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I N  a recent paper, KIMURA and CROW (1964) have investigated quantitatively 
the possibility that the wild-type allele is not a single entity, but rather a 

population of different isoalleles that are indistinguishable from each other by 
any ordinary procedure. The reasons for  investigating this possibility are outlined 
sufficiently by KIMURA and CROW and are not repeated here. 

As the most extreme case it may be assumed that all new alleles which arise 
by mutation are different from any allele which exists or has existed in the p o p -  
lation. Thus the only way in which two alleles may be identical is that they be 
identical by descent. This is the case considered by KIMURA and CROW and is also 
the case considered in this paper. When the process settles down to equilibrium, 
there will exist a variable number of different alleles in the population, main- 
tained by a balance between loss of alleles by mutation and drift and a creation 
of new alleles by mutation. 

The quantity of interest to KIMURA and CROW was called the “effective num- 
ber” n of alleles maintained in the population, defined as the reciprocal of the 
probability that an individual selected at random in the population be homozy- 
gous, or alternatively as the reciprocal of the equilibrium inbreeding coefficent. 
KIMURA and CROW have shown that the relatonship between n, the mutation rate 
U to new alleles, and the population size N e ,  is given, in the case of selectively 
neutral genes, by the formula 

n = 4N,u + 1 

if terms of order u2 are ignored. In  this paper we consider not the effective number 
of alleles but the actual number of alleles, or more exactly we consider the mean 
value E of the actual number. We consider in turn the case of selectively neutral 
isoalleles and then the extension to heterotic alleles. 

We shall maintain throughout the same notation as KIMURA and CROW. Fur- 
ther, we shall assume that the process has been continuing for a sufficiently long 
time to suppose that the equilibrium state has been reached. 

(1) 

Selectively Neutral Alleles 

Since the population under consideration is diploid and of size N,, we expect 
on the average, 2N,u new alleles to arise per generation by the mutation rate U .  
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At equilibrium, these new alleles must be balanced by a similar number of “old’ 
alleles being lost by drift and/or mutation. If we suppose that at equilibrium 
there are n different alleles, on the average, in each generation, and that the mean 
number of generations that any new allele exists in the population before being 
lost is 5, then the relation 

(2) 2Neu = Zfi 

will express the required balance between new alleles being formed and “old” 
alleles being lost. Thus if an expression can be found for 7, the value of f i  follows 
immediately. 

In  order to find i, it is necessary to set up a model to describe the behavior of 
any newly formed allele. The model considered here is a particular case of that 
due to WRIGHT (1931). If in any generation the number of genes of a particular 
allele is i, then we expect that in the next generation the number of genes of the 
same allele will be i ( l  - U ) ,  the decrease - iu being due to mutation to new 
alleles. Thus the model is that the probability p z j  that the number of genes of the 
allele in question changes from i to j in consecutive generations is given by 

pi 
= (2:) ( i ( 1 - U )  )’ (2Ne - i ( 1 - U )  2Ne--j 

2Ne 2N,  1 (3) 

Since any new allele occurs initially exactly once, the Markov chain characterized 
by (3) and the initial condition io = 1 are sufficient in principle to determine the 
mean time 5 until the allele in question is lost forever from the population, an 
event which happens eventually with probability unity. In practice, however, 2 
seems to be very difficult to find by using (3) and some approximation is neces- 
sary. The approximation used here is to replace the discrete process (3)  by a 
continuous diffusion process, a procedure which is valid, for all practical purposes, 
whenever U is of order (Ne)-l. 

Details of the diffusion process approximating ( 3 )  have been given by the 
present author (1964) .  For our purposes, the result is that a close approximation 
to 7 is given by the expression 

generations 

Thus, using ( 2 ) ,  a close approximation to the mean number of alleles maintained 
in a diploid population of size Ne with mutation rate U to entirely new alleles, 
in the case U of order ( N e )  -l, is given by 

It is interesting to compare the number f i  obtained from this formula with the 
effective number n defined by KIMURA and CROW. This is done in Table 1 for 
various values of N e  and U .  The values given in this table have been chosen to 
make evaluation of (5) comparatively simple; for wider values of N ,  and U ,  

evaluation of ( 5 )  becomes tedious and numerical methods may be required. 
As expected by KIMURA and CROW, the mean number exceeds the effective 

number in all cases. We shall examine in detail why the excess is as large as it 
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TABLE 1 

Mean number (fi) and effective number (n) of alleles maintained for various Ne and U 

1 

4 A;, 
U = - x  1 w  

106 2x 1oB 3X 10'' 4X 108 

n 
n 

13.8 27.0 40.2 53.5 
2 3 4 5 

N ,  = 250,000 I I  

10-6 ox10-6 3x104 4 X  

n 12.4 22.9 32.8 42.4 
n 2 3 4 5 

is in the next section. For the moment we make some qualitative statements by 
examining equation ( 5 ) .  We may say immediately that for fixed N,u (i.e., fixed 
expected number of new alleles per generation), the mean number f i  of different 
alleles increases slowly with N e  (since Ne occurs, other than in a product Neu, 
only in the lower terminal of the integral). This behaviour is to be expected, 
since increasing U and decreasing N e  (with N,u fixed), while maintaining a fixed 
number of newly formed alleles, will lead to a decreasing total number of alleles 
since those alleles already in existence will tend to disappear faster with the 
higher mutation. Another way of noting the same phenomenon is to observe, 
from Table 1, that for fixed Ne,  f i  increases somewhat less than linearly with U .  

The distribution of allele frequency: The original derivation of (4) allows a 
much more detailed examination of the distribution of allele frequency to be 
made. The approximation (4) is a particular case of a more general approxima- 
tion, which is that the mean number of generations for which a given allele has 
a frequency in any range (zl,zz) [ (2N,)-l 5 x1 < x2 i 11 before being lost is 

2 1 z1 ( ~ - x ) ~ " P ~  dx generations. (6) 

I n  fact ( 4 )  is obtained by putting z1 = (2Ne)- l ,  x2 = 1. In the present case we 
may use the above formula to derive a more general formula than ( 4 ) .  This is 
that in any generation, the mean number of alleles in the population which have 
frequency between z1 and x2 is 

( 7 )  

8 2  

$1 

0 

4N,u 1 x-' ( 1  -x) "'cU-l dx alleles. 
01 

It is therefore useful to discuss the function 

(8) 

For fixed N,u, this function increases as z approaches (2Ne)- l .  This indicates 
that on the average, a large number of alleles will occur which have only a very 
small frequency. Among these will probably be many of those alleles only 
recently formed in the population. On the other hand, if 4Neu is small enough. 
f (2) increases also at x = 1, indicating that for very small mutation rates, the 

f (z) = 4Neu Z1(l -z) 4YeU-l 
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most likely situation is that where some allele has become temporarily fixed, or 
almost SO, in the population. This agrees with what would be expected on com- 
mon-sense grounds. Thus the curve of f(x) is either J-shaped or U-shaped, indi- 
cating that many alleles occur with small frequency, alleles with moderate 
frequency occur rarely, while for small enough mutation rate, a single allele will 
entirely, or almost entirely, occupy most of the population. 

This indicates why the numerical values of n and f i  in Table 1 differ as much 
as they do. The large number of alleles occurring with small frequency contribute 
a correspondingly large amount to 12, but very little to n, since it is very unlikely 
that an individual chosen at random from the population will be homozygous 
for one of the rare alleles. 

The total mean frequency of all alleles, which must be unity, should be derived 
by multiplying any frequency by the mean number of alleles having that fre- 
quency, and adding over all possible frequencies. For the continuous diffusion 
approximation, this quantity is 

1 

The small deviation from u h y  in this formula may be shown to be due entirely 
to approximations made in passing from (3)  to (4). Furthermore, the coefficient 
of inbreeding, or the probability that an individual chosen at random be homozy- 
gous, will be 

+ 0(Ne-1) 4N,u f 1 
in agreement with the result of KIMURA and CROW. This derivation, in fact, 
brings out in an interesting way the difference between n and 12. If we define 
g(x) = xf (x) , then g(x) is a density function (ignoring the small error in (9) ) . 
In fact the probability that a gene chosen at random in the population comes 
from an allele having frequency in the population between x and z -t dx is 
g(x) &.Then from ( 5 ) ,  (IO) and ( I I ) ,  

I 

f i  = x-* g(x) dx. 
= N e  

Thus the difference between n and f i  is essentially the difference between the 
reciprocal of a mean and the mean of a reciprocal. 

Heterotic Alleles 

The analysis for the case of selectively neutral alleles may be extended immedi- 
ately to the case of heterotic alleles. Equation (2) will still hold, and all that is 
necessary is to replace formula (4) for T * .  This is done by setting up a model 
analogous to (3) ,  incorporating extra terms allowing for the heterosis. Once 
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more it is necessary to use a diffusion approximation. This approximation is 
found by considering the mean M (ax) and the variance V (  6s) of the change SX 
in the frequency x of any allele in consecutive generations. KIMURA and CROW 
(1964) have shown that to a sufficiently close approximation, 

2) = - U2 --sx(x-F) r V ( 6 2 )  = 2(l-2)/2Ne 

Here s is the selective advantage of heterozygotes, and F = x: is the sum of 
squares of the frequencies of all alleles currently in the population. Following 
KIMURA and CROW, we make the approximation that F may be replaced by its 
mean value, which is now denoted F.  

In order to justify the use of the diffusion methods used to approximate f, it is 
assumed that both U and s are of order Ne-1. Thus F will be a sufficiently close 
approximation to the coefficient of inbreeding. Using an immediate extension of 
the formula employed for selectively neutral alleles, it is found that the diffusion 
approximation for ? is 

generations, 

where 

(14) 

and S = N,s and M = N,u, both being of order unity. 

mean number of alleles present in the population is 

n(x) = 2 ~ 1 ( 1 - ~  1 4M+4S(1-p)-1  exp (4Sx)  

Combining equations (2) and (13), we find that to a close approximation, the 

Evaluation of F: Once an expression for F has been found, we can evaluate the 
right-hand side in (15) for any S and M and hence find f i .  We evaluate F ,  which 
is a function of S and M, as follows. In the same way that (6) extends equation 
( 4 ) ,  we may say that the mean number of generations for which the frequency 
of any allele lies in an arbitrary range (x1,x2), where (2Ne)-l I x1 < xr 5 1, is 

1'' n(x) dx generations. 

Thus we may extend (15) and state that in any generation, the mean number of 
alleles having frequency between x1 and x p  is 

2M 1'' n(x) dx alleles. (17) 

Since we require total mean allele frequency to be unity, we must have 

(18) 2 M i 0  x n ( x )  d x = l ,  

where now a negligible error is introduced by replacing the terminal ( 2 N , )  -I by 
zero. Equation (18) determines F implicitly in terms of S and M .  As S + 0, the 
solution for F approaches (4M + l)-I, the solution obtained by KIMURA and 

fl  
(16) 

'I 

1 
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CROW for selectively neutral alleles. Further, with F defined by ( la) ,  it follows 
readily that the equation 

1 
(19) 2M j x2 n ( x )  dx = F 
holds. This is as we expect, as the left-hand side in (19) is the expected value of 

z:. 
Thus for any fixed M and S, we find ii by first solving either (18) or (19) 

for F, and then insert the value obtained in (1 5 ) .  Clearly, unless M and S take 
special values, this process will require numerical methods. 

The quantity F was the parameter of interest to KIMURA and CROW. In order 
to obtain a useable formula, they replaced the value of V ( 6 x )  in ( 2 )  by x/2Ne,  
and thus derived their equations (16) and (19) for F. It  may be shown that if 
the formula z( l - z ) / 2 N e  is retained, then their (new) equations corresponding 
to (16) and (19) agree with our equation (18). In  the present paper, we shall 
use the more accurate formula (18) for F because our primary interest lies in 
equation (15), and the resemblance of the integrals in (15) and (18) can be 
utilized when calculating n. 

The effect of heterosis: We are now able to examine the effect of heterosis on 
the distribution of the frequencies of alleles, and on the mean and effective num- 
ber of alleles. In doing this we may consider both positive and negative values 
of S; that is, we may also consider the case where the heterozygote has a selective 
disadvantage. 

Without heterosis, equation (17) indicates that the mean number of alleles 
having frequency between x1 and x2 in any generation is 

(20) 
$2 

X I  

4~ 1 T 1 ( 1 - ~ ) 4 ~ - - 1 d z  alleles. 

When heterosis operates, the integrand must be multiplied by the modifying 
factor 

(21 1 
For positive S, this modifying factor increases from unity at z = 0, reaches a 
maximum somewhere in (0,1), and then decreases to zero at z = 1. This indicates 
that with positive S, the mean number of alleles occurring with low frequency is 
somewhat higher than in the case S = 0. Also, the mean number of alleles occur- 
ring with high frequency is decreased. This will lead to an increase in both n 
and ii, although no statement can be made about the comparative proportionate 
rates of increase of n and ii. 

For negative S, the modifying factor (21) decreases from unity at x = O ,  
reaches a minimum in the interior of ( O , l ) ,  and then increases sharply as z 
approaches unity. This shows that for negative S, the mean number of low fre- 
quency alleles is slightly diminished compared to the case S = 0, the mean 
number of moderate frequency alleles will be diminished even more while the 
mean number of high frequency alleles increases. This leads to a decrease in 
both n and f i .  Clearly the effect of heterosis corresponds to what is expected on 
intuitive grounds. 

( I - x )  4s(1-F) exp (4Sz) . 
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We illustrate the behaviour of n and f i  with a numerical example. Let 2N, = 
10' and 4M = (e-2)-l. Then for 4s = 0 we get n = 2.392, ii = 18.5 (approxi- 
mately). For 4S = 1 we have n = 2.550, ii = 18.68. Both n and f i  have increased 
with increasing S, as expected. The proportionate increase in f i  is .066, while the 
proportionate increase in n is only about .01. The numerical values suggest that 
increasing S tends to make n and f i  less unequal, an effect expected by KIMURA 
and CROW. However, it is clear that very large values of S would be necessary 
before anything like equality is reached. Approximate equality would possibly 
be reached in the case of self-sterility alleles, corresponding to infinite S,  but this 
case cannot be considered by the present analysis which requires that S be of 
order unity. 

1 As a second example we let 2N,  = lo6 M = -. For S = 0 we have n = 3.0000, 
2 

f i  = 25.63. For S = - .3985 we have n = 2.684, f i  = 25.38. The proportionate 
decrease in n is .11, while the proportionate decrease in f i  is only .01. It appears 
that n is much more sensitive to the value of S, whether positive or negative, than 
is f i .  This happens essentially because the modifying factor (21) has more effect 
on large values of z than on small values, and it is the large values which pri- 
marily determine n. 

A Note on Population Size 

The numerical examples given in this paper refer to populations of the order 
of 10' individuals. Laboratory populations will, of course, be much smaller than 
this, and it may be asked whether the diffusion approximations used (for example 
equation (4)) will hold reasonably well for smaller values of N .  Numerical 
results (EWENS 1963) suggest that this is in fact the case, and that for populations 
as small as 30 or 40, the approximation is surprisingly accurate. I t  is, of course, 
necessary that whatever the value of N ,  use of diffusion methods requires that 
selective advantages and mutation rates be of no larger order of magnitude than 
N-1. 

The author has benefited greatly from several discussions with PROFESSOR J. F. CROW. 

SUMMARY 

A mathematical analysis has been made of the number of different alleles in 
a population when it is assumed that all new alleles which arise by mutation are 
entirely new types. Because of a very skew distribution of allele frequencies, it 
is shown that this number will differ considerably from the effective number of 
alleles, defined as the reciprocal of the probability that an individual chosen at  
random in the population is homozygous. The effect of heterosis is also con- 
sidered; it is shown that the effective number of alleles is more sensitive to 
changes in heterosis than is the actual number of alleles. 
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