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T has sometimes been suggested that the wild-type allele is not a single entity, I but rather a population of different isoalleles that are indistinguishable by 
any ordinary procedure. With hundreds of nucleotides, each presumably cap- 
able of base substitutions and with additional permutations possible through se- 
quence rearrangements, gains, and losses, the number of possible gene states 
becomes astronomical. It is known that a single nucleotide substitution can have 
the most drastic consequences, but there are also mutations with very minute 
effects and there is the possibility that many are so small as to be undetectable. 

It is not the purpose of this article to discuss the plausibility of such a system 
of isoalleles, or the evidence for and against. Instead, we propose to examine some 
of the population consequences of such a system if it does exist. The probability 
seems great enough to warrant such an inquiry. 

If a large number of different states can arise by mutation, this doesn't neces- 
sarily mean that a large fraction of these would coexist in a single population. 
Some will be lost by random drift and others may be selectively disadvantageous. 
On the other hand, some may persist by being beneficial in heterozygous 
combinations. 

We shall consider three possibilities: ( 1 )  A system of selectively neutral 
isoalleles whose frequency in the population is determined by the mutation rate 
and by random drift. (2) A system of mutually heterotic alleles. ( 3 )  A mixture 
of heterotic and harmful mutants. 

1.  Selectiuely Neutral Isoatleles 

To isolate the essential problem, we consider an extreme situation in which 
the number of possible isoallelic states at a locus is so large that each new mutant 
is a state not preexisting in the population. This provides an estimate of the upper 
limit for the number of different alleles maintained in the population. 

The distribution in successive generations of the descendants of an individual 
mutant gene was solved by FISHER (1930) and under less restricted conditions, 
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726 M. KIMURA A N D  J. F. CROW 

though less exactly, by HALDANE (1 939 j . An approximate solution to our prob- 
lem was in fact given by HALDANE, but we present the following more elementary 
and more exact procedure: 

Let u be the average rate of mutation of the alleles existing in a diploid popu- 
lation, so that in a population of size N (2N genes) there will be 2Nu new mutants 
introduced per generation, each new mutant being regarded as different from 
any allele preexisting in the population. 

In  a randomly mating population of effective size Ne,  the probability of two 
uniting gametes carrying alleles that are identical in the sense of being descended 
from the same allele in some common ancestor is 

where Ft is the inbreeding coefficient in generation t (WRIGHT 1931; MAL~COT 
1948). 

The two alleles will be in identical states only if neither of them has mutated 
since the previous generation. The probability that neither has mutated is 
(1 - U )  '. Thus we can generalize the formula (as MAL~COT did) to include 
mutation by writing 

To specify the equilibrium condition when 
exactly balances the gain of new alleles by 
solution, ignoring terms containing u2, is 

1-22u I F = -  - 
4N,u - 2u + 1 

In this context, F is the probability that an 

the loss of alleles by random drift 
mutation, let F ,  = F t + ,  = E. The 

1 
4Neu + 1 ( 3 )  

individual will be homozygous. If 
all the alleles were equally frequent, the proportion of homozygotes would be the 
reciprocal of the number of alleles at this locus maintained in the population. If 
there are variations in allele frequencies, the proportion of homozygotes will be 
greater than this. Therefore, n = 1/F may be used as a measure of the effective 
number of alleles maintained in the population, which in general will be less than 
the actual number. 

Some numerical values of F and n are given in Table 1 and the relations are 
shown graphically in Figure 1. If 4N, is much less than the reciprocal of the 
mutation rate, F approaches 1 and all the genes in the population will usually 
be the descendants of a single mutant. If 4N, is larger than l / u ,  more than one 
allele will usually be maintained and as N e  gets larger more individuals will be 
heterozygous. 

The effective number, N e ,  is usually smaller than the actual number. It is of 
course much nearer the number of sexually mature individuals than the number 
counted at immature stages, particularly if there is heavy pre-adult mortality 
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ALLELE NUMBER IN POPULATIONS 72 7 

TABLE 1 

The auernge proportion of homozygosity, F, (upper figure) and the effectiue number of alleles 
per locus, n, (lower figure) in a randomly mating population of effective size Ne. The alleles 

are selectiuely neutral and the mutation rate of any allele is U. The number of possible 
mutant states is assumed to be large emugh so that each new mutant is different 

from the others in the population. 

Effective population number, N e  

Mutatlon rate, U 102 103 104 105 108 10' 

.96 .71 .U) .024 .m25 .ooo25 

1.04 1.4 5 .O 41 4011 4001 

.996 .96 .71 .20 .024 .0025 

I .a 1.04 1.4 5.0 41 401 

.9996 ,996 .96 .71 .20 .024 

l.m 1.004. 1 .04 1.4 5.0 41 

.99996 .9996 .996 .96 .71 .U) 

I 0-4 

10-5 

1 0-6  

10-7 
1.OOOM 1.0004 1.004 1.04 1.4 5.0 

(WRIGHT 1931; FISHER 1939; CROW and MORTON 1955). If the expectation of 
progeny is not the same for all individuals in the population the effective number 
for monoecious diploids is given by 

(KIMURA and CROW 1963) (4) 
N E -  1 N e  = x- 1 + v/z 

where Z = mean number of progeny per parent, V variance in number of 
progeny per parent, and N = population number in the parent generation. There 
is a slight modification for a bisexual population (see KIMURA and CROW 1963). 
The special case of a population of stable size, = 2, was first given by WRIGHT 
(1938a). In this case (4) becomes 

4 N - 2  
2+v Ne = ( 5 )  

HALDANE'S (1939) approximate solution for the minimum number of genes 
expected in a stable sized population of N individuals is (in our terminology) 
16Nu/ (V + 2), in rough agreement with (3) and (5) when N is large compared 
with u-l. 

The general conclusion of this section is that, for selectively neutral alleles, if 
the effective population number is much less than the reciprocal of the mutation 
rate almost all the genes in the population at a given locus will be descended 
from a single mutant. 
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728 M. KIMURA A N D  J. F. CROW 

2. Mutually Heterotic Alleles 

It has been known since the early work of FISHER (1922) that, in an infinite 
population, heterozygote superiority in fitness for a pair of alleles leads to a stable 
polymorphism. With more than two alleles the necessary and sufficient conditions 
for maintaining a stable equilibrium are more delicate. The conditions were given 
by KIMURA (1956) and confirmed for a discontinuous model by MANDEL ( 1959). 
The complexity of the conditions, however, does not change the general conclusion 
that overdominance is a potent factor for maintaining a polymorphism in a large 
population. 

Recently the behavior of overdominant genes in a finite population has been 
investigated by ROBERTSON ( 1962) utilizing some mathematical results of 
MILLER (1962). ROBERTSON showed that when the equilibrium allele frequency 
is outside the range 0.2 to 0.8 there are some circumstances where heterozygote 
advantage actually accelerates the rate of fixation and loss of alleles by random 
drift, rather than retarding it as might have been expected. This suggests that 
i f  there are a large number of mutually heterotic alleles, they may under some 
circumstances be lost by random drift more rapidly than if they were neutral. 

In  a system of mutually heterotic alleles, the population fitness will be greatest 
when the number of heterozygotes is maximized. In general, the larger the 
number of alleles the greater the proportion of heterozygotes. Hence, if the 
requisite mutations occur the population can reduce the segregation load (CROW 
1958) by increasing the number of alleles that are maintained. On the other 
hand, the effect of random drift in reducing the number of alleles increases greatly 
with increase in the number of alleles in the population, being roughly propor- 
tional to square of the number of alleles (KIMURA 1955). A larger number can 
be maintained if the homozygotes are more disadvantageous, but this increases 
the segregation load. 

Therefore, with a population of a certain size and mutation rate there must be, 
for a given pattern of homozygote disadvantage, a maximum number of alleles 
that can be maintained. This will correspond to the minimum segregation load. 

We are interested in considering such an extreme situation where the segre- 
gation load is minimum. To make the mathematics more manageable, we assume 
that each homozygote has the same disadvantage, s, with respect to the heterozy- 
gotes, all of which are assumed to have the same fitness. In an infinite population 
each allele would be of equal frequency at equilibrium; in a finite population 
there will be departures because of random drift. We need to obtain the distri- 
bution of allele frequencies at equilibrium under the joint influence of mutation, 
selection, and random drift. 

As in Section 1, we assume that the number of possible mutant alleles is so 
large that no mutation is repeated in a finite population. Using WRIGHT’S (1937) 
general distribution formula and incorporating some of FISHER’S (1958) inven- 
tive methods the average homozygosity and the effective number of alleles can 
be expressed in terms of s, U ,  and Ne.  

Mathematical methods: In  a randomly mating population of effective size Ne,  
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ALLELE NUMBER IN POPULATIONS 729 

let @ (x) dx be the expected number of alleles whose frequency is in the range x to 
x + dx. The value of x may change from generation to generation by mutation, 
selection, and random drift, but at equilibrium a stable distribution will be 
reached, the formula for which can be obtained from an equation given by 
WRIGHT (1 938b) : 

where C is a constant, Msx and VSx are respectively the mean and variance of 
the rate of change of x per generation. 

We let U be the rate of mutation from the allele under consideration to all other 
allelic states. As stated before, we assume that each new mutation is unique. For 
simplicity, we assume that U is the same for all alleles. We designate by F the 
sum of the squares of the allele frequencies; i.e. 

where xi is the frequency of the ith allele, Ai, in the population. 

x by mutation is -UZ and by selection is 
Since the rate of change in the frequency of a particular allele with frequency 

we have 

M 6X = - u x - s x ( x - F ) .  (8) 

As stated before, s is the selective advantage of a heterozygote over a homozy- 
gote. This is most conveniently measured in MALTHUSIAN parameters (FISHER 
1930, 1958). With discrete, nonoverlapping generations the change in x caused 
by selection is 

- S X ( X  - F )  
1 - SF (9) 

Since we are considering circumstances where SF is very small, this is not appreci- 
ably different from (7) .  The variance of the rate of change in x is given by 

x( l  -s) v =  
8 2  2N,  

A great mathematical simplification is possible if we replace this by 
..- 

(11) v =- 
6x 2 N ,  

which introduces no significant error, since we are mainly concerned with large 
numbers of alleles, which have individually low frequencies. Substituting (8) 
and ( 11 ) into the distribution formula (6) leads to 
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730 M. K I M U R A  A N D  J. F. CROW 

where 
Q ( ~ )  = C @ S ( z - F ) z - 4 M z r l  

S = N,s and M = N,u 

In deriving equation (12), F was assumed to be a constant, and is interpreted 
as the expected value of the sum of squares of the allele frequencies, or more 
simply as the reciprocal of the effective number of alleles maintained in the 
population. The treatment of F as a constant will be shown later to be satisfactory 
as an approximation. 

The constant C is determined by the condition that the allele frequencies add 
up to unity, Z s i  = 1, or 

,,J1x@(z)dz = 1. 

Note that this is different from the usual way by which C in WRIGHT'S formula 
is evaluated. The reason is that in the present instance @(x) is related to the 
number of different genes in a population rather than the probability of a certain 
gene frequency in a population. 

From (14) we obtain 

Putting y = x - F + M/S, we get 
1-F + M / S  

Y cZWd 
-F + M / S  

C-1 = &MF + 2 W / S  

At equilibrium, when the random extinction of alleles is exactly balanced by 
new mutations, we have the following condition at the subterminal class (cf. 
WRIGHT 1931; FISHER 1958): 

1 1 1  2Nu =-a(-)- 
2 2N 2N 

or 

In any population, the expected number of alleles maintained is much smaller 
than the total number of individuals; thus 1/2N is very small compared to F and, 
since U is very small, ( 18) is simplified to 

4M = C g--2SP2 (19) 
Thus, from the two relations (16) and (19), F may be determined as a function 
of M and S. 

In  equation ( 12), F was used as the expected value of the sum of squares of the 
allele frequencies. This can be demonstrated by evaluating or z2a(x)dx 
which turns out to be very nearly F .  

It is only necessary that 
<< sFe2Ss (1 -ZF)  + 4M 
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ALLELE NUMBER IN POPULATIONS 73 1 

because 
U 

S 
J:Xz a ( X ) &  = F - - e-zS(1-zF) - 4~ . 

The effative number of alleles maintained: If all alleles were of equal f r e  
quency, the number of alleles, n, would be given by 

Therefore, we define n as the effective number of alleles. The segregation load will 
be given by 

n = 1JF. (21) 

(22) L,  = sF = s/n 
In order to get a solution for F ,  we first eliminate C from (16) and (19). This 

leads to 

where 
- M 2M 

2=2vS(F-- )  and r=-- 
S VS 

For any given value of M and S, the corresponding value of Z may be obtained 
from (23) and then F is calculated from 

- r + Z  F v S = -  
2 '  

The relation between 2M/V3 and FV?? is given in Table 2 for various equally 
spaced values of 2 between -3 and +3. Numerical calculation is facilitated by 
the fact that, as seen from (23) , r is the ratio of the ordinate of the normal curve 
with zero mean and unit variance at 2 to the area under the curve from -2 to 
2 ~ 3 -  2. Since v 3 i s  IO or more in most cases of interest, the area is practically 
equivalent to integration from -2 to + W .  

For example, with Ne = lo5, s = and U = 1 t 5 ,  we have S = 100 and 
M = 1, so that r = 2M/d3-= 0.2. Table 2 gives n / d F =  1.35 or n = 13.5. 

For values of r outside the range tabulated, the following approximations are 
satisfactory: 

1. Small ualues of r. For this, use 

For example, with N e  = lo5, s = 0.1, and U = 0.5 x we have v??= 100, 
2M = 1, so that r = 0.01. From (26), F = 0.0136 and n = 73.6, as compared with 
73.8 from Table 2. 

2. Large ualues of r. For this, use 

(27) 
1 
r2 n = 4 M ( l + - ) .  

When s = 0, r = 00 , leading to n = 4M = 4N,u. This is in approximate agree- 
ment with the more exact value derived in Section 1, n = 4Neu + 1. This can 
also be verified directly by integrating (20) for the case 

@(x) =4M(1 -x)'~-' r1 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/49/4/725/6033708 by guest on 20 April 2024



732 M. KIMURA A N D  J. F. CROW 

TABLE 2 

Factors for computing the effectiue number of alleles (n), the proportion of homozygous loci 
(F), and the segregation load (sF) in a population of effectiue size Ne, mutation rate U, 

and selectiue disadvantage of homozygotes s. M = N,u and S = N,s. 
The table is accurate when dz > 4 

2 M  n 

V S  
r = -  - 

V F  b =  V S F  
- 

0.00M 0.666 1.502 
0.0105 0.738 1.355 
0.01 76 0.794 1.259 
0.0360 0.895 1.120 
0.0553 0.973 1.025 
0.0984 1.112 0.899 
0.139 1.220 0.819 
0.204 1.375 0.727 
0.288 1.553 0.644 
0.389 1.755 0.570 
0.509 1.982 0.505 
0.646 2.233 0.441 
0.798 2.507 0.399 
0.964 2.803 0.357 
1.141 3.120 0.321 
1.329 3.456 0.289 
1.525 3.809 0.263 
1.729 4.177 0.239 
1.939 4.560 0.219 
2.110 4.876 0.205 
2.373 5.359 0.187 
2.552 5.685 0.1 76 
2.823 6.194 0.161 
3.006 6.603 0.153 
3.283 7.105 0.141 

Equation (27) shows that when r is large, the number of alleles is determined 
almost entirely by effective population size and mutation rate, since overdomi- 
nance increases the number of alleles only by the fraction l / r* .  

Results of the calculations: Figures 1 to 5 show the values of F (the proportion 
of homozygous loci), n (the effective number of alleles maintained) , and L, (the 
segregation load) for a number of values of effective population number, muta- 
tion rate, and selective disadvantage of homozygotes. Corresponding to each 
selection coefficient, population size, and mutation rate there is a certain average 
homozygosity and a corresponding segregation load. 

and s = ,001, a population of effective number 
10,000 has an effective number of alleles of less than five and a segregation load 
somewhat larger than .0002 per locus (Figure 2).  If s is increased the number of 
alleles maintained is increased, but so is the load. Ifs = .01, n = 8, and L, = .0012 
(Figure 3) ; if s = 0.1, n = 22, and L, = .0045 (Figure 4) ; if s = 1, a balanced 

For example, with U = 
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ALLELE NUMBER IN POPULATIONS 733 

lethal condition, the number of alleles is almost 60 but the load has increased to 
.016 per locus (Figure 5 ) .  

With lethal homozygotes the situation is almost the same as with self-sterility 
alleles, a situation thoroughly investigated by WRIGHT (1939, 1960) and FISHER 
(1958). 

WRIGHT’S (1939) graph shows some 80 to 90 self-sterility alleles maintained 
by a mutation rate of in a population of lo4 compared with our effective 
number of about 60 for the same situation. This is as expected: because the alleles 
will drift away from equal frequencies, the effective number of alleles is smaller 
than the actual number, the former being l / x x z  and the latter being IF, where 
x is the mean frequency of an allele. For example, with three alleles with fre- 
quencies 2/3, 1/6, and 1/6, Z = 1/3 and Ex2 = 1/2. Thus the number of alleles 
is three, but the effective number is two; i.e. two alleles of equal frequency would 
produce the same proportion of heterozygotes. 

For estimating the actual number of different alleles in the population, the 
average number as used by WRIGHT is appropriate. For assessing such things 
as the fraction of incompatible pollinations, the effective number is the quantity 
needed. This is the quantity that is estimated by the ordinary procedure of 
allelism tests. 

- 

Mixed Heterotic and Harmful Mutants 

The model that we have discussed is artificial in assuming only overdominant 
mutants with equal homozygote fitness. Under this system, it would be advan- 
tageous for the mutation rate to be high, for this would lower the segregation 
load. On the other hand, if there are both overdominant mutants and deleterious 
mutants the situation would be different. 

Consider first a situation where some loci produce only over dominant mutants 
of the type we have discussed and the remainder of the loci produce mutants 
that are deleterious in both homozygous and heterozygous state. If we let the 
proportion of heterotic loci be P and the proportion of loci producing deleterious 
mutants be Q, the average total load per locus will be 

where r = 2 M / d 3  and b = dx F.  The values of r and b are given by the first 
and third columns of Table 2. 

Given P and Q, values of r and b can be determined to minimize the total load. 
For example, if P = Q = g, inspection of Table 2 shows that the average of 
columns 1 and 3 is minimum when r is approximately 0.2. The average is .47 
and therefore the load per locus is . 4 7 d s / N , .  The segregation load is about 7 / 2  
the mutation load. For N ,  = I O 5  and s = the mutation rate that minimizes 
L, is 

It is probable that any locus that produces heterotic mutants also gives rise to 
deleterious mutants as well. If a fraction p of the mutants are deleterious and a 

- 
- 
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FIGURE 1 .-The probability of homozygosity 
( F )  and the effective number of alleles (n)  
maintained by a mutation rate (a) in a popu- 
lation of effective number N e .  The mutants are 
assumed to be selectively neutral and each mu- 
tant allele is of a type not already existing in 
the population. 
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FIGURE 3.-Same as Figure 2, but with 
s =.01. 

n 

10 i 
500 

loOD DO1 .000001 

**.001 x 102 10' IO' N. IO' id IO' 

FIGURE 2.-The probability of homozygosity 
( F ) ,  the effective number of alleles maintained 
(n )  , and the segregation load (L,) in a popula- 
tion of effective number N e  and mutation rate 
p .  The selective disadvantage of homozygotes 
(s) is .001. Because of the approximations used, 
the values near the top of the graph may be 
inaccurate. 

n F  L. 

00005 2o02 50 IO2 IO' IO' N. IO' IO. IO' 

FIGURE 4.-Same as Figure 2, but with 
s = .I. 
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n F  L. 

735 

FIGURE 5.-Same as Figure 2, but with s = 1. 

fraction q =1 - p are heterotic, then the total load per locus is 

where F’ is the same function of qu as F is of U. Equations (28) and (29) can of 
course be combined, if the total load is to be determined for a number of loci, 
some which are giving rise only to deleterious mutants and others are mixed. 

L, =2 PU + F’s (29) 

DISCUSSION 

The model chosen for discussion is unrealistic, except for very special cases. 
Yet it can help to provide some insight as to what situations are possible or likely 
in a natural population. The first case discussed, s = 0, shows the maximum 
heterozygosity per locus that can be maintained in a population by mutation 
alone, in the absence of any selective advantage of heterozygotes or other selective 
mechanism that maintains intermediate allele frequencies. The critical quantity 
is 4N,u. If this quantity is larger than one, less than half the individuals in the 
population will be homozygous for this locus; if less than one, more than half 
will be homozygous. Of course, if some of the mutants are selectively disadvan- 
tageous, if the mutation rates to different alleles are different, or if some mutants 
are duplicates of preexisting alleles, the proportion of homozygosity will be 
higher; hence these calculations represent an upper limit for heterozygosity in a 
population of given effective size with no selection favoring heterozygotes. 

The second model discussed, the rather artificial one where each mutant is 
equally deleterious when homozygous and with all heterozygotes equal in fitness, 
provides some insight into the minimum genetic load required to maintain such 
a polymorphism. For example, when s = .01 and U = a population of effec- 
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tive size lo4 will have a segregation load of about .0012 (Figure 3 ) .  Under this 
circumstance the effective number of alleles maintained is about eight. If the selec- 
tion intensity were increased to .1 (Figure 4) the number of alleles is raised to 
about 22, but the segregation load is .0045, about four times as large. Correspond- 
ing to a given value of s, N e  and U there is a certain load required to maintain 
the alleles in the population, as given by the graphs. 

I t  has frequently been pointed out by WRIGHT and others that the total amount 
of selection that can be effectively applied to a population is limited. The fact 
that a certain amount of selection is required to maintain a polymorphism is 
shown by the calculation of these segregation loads. A large population can 
maintain a great many segregating loci, perhaps hundreds or thousands, provided 
these are of the type (if such exist) where there are many possible mutants, each 
slightly deleterious as a homozygote, but which are mutually heterotic in all 
combinations. On the other hand, any departure from these conditions reduces 
the number of heterozygotes. 

Although these calculations, based as they are on a rather artificial model 
that favors the development of polymorphisms, do not place very severe limita- 
tions on the number of segregating loci they do cast doubt on some suggested 
models of population structure. One of the most extreme possibilities is that sug- 
gested by WALLACE (1958) who tentatively concluded that “on the average 
an individual member of the Drosophila population studied is heterozygous 
for genes at 50 percent or more of all loci”. We suspect that the effective popu- 
lation number in Drosophila may well be 10’ or less. A mutation in order to 
be detected in WALLACE’S experiment would have to have had a substantial via- 
bility effect. If s is as small as .01, L, on our model would be 1.2 x If there 
are 10,000 loci, and half are segregating, the load would be 5000 L, or 6, and 
with independently acting loci the average fitness of the population would be 
only or .002, compared with a hypothetical Drosophila heterozygous at all loci. 

These calculations make the unlikely assumption that the requisite number of 
heterotic mutants for minimum load exist at all relevant loci. If the assumption 
is not true, the necessary reduction in fitness would be greater. For these reasons 
we think it is more likely that the typical Drosophila is homozygous for the 
majority of its genes, though the segregating minority may still be hundreds of 
loci. Furthermore, the segregation load although it probably depends on a minor- 
ity of loci, may still exceed the mutation load as has been repeatedly suggested 
(e.g. CROW 1952). That the absolute number of polymorphisms may be large is 
indicated by the many new ones that are being discovered in man as new tech- 
niques are introduced. In very large populations, the possibility of many very 
nearly neutral, highly mutable multiple isoalleles cannot be ruled out, although 
there is no experimental evidence for the existence of such systems. 

The present analysis is obviously unsatisfactory because of the various approxi- 
mations and the restrictive nature of the assumptions. We have not been able to 
handle mathematically the situation when s is different for different alleles. In 
an infinite population it is sufficient to replace s by the harmonic mean of the s’s 
in determining the segregation load, but the situation in finite populations is not 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/49/4/725/6033708 by guest on 20 April 2024



ALLELE NUMBER I N  POPULATIONS 73 7 

clear, nor is the effect of different fitnesses of different heterozygotes. We hope 
that a more general and accurate treatment will be possible. 

programming and calculations. 
We should like to thank ETAN MARKOWITZ and JOSWH FELSENSTEIN for aid in computer 

SUMMARY 

For a locus where two or  more alleles are maintained by selective superiority 
of the heterozygotes the average fitness of the population is increased with a 
larger number of alleles. On the other hand, the effect of random drift in reducing 
the number of alleles increases greatly as the number of alleles increases, being 
roughly proportional to the square of the allele number. Therefore, with a popu- 
lation of a certain effective number and mutation rate there must be, for a given 
level of heterozygote advantage, a maximum number of alleles maintained. This 
will correspond to the minimum segregation load. 

The effective number of alleles maintained in the population (n), the proba- 
bility that a randomly chosen individual will be homozygous for this locus ( P )  , 
and the segregation load ( L )  are given graphically for various population sizes 
and selection coefficients. It is assumed that all homozygotes are equally dele- 
terious, and that each new mutant is an allele that does not already exist in the 
population. 

When there is no selection at all, the number of isoalleles maintained in the 
population is approximately 4N,u + 1, where N e  is the effective population num- 
ber and U is the mutation rate. Thus, if 4N,  is much less than the reciprocal of 
the mutation rate, most individuals in the population will be homozygous for 
this locus. 
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