (Broman
2005; Broman 2012), RIX are especially useful for long-
term collaborative research because their genotypes are
renewable making the phenotypic data cumulative within
the research community, and since RIX genomes are easily
replicated, experiments with different environmental vari-
ables or temporal relationships can be performed on the
same genotypes. At the individual level, although the ge-
nome of each RIX mouse has similar genetic structures of
F2 individuals, statistical analyses for F2 data cannot be
directly applied to RIX data. This is because some RIX indi-
viduals share a common parental RI line, making them
genetically more related to each other than those that do
not share any parental lines. Several QTL mapping meth-
ods have been introduced (Zou et al. 2005; Tsaih et al.
2005; Yuan et al. 2011) for dealing with the special genetic
structure of RIX data. However, none has considered the
situation in which the QTL effect varies with other covari-
ates. In this study, we propose a new method to properly
model both the (time) varying genetic effects and the
genetic complexity of RIX data. The proposed model inves-
tigates gene-by-time interactions in a flexible nonparamet-
ric fashion for RIX data.

Methods

For an RI panel with L lines, there are at most L(L 2 1)/2
nonreciprocal RIXs that can be generated, which is a huge
number when L is large. A useful sampling and mating
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scheme is the loop design as described by Zou et al. (2005)
and Yuan et al. (2011). With the loop design, L RI lines were
randomly ordered to form a circle. Then each RI line is
mated with the next J RI lines after it, resulting in total of
LJ samples. That is, we mate RI1 with RI2, RI3, . . ., and
RIJ11; . . .; RIi with RIm(i11,L), RIm(i12,L), . . ., and RIm(i1j,L);
. . .; and RIL with RI1, RI2, . . ., and RIJ, where

mðx; LÞ5
�
x;   if x# L;
x2 L;  if x. L:

Not only in the loop design, but in many RIX populations,
pairs of RIX sharing one parent are more closely related than
those RIX that do not share a parent. For example, RIX
produced by crossing RI1 and RI2 (RIX12) is expected to be
more similar to RIX produced by crossing RI1 and RI3
(RIX13) than to RIX from crosses between RI3 by RI4
(RIX34) since (RIX12) and (RIX13) share a parental RI
(RI1) while (RIX12) and (RIX34) do not share any parental
RI lines.

To study the RIX data, we fit a mixed-effect model by
applying a random effect to model the polygenic effect. For
simplicity, a model with only additive effect is considered.
Also, we assume that all putative QTL are located on
markers. For individual i, define the observed data as {yi,
ti, xi1, . . . xiM}, where yi is the phenotype, ti is the measure of
the covariate and is nonconstant across subjects, M is the
total number of markers, and xim is the genotype at the mth
marker, coded as 21, 0, or 1 for genotypes aa, Aa, and AA,
respectively. We consider one putative QTL at a time and
therefore suppress the subindex m in the sequel. The model
can be expressed as

yi5mðtiÞ1 xibðtiÞ1
XL
l51

ailal1 ei;

where m(t) and b(t) are the overall population mean and
QTL effect that vary with time t, respectively. The random
polygenic effect al follows Nð0;s2

aÞ for l ¼ 1, 2, . . ., L; the
random error ei follows Nð0;s2

0Þ ; and

ail5
�
1; if one of ith individual’s parents is RIl;
0; otherwise:

This model can be applied to any RIX population in addition
to the loop design as described above. The hypotheses for
whether there exists any major QTL at a given locus are H0:
b(t) ¼ 0 vs. Ha: b(t) 6¼ 0.

We incorporate B-spline bases to model the varying
coefficient functions b(t) and m(t). The smoothness of the
function modeled by B-splines is controlled by the parame-
ter K ¼ nj 1 d 1 1, where nj is the number of interior knots
and d is the degree of spline. The interior knots of the splines
can be either equally spaced or placed on the sample quan-
tiles of the data, so that there are about the same number
of observations between any two adjacent knots. We use

equally spaced knots for all numerical examples for this
study, and hence Bk(t) is determined for any given t.

The mixed-effects model becomes

yi5
XK
k51

g0kBkðtiÞ1
XK
k51

gkBkðtiÞxi 1
XL
l51

ailal 1 ei;

where Bk(ti)’s are basis functions of B-splines of order K,
and g0k’s and gk’s are coefficients for B-spline basis. Here
m(t) is approximated by

PK
k 5 1g0kBk   ðtÞ and b(t) is ap-

proximated by
PK

k 5 1gkBkðtÞ. To test for genetic effect of
QTL, the hypotheses H0: b(t) ¼ 0 vs. Ha: b(t) 6¼ 0 are
equivalent to H0: g1 ¼ . . . ¼ gK ¼ 0 vs. Ha: not all the
gks are 0.

We can rewrite the model above in the matrix form as

y5Xg1Aa1 e;

where y ¼ (y1, . . . yn)T; g ¼ (g01. . .g0K, g1. . .gK)T; X is the
corresponding n · 2K design matrix for the time-varying
fixed effect; a ¼ (a1,. . . aL)T; e ¼ (e1, . . . en)T; and A is an
n · L design matrix for the random polygenic effect. The
design matrix X can be expressed as

X5

0
@B1ðt1Þ . . . BKðt1Þ x1B1ðt1Þ  . . .   x1BKðt1Þ

⋮ ⋮ ⋮ ⋮
B1ðtnÞ . . . BKðtnÞ xnB1ðtnÞ  . . .   xnBKðtnÞ

1
A:

We therefore observe y� N(Xg, S) with S 5 s2
aAA

T1s2
0I,

which can be reparameterized as S 5 s2
0ðuD1IÞ 5 s2

0V, with
u 5 s2

a=s
2
0; D ¼ AAT, and V ¼ u D1 I. Regardless of the form

of the covariance matrix S, the generalized least squares
(GLS) is an appropriate estimate for parameter g as

ĝ5
�
XTV21X

�21
XTV21y:

The profile log-likelihood functions with only unknown
parameters in S, based on the maximum likelihood (ML)
and restricted/residual maximum likelihood (REML), can
be written as

22l
�
s2
0; u j y

�
5 log jV j 1 n log

�
s2
0
�
1s22

0 rTV21r1n logð2pÞ;

for ML and

2 2lR
�
s2
0; u j y

�
5 log jV j 1 ðn2 pÞlog�s2

0
�
1 log jXTV21X j 1s22

0 rTV21r1 ðn2 pÞlogð2pÞ

for REML, where p is the rank of X and r ¼ y 2 X
(XTV21X)21XTV21y is a function of u.

To simplify the computation, we further solve for the ML
or REML estimate of s2

0 as a function of u,

ŝ2
0 5

1
n
rTV21r;

for ML and

ŝ2
0 5

1
n2 p

rTV21r
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for REML. Substitute the expressions above, we obtain the
final profile log-likelihoods for u as

2 2lðu j yÞ5 log jV j 1 n log
�
rTV21r

�
1n logð2pÞ;

and

2 2lRðu j yÞ5 log jV j 1 log jXTV21X j 1 ðn2 pÞlog�rTV21r
�
1 ðn2 pÞlogð2pÞ:

Note that the profile log-likelihood above involves
only the nuisance parameter u. Hence its MLE can be
easily computed by the Newton–Raphson algorithm.
Once u is estimated, g and s2

0 can be subsequently esti-
mated by

ĝ5
�
XTV̂21X

�21
XTV̂21y;

and

ŝ2
05

1
n
ðy2XĝÞTV̂21ðy2XĝÞ;

for ML and

ŝ2
0 5

1
n2 p

ðy2XĝÞTV̂21ðy2XĝÞ;

for REML. We use REML in the following simulation studies,
since it has some advantages over ML, such as taking into
account the degrees of freedom for fixed effects (Mcculloch
and Searle 2001).

Once the parameters are estimated, likelihood-ratio (LR)
tests can be performed to evaluate the evidence of QTL
effect, and LOD scores can be calculated at the locations of
all genetic markers

LOD5 log10LR
�
ĝ; û; ŝ2

0
�
2 log10LR

�
0; ~u; es2

0
�
;

where ð~u; es2
0Þ is the MLE under H0: g1 ¼ . . . ¼ gK ¼ 0.

Figure 1 The varying coefficient mðtÞ 5 10=ð115e20:1tÞ (solid curve). Dotted curves are the mean estimates of m(t) for different combinations of nj
(number of internal knots) and d (degree of spline).
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Since the hypothesis testing is performed on a number
of markers, it is necessary to adjust the significance level
for multiple testing. The threshold, in practice, is usually
obtained by permutation procedures (Churchill and Doerge
1994). However, it is quite complicated to obtain appropri-
ate threshold values for RIX data, because direct permuta-
tion will not only destroy the relationship between QTL
and the trait, but also destroy the relationship between
polygenes and the trait, which will result in incorrect
thresholds (Anderson and Ter Braak 2003; Zou et al.
2005; Churchill and Doerge 2008). To overcome this diffi-
culty, Zou et al. (2005) extended the permutation method
of Churchill and Doerge (1994) to a novel permutation
method for the RIX data. The modified permutation
method starts with permuting parental RI strain numbers
1, 2, . . ., L into f(1), f(2), . . ., f(L). Then the permuted
marker genotypes of RIXij will be the corresponding marker
genotypes of RIXmin(f(i), f(j))max(f(i), f(j)) in the original
data. The permuted samples are analyzed with the same

model as the original data to generate an empirical distri-
bution of maximum LOD scores, where the threshold value
can be obtained.

Results

All analysis and simulation code used below are included in
supporting information, File S1. In simulation studies, we
set the number of parental RI lines L ¼ 100, and applied the
loop design with J ¼ 3 to generate a total of 300 RIX sam-
ples (Zou et al. 2005). A single chromosome with 101 evenly
spaced markers was simulated with either a 2-cM interval or
5-cM interval between nearby markers (resulting in a total
length of 2 M or 5 M, respectively). The QTL is located at the
41th marker, which is at either 80 or 200 cM, for the two
marker densities, respectively. The marker genotypes were
simulated using R/qtl (Broman et al. 2003). We set m(t), the
mean temporal growth function for QTL genotype Aa to
10=ð115e20:1tÞ, which is a logistic growth curve (Ma et al.

Figure 2 The varying coefficient bðtÞ 5 11ð302tÞ3=5000 (solid curve). Dotted curves are the mean estimates of b(t) for different combinations of nj
(number of internal knots) and d (degree of spline).
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2002; Yang et al. 2009). We randomly generated ti from
(0, 60) for each subject.

We considered the three different functions for b(t):
Case 1:

bðtÞ5 11 3 sin
�pt
30

�
;

Case 2:

bðtÞ5 11
ð302tÞ3
5000

;

Case 3:

bðtÞ53
2

�
arctan

�
t2 30

4

�
1

p

2

�
:

Cases 1 and 2 are nonlinearly increasing functional effects,
used in simulation studies by Wang et al. (2008). Case 3
mimics the situation in which the genetic effect is hardly
perceptible until after certain age, such as some breast can-
cer-susceptibility genes (Foulkes et al. 2004). To test the
performance of the model under various signal/noise ratios,
two different sets of variances for random effect and random
error were considered for each case: s2

a 5 10, s2
0 5 20 and

s2
a 5 30, s2

0 5 30. In all cases, the average heritability is
between 0.02 and 0.18.

To choose a good combination of the interior knot
number nj and the degree of spline d for the genetic effect,
500 runs of simulation were performed. In those simula-
tions, we set s2

a 5 30, s2
0 5 30, and the interval length to

5 cM. Figure 1 and Figure 2 plotted the mean m̂ðtÞ and mean
b̂ðtÞ for case 2 with different combinations of nj and d.
The figures showed that relatively small nj and d in general
fit the curves well, and the same is true for the other
two cases. We calculated the squared differences (SQD) be-
tween m̂ðtÞ and m(t), and between b̂ðtÞ and b(t) as
SQD 5

R 60
0 fðm̂ðtÞ2mðtÞÞ21ðb̂ðtÞ2bðtÞÞ2gdt for each of the

nj and d combination. We recorded the number of combina-
tions of nj and d with the smallest SQD in Table 1, left. The
results suggest that the combination of nj ¼ 1 and d ¼ 2 is
the best for cases 1 and 2, while for case 3, it is nj ¼ 2 and
d ¼ 1.

In practice, the true b(t) is unknown, so the choice of nj
and d needs to be estimated. We propose the following
approach to choose nj and d using the AIC (Akaike 1970,
1974) as the selection criterion. First, we set nj ¼ 1 and d ¼
1 and identify the marker with the highest LOD score. Then
at the selected marker, we calculate the AIC values for a set
of nj and d, and choose the one with the smallest AIC. In the
simulation study, we computed the AIC values for the 500

Table 2 Mean estimated locations of QTL (in centimorgans) and standard errors

Variance Distance Method Case 1 Case 2 Case 3

s2
a 5 10, 2 cM B-spline 79.59 (0.71) 81.60 (1.17) 80.80 (0.74)

s2
0 5 20 QTL at 80 cM Linear 79.46 (1.55) 83.62 (1.19) 81.01 (0.74)

Quadratic 80.23 (1.41) 83.13 (1.55) 82.66 (1.10)
5 cM B-spline 198.15 (2.11) 203.28 (3.26) 201.75 (1.43)
QTL at 200 cM Linear 203.15 (3.74) 209.00 (3.29) 201.05 (1.25)

Quadratic 209.80 (5.08) 211.98 (4.43) 204.95 (2.37)
s2
a 5 30, 2 cM B-spline 80.02 (1.93) 81.92 (2.15) 81.78 (1.32)

s2
0 5 30 QTL at 80 cM Linear 79.81 (2.65) 84.65 (1.99) 81.88 (1.20)

Quadratic 79.88 (2.56) 83.63 (2.21) 82.42 (1.38)
5 cM B-spline 204.03 (5.73) 207.20 (5.95) 206.10 (4.40)
QTL at 200 cM Linear 210.23 (6.74) 209.68 (5.47) 203.80 (3.19)

Quadratic 201.08 (7.07) 207.70 (5.76) 208.33 (4.25)

Table 1 Counts based on the smallest SQD or AIC

SQD AIC

nk ¼ 1 2 3 4 5 1 2 3 4 5

Case 1 d ¼ 1 0 73 39 10 0 40 126 36 21 3
d ¼ 2 326 19 4 1 1 182 14 9 4 3
d ¼ 3 17 2 0 0 0 28 4 2 2 1
d ¼ 4 6 1 0 1 0 7 8 5 2 3

Case 2 d ¼ 1 47 73 32 7 0 122 85 28 18 6
d ¼ 2 257 34 5 1 1 155 17 12 4 2
d ¼ 3 36 2 0 0 0 19 2 2 2 3
d ¼ 4 3 1 0 1 0 7 7 4 2 3

Case 3 d ¼ 1 68 259 13 18 1 136 180 12 24 6
d ¼ 2 114 4 6 1 1 78 6 10 2 4
d ¼ 3 9 1 0 0 0 13 2 1 2 3
d ¼ 4 4 0 0 1 0 8 4 5 1 3
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simulations. Table 1, right, shows the number of combina-
tions of nj and d with the smallest AIC. The results are
consistent with the SQD results presented in Table 1, left.

For model comparison, we also fitted b(t) parametrically.
Specifically, we used polynomial functions

bðtÞ5
Xs
k50

gkt
k:

We set s ¼ 1 and s ¼ 2, for linear and quadratic polynomial
functions, in the simulation studies.

Under each case, 200 runs of simulation were conducted
for all models mentioned above. For each case, we
estimated b(t) using both B-splines and the polynomial
functions. Hypothesis testings were performed on H0:
b(t) ¼ 0 vs. Ha: b(t) 6¼ 0, and LOD scores were calculated.
For accessing the significance of the hypothesis testing,

Figure 3 The varying coefficient bðtÞ 5 113 sinðpt=30Þ. (A) The estimated phenotypic mean curves by the B-spline method (in dotted lines) with the
true genetic curves (in solid lines). (B) The estimated phenotypic mean curves by the polynomial method (in dotted lines) with the true genetic curves (in
solid lines).

Table 3 Power of likelihood ratio test

Variance Distance (cM) Method Case 1 Case 2 Case 3

s2
a 5 10, s2

0 5 20 2 B-spline 0.855 0.765 0.925
Linear 0.620 0.735 0.920
Polynomial 0.595 0.685 0.895

5 B-spline 0.845 0.735 0.930
Linear 0.610 0.730 0.910
Polynomial 0.590 0.695 0.875

s2
a 5 30, s2

0 5 30 2 B-spline 0.470 0.425 0.630
Linear 0.220 0.415 0.640
Polynomial 0.230 0.370 0.605

5 B-spline 0.450 0.430 0.685
Linear 0.220 0.400 0.685
Polynomial 0.195 0.360 0.645
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simulations were carried out from the following null
model:

yi5mðtiÞ1
XL
l51

ailal 1 ei:

Total 1000 runs of simulations were performed and the 95%
percentile of the maximum LOD score was calculated.

The QTL position was estimated as the location where
the maximum LOD is reached. The mean and standard
error of the estimated QTL position, by the three
approaches, are listed in Table 2. Power is listed in Table
3. All the three methods have similar performance on
estimating the QTL position and power for mapping
QTL under cases 2 and 3. However, the B-spline approach
has substantially higher power than the other two
approaches under case 1, as well as higher precision in
estimating the QTL location. The mean of the estimated
phenotypic curves ŷðtÞ 5 m̂ðtÞ1xb̂ðtÞ are plotted along
time in Figure 3, Figure 4, and Figure 5, for all cases with
5-cM intervals, s2

a 5 10 and s2
0 5 20. The nonparametric

approach provides better fit to the true underlying phe-
notypic curves than the parametric approach in all three
cases. Overall speaking, the B-spline method outperforms
the parametric method.

To evaluate the performance of the modified permuta-
tion, we further carried out the following simulation
studies. From 100 RI lines, 300 RIX subjects were simu-
lated. A single 100-cM chromosome with evenly spaced
markers was simulated with the QTL located at 40 cM.
There were either 51 markers separated by 2-cM intervals or
21 markers separated by 5-cM intervals, on the chromosome.
Two different b(t) functions, as described in cases 1 and
2 above, were simulated. We set mðtÞ 5 10=ð115e20:1tÞ,
s2
a 5 30, and s2

0 5 30. A total of 100 simulations were con-
ducted. Within each simulation, 1000 permutations were per-
formed and the permutation threshold was calculated. To
obtain the empirical thresholds, we ran additional 5000 sim-
ulations under H0: b(t) ¼ 0. We compared the permutation
thresholds with the empirical ones. The results listed in Table
4 indicate that the modified permutation performs reasonably
well. The permutation thresholds were close to the empirical
ones. Type I errors were slightly inflated. This is probably due
to the small number of RI lines used in the simulations, as
well as the sampling variation due to the small number (100)
of simulations conducted.

Besides the biallelic marker data, our method can be
extended to model founder effects by fitting individual
functional curve for each of the eight CC founder alleles.
Assuming additive model, we fit

Figure 4 The varying coefficient bðtÞ 5 5=ð11e20:1tÞ. (A) The estimated phenotypic mean curves by the B-spline method (dotted) with the true genetic
curves (solid). (B) The estimated phenotypic mean curves by the polynomial method (dotted) with the true genetic curves (solid).
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yi 5
X8
j51

bjðtiÞxij1
XL
l51

ailal 1 ei;

where xij is the number of the jth founder alleles in the ith
RIX sample and bj(t) is the functional effect of the jth
founder allele ( j ¼ 1, . . ., 8). To model bj(t) nonparametri-
cally, we use

PK
k 5 1gjkBkðtÞ to approximate it.

We carried out a simple simulation study to demonstrate
the performance of this model. We again simulated 300 RIX
subjects from 100 RI lines by the loop design. Every parental
RI line has the same probability, 1/8, to carry one of the
eight founder alleles. We set bjðtÞ 5 10=ð115e20:1tÞ for j ¼
1, 2, 3, 4 and bjðtÞ 5 113 sinðpt=30Þ for j ¼ 5, 6, 7, 8,
respectively. We further set s2

a 5 10 and s2
0 5 20. The sim-

ulations were conducted for 100 runs. In the simulations, we

assumed that the founder alleles were known for all RI lines.
The means of the estimated functions of the eight founder
alleles were plotted in Figure 6. All estimate the true func-
tions well. With no prior knowledge that the genetic effects
of the first four founder alleles were the same, our model
obtained four very similar estimated curves, which allows us
to group founder alleles with similar genetic effects.

Discussion

This study is largely motivated by the availability of the CC
lines (Collaborative Cross Consortium 2012; Kelada et al.
2012). The CC project aims to generate and maintain
.300 multiparental CC RI lines, and our ability to map
complex traits will be greatly increased by making use of

Figure 5 The varying coefficient bðtÞ 5 3
2 ðarctanððt230Þ=4Þ1p=2Þ. (A) The estimated phenotypic mean curves by the B-spline method (dotted) with

the true genetic curves (solid). (B) The estimated phenotypic mean curves by the polynomial method (dotted) with the true genetic curves (solid).

Table 4 Threshold and power estimates with LOD scores

Permutation

Interval (cM) Empirical b(t) ¼ 0 Case 1 Case 2

LOD score 2 3.92 3.83 3.82 3.80
5 3.70 3.56 3.54 3.67

Power 2 0.05 0.07 0.60 0.66
5 0.05 0.07 0.65 0.59
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these resources. RIX samples derived from CC RI lines pro-
cess some good properties from both RI lines and F2 popu-
lations. Genotypes of RIX can be directly inferred from those
of their parental RI lines. Unlike the parental RIs whose
genotypes are homozygous, the genetic structure of an RIX
resembles F2 animals, reducing the phenotypic anomalies
associated with inbred genomes. However, RIX animals typ-
ically do not share the same degree of relatedness. This un-
balanced genetic relatedness requires careful statistical
modeling to avoid a large number of false-positive findings.
The functional mapping idea is not new in statistical genet-
ics community (Ma et al. 2002; Wu et al. 2002, 2004; Lin
and Wu 2006; Yang et al. 2009). However, this article is the
first one that develops the functional mapping method for
the RIX data and specifically models the unique genetic
structure of RIX samples. In addition to B-spline approxima-
tion, other nonparametric approaches can be used to model
the varying coefficients, such as the local polynomial regres-
sion (Fan and Gijbels 1996), the smoothing splines (Hastie
and Tibshirani 1993; Hoover et al. 1998), and wavelet-
based approaches (Donoho and Johnstone 1994). One ad-
vantage of using B-splines is that the smoother matrix
{Bk(ti)} is independent of the responses. Unlike other non-
parametric approaches, how to determine the smoothness is

still an open question, although the choice of the number of
knots is generally not critical (Yang et al. 2009). Our simu-
lation results (for example, Figures 1 and 2) show that the
estimated functional effects are not very sensitive to the
choices of d and nj.

In our simulations, we applied single marker analysis
because the high marker density of the parental RI (Aylor
et al. 2011; Durrant et al. 2011; Collaborative Cross Consor-
tium 2012; Kelada et al. 2012), and thus RIX, makes results
similar to those that would be obtained using more compli-
cated mapping methods, such as traditional interval map-
ping (Lander and Botstein 1989) or regression interval
mapping (Haley and Knott 1992). We also assume no parent-
of-origin QTL and polygenic effects. The model can be ex-
tended to include additional effects. For example, with two
random effects—one for the maternal effect and another for
the paternal effect—we can model the parent-of-origin poly-
genic effects. Our method mainly considers quantitative trait
nucleotide (QTN) mapping, we have shown by simulation
studies that it can be extended to model founder allelic effects
by fitting one functional curve for each of the eight CC
founder alleles. Although our model considers only the addi-
tive genetic effects, the dominant effects can be easily in-
cluded in the model by adding additional functional effects.

Figure 6 (A) The true varying genetic effect, bj(t), for founder alleles 1, 2, 3, and 4 equals 10=ð115e20:1tÞ (solid curve). Dotted curves are the mean
estimates of bj(t) for j ¼ 1, 2, 3, 4. (B) The true varying genetic effect, bj(t), for founder alleles 5, 6, 7, and 8 equals 113 sinðpt=30Þ (solid curve). Dotted
curves are the mean estimates of bj(t) for j ¼ 5, 6, 7, 8.
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This is not a concern for QTN models but for models with
founder allelic effects, the subsequent increase in the number
of parameters can be very large. We may need to consider
grouping certain founder alleles with some prior knowledge
or genetic similarity as was done in haplotype analysis
(Schaid et al. 2002; Park et al. 2003; Wang et al. 2004; Lin
et al. 2005) to maximize mapping power.

When more than one QTL is on a chromosome, the test
statistic at one position will be affected by all the other QTL,
the genetic estimates are likely to be biased, and QTL can be
mapped to wrong positions (Knott and Haley 1992; Martinez
and Curnow 1992). Our model can be extended to multiple
regression for multiple QTL mapping, and some model selec-
tion approaches can be modified for QTL selection.

Our model investigates gene-by-time interactions for RIX
data in a flexible nonparametric fashion. In this model,
correlations among subjects are modeled as a function of
their relatedness, which dramatically simplifies the covari-
ance matrix of the data. The final result is a framework for
mapping in complex genetic designs, which is computation-
ally tractable.
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