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ABSTRACT 

The following models are considered for the genetic determination of quan- 
titative traits: segregation at  one locus, at two linked loci, at any number of 
equal and additive unlinked loci, and at  one major locus and an indefinite 
number of equal and additive loci. In each case an appropriate likelihood is 
given for data on parental, F, and backcross individuals, assuming that the en- 
vironmental variation is normally distributed. Methods of testing and compar- 
ing the various models are presented, and methods are suggested for the simul- 
taneous analysis of two or more traits. 

ETHODS to determine the number of loci involved in the genetic variation of 
a quantitative trait have typically involved the solving of moment or cumu- 

lant equations, assuming that all the loci have equal and additive effects (see, e.g., 
STUDENT 1934; WRIGHT 1968; and FALCONER 1970). Recently TAN and CHANG 
(1972) have shown how, with the same assumptions and for self-fertilized popu- 
lations, a maximum likelihood estimate of the number of loci involved can be 
obtained. ANDERSON and KEMPTHORNE (1 954) devised general models that allow 
for the estimation of epistatic as well as dominance parameters, but did not con- 
sider in any detail the problem of determining which models adequately account 
for a set of data. STEWART (1969a,b), extending and refining the partitioning 
method of genetic analysis devised by POWERS (1963), gave methods of testing 
whether one or two loci can adequately account for a given set of backcross data, 
and of estimating any linkage relationship among such loci. However, these 
methods assumed that the parental and F, distributions, within which the varia- 
tion is entirely environmentally caused, are completely known. 

* This investigation was supported by a Public Health Service Research Career Development Award (1-K3-GM-31, 732) 
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Administration. 
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696 R. C. ELSTON A N D  J. STEWART 

The main purpose of this paper is to consider, under these and various other 
simple genetic models, the simultaneous estimation of the parameters of the 
parental, F, and backcross distributions. With this information the observed and 
expected distributions can be compared, and so a judgment can be made as to 
which of the models fit the data. Only maximum likelihood estimation is con- 
sidered, in view of its known superiority over moment estimation (see, e.g., 
KENDALL and STUART 196l), and its general optimal properties for large samples 
(RAO 1964). Furthermore, comparison of the likelihoods for several different 
models can indicate which modcls arc cqlially compatible with the data, and so 
is more informative than a simple esiimate of the number of loci involved. It 
should, of course, be clearly understood that data of this type can never prove 
that only one or two loci are involved; and this would be so even if the data 
measurements were qualitative and discontinuous in nature. Only further breed- 
ing tests can unequivocally distinguish between the involvement of one and more 
than one locus (WRIGHT 1934). I t  is nevertheless useful to have methods where- 
by the maximum amount of genetic inlormation can be gleaned from data limited 
to parental, F1 and backcross individuals, which are relatively easy to obtain, in 
order to decide what further breeding tests are desirable. The extension of the 
same methods to other types of crosses and further generations is straightforward, 
but will not be developed here. In an accompanying paper (STEWART and ELSTON 
1973), some of the methods presented here are applied to data on physiological 
traits in mice. 

It is assumed throughout that each sample observation is on an individual from 
one of five classes: the two homozygous parental strains (denoted by the sub- 
scripts 1 and 3), the F, (denoted by the subscript 2) and the two backcrosses 
(denoted by the double subscripts 12 and 32, respectively). Thus we assume 
there are measurements on n, individuals from one parental strain and on n3 
from the other, the measurements on the j-th such individuals being xlg and s3g 
respectively; there are measurements on rile individuals from the backcross to the 
first parental strain and on nsz from the backcross to the other, the measurements 
on the j-th such individuals being xlzg and ~ 3 2 j  respectively; and there are meas- 
urements on n2 individuals from the F,, the measurement on the j-th such indi- 
vidual being x2j .  Any of the n's can be zero, but should this be the case the param- 
eters may not all be estimable. We define the total sample size as N = n,+n2+ 
n3+n12+ns2. 

For each genetic model the natural logarithm of the likelihood, denoted by L, 
is given. Various computer methods can then be used to obtain both the maximum 
likelihood estimates of the parameters and their variance-covariance matrix, by a 
search of the log likelihood surface for local maxima and its numerical double 
differentiation at such maxima (see, e.g., KAPLAN and ELSTON 1972; other 
methods for finding maxima, or  minima, have also been described by POWELL 
1964; NELDER and MEAD 1965; and ROSENBROCK 1960). It is necessary to start 
the search of the likelihood surface at some point, and so reasonable starting 
values for the parameter estimates are suggested. 

The maximization of the log likelihood should be performed under certain 
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ANALYSIS OF QUANTITATIVE TRAITS 69 7 

constraints; for example a variance estimate should be constrained to be positive, 
and a recombination fraction should normally be constrained to be between zero 
and one-half. Certain genetic models can be considered as special cases of more 
general models, and the maximum likelihood estimates for these models can be 
easily obtained from the same general likelihoods by imposing one o r  more func- 
tional relationships among the parameters of the model; these functional rela- 
tionships, or “restrictions,” are noted for the most frequently considered models. 
The maximum likelihood program devivsed by KAPLAN and ELSTON (1972) 
allows for such constraints and restrictions. 

It is reasonable to suppose that for some suitable scale of measurement the data 
observations, z, are, for each given genotype, normally distributed. It is also 
reasonable to assume that on the same scale the environmental variances for the 
different genotypes are all the same: for even if, in fact, they do differ, their 
estimates in practice will have such large standard errors that they will not be 
significantly heterogeneous. In fact it has been found empirically, for example, 
that for many traits similar results are obtained whether the analysis is per- 
formed on the original data measurements o r  on their logarithms. Normality 
and a common variance will therefore be assumed throughout. COLLINS (1967, 
1968) has developed non-parametric methods applicable to cases where the as- 
sumptions that the environmental variation is normally distributed, and equal 
for all groups, are seriously invalid. Even if these assumptions are violated, how- 
ever, the robustness, efficiency and power of the methods given here make them 
far preferable to other methods. 

For convenience we define 
f z j  ( p d  = - ( x i j - p k )  2/202 

where i = 1,2,3,  12 or 32; pk is the niean of the distribution for the particular 
genotype k, and u2 is the common environmental variance. 

2. MODELS FOR A SINGLE TRAIT 

(i) One locus: If the two parental strains differ at one locus only, then only 
three genotypes are possible. Let the means of the distributions for the parental 
strains and the F, be p,, p3 and p2 ,  respectively. Then the log likelihood of the 
n1 observations xli is simply 

I 1  

constant -n, Znu + .Z flj (p,), 
3=1 

where the constant (in this case equal to -nl Znvz can be ignored. Similarly, 
analogous expressions hold for the other parental and the F, observations. The n12 
backcross observations are distributed as a 1: 1 mixture of the two normal distri- 
butions N ( p1,u2) and N (p2,u2),  and hence their log likelihood is 

constant -ni2 In0 + 2 In( ~ ~ l z , ( ~ l ) + ~ ~ f l z ~ ( ~ z ) )  ; 
9312 

3=1 

and an analogous expression holds for the n32 backcross observations, substituting 
3 for 1. Thus, adding together the log likelihoods for the five classes, we have 
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698 R. C. ELSTON A N D  J. STEWART 

- 
where the constant K ( =  -Nln. \ /2~)  will be kept the same throughout the rest 
of section 2. 

Reasonable starting values for the parameters can be simply obtained by ignor- 
ing the backcross data: the three means are taken to be the sample means of the 
x,j, x2j, and x3j, and o2 is taken as the pooled within-class sample variance for 
these three classes. 

(ii) (2) Linked loci: Provided the number of loci involved is no greater than 
two, it is not difficult to allow for linkage between the loci. Let the recombination 
fraction be h. Then a backcross observation has a probability (1 -A) /2 of coming 
from a parental distribution, a probability (1 -h) /2 of coming from the Fl distri- 
bution, and a probability A/2 of coming irom each of the two relevant recombin- 
ant distributions. Let plz and pZ1 now be the means of the two recombinant distri- 
butions when the backcross is to parent 1, and ~ 3 2  and p Z 3  be the means when the 
backcross is to parent 3. The log likelihood of the whole sample is, then, analogous 
to (1) 

n, 
L =  K - N l m  4- I: f;j(pi) i=i j=1 

The last term in this expression is, of course, a constant, but must be inserted if 
the values of L-K for the various models are to be comparable. 

Starting values of pl, pz, p3, and u2 can be the same as before, and a starting 
value for h may be arbitrarily taken as 0.25. For the means of the recombinant 
distributions two sets of starting values should be tried, corresponding to the 
recombinant means lying between or outside the means of the parental and F, 
distributions: 

p12 = (%l+ d / 3  Pl2 = 2Pl - p2 

p z i  = (pi + 2pz)/3 p21 = 2P2 - p1 

p32 = (2P3 + p 2 ) / 3  p32 - 2 P 3  - p2 

P23 (P3  + 2p2)/3 p 2 3  = 2pz - P3 

- or 

Provided both these sets of starting values lead to the same local maximum on the 
likelihood surface, one can be reasonably assured that the maximum is unique. 
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ANALYSIS O F  QUANTITATIVE TRAITS 699 

To fit the model of two linked loci with equal and additive effects we take the 
likelihood (2) together with the four restrictions 

p12=,k21= (Pl+PZ) /2, p3Z3@23= ( pFLQ+,p2) /2. (3) 

The starting values for all the means in this model are determined by pl, p2 ,  and 
p3. Similarly we can fit the model of two linked loci with equal and additive genes 
at each locus by taking (2 )  together with (3) and the restriction 

(4) 
the starting values for all the means now being determined by pl and p3. 

A model in which equal and additive effects are assumed, either for the two 
loci or for all four genes involved, may well be unrealistic and too restrictive. On 
the other hand, maximization of (2) without any restriction whatsover can lead 
to meaningless results; for there is then a tendency for the estimates of pI2, pzl, 
p32, and p23 to coincide with any outlying observations that are present. A possible 
compromise, which might approximate reality in many cases, is to use the likeli- 
hood (2) together with either of the two “symmetry” restrictions 

Pz = (Pl + @3)/2, 

(/hZ-p21) /(pI-pZ) (p32-pZ3) /(p3-/1.2) 7 (5a) 
(plZ-PZ1) ‘- (pl-@2) = ( P 3 2 - P Z 3 )  ’- (p3-/h) ’- (5b) 

These are much milder restrictions than (3), but can only be used when data on 
all five classes of individuals are available. Another possibility, which does not 
need data on both backcrosses, is to assume that the effects of the two loci are 
additive but not necessarily equal; this is given by the restrictions 

(6) 

Any combination of (4), (5), and (6) can of course be used together, if the par- 
ticular situation warrants it. If (6) is used, we can represent the genotypic effects 
in terms of an overall mean m, additive effects aA and aB, and dominance effects 
dA and dB, as shown in Table 1. Furthermore, Table 2 shows which genotypes the 
various p’s correspond to; this depends upon whether, in the parental strains, the 
two loci are in coupling (AABB and aabb) or repulsion (AAbb and aaBB) . From 
Tables 1 and 2 we can derive the meaning of restrictions (4) and (5), provided 
they are used in conjunction with (6). It is immediately apparent that (4) is 
then the same as 

pl f PZ = ,1112 + pZ1, p3 + p2 = p32 + pZ3. 

dA + dB = 0, 

i.e., the average dominance effect o€ the two loci is zero. Similarly it is found that 

dA - dB 

i.e., the two loci have the same dominance ratio, if, in conjunction with (6), 
either (5a) is used when the loci are in coupling in the parental strains, o r  (5b) 
is used when the loci are in repulsion in the parental strains. If the loci are in 
coupling, the recombinant means lie between the parental and F, means; if in 
repulsion, the recombinant means lie outside the parental and F, means. If (5a) 

aA aB ’ 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/73/4/695/5990811 by guest on 20 M

arch 2024



700 R. C. ELSTON AND J. STEWART 

TABLE 1 

Genotypic means d u e  to two loci (A,a and B,b) with additive effects 

Locus 2 AA 
Locus 1 
Aa aa 

BB m+a,+a, m+a,+d, m-a,+a, 
Bb m+a*+d, m+d,+d, m-a,+d, 
bb m+a,-a, m-a,+d, m-a,-a, 

TABLE 2 

Genotypic means, p ,  on the assumption of two loci 

Parental s t r a i n s  in coupling Parental strains in repulsion 
Locus 1 Locus 1 

Locus e AA Aa aa Locus 2 AA Aa aa 

BB P1 p12 BB P 2 l  P1 
Bb PZl p2  8 2 3  Bb 823  Pz PZl  
bb P32 P3 bb &3 P32 

or (5b) is used without (6), the genetic meaning is not so clear; the implied sym- 
metry has, however, intuitive appeal, and in practice these restrictions are found 
to be useful. 

(iii) Equal and additive unlinked loci: It is impractical to consider the general- 
ization of ( 2 )  to more than two loci, in view of the large number of unknown 
parameters that would be involved. One way to keep down the number of par- 
ameters that need to be estimated is to assume that all the loci are unlinked and 
have equal and additive effects. This model is quite restrictive, and can only be 
an approximation to any real situation; nevertheless it is more general than any 
model examined so far, and so will be considered here in detail. 

Suppose the parental strains differ at I equal and additive unlinked loci, in each 
parent some loci acting in one direction and the remaining ones in the opposite 
direction. In particular, let m(<l-m) be the smaller number all acting in the 
same direction. (The case m=Z-m is of no practical interest, since it implies 
pl=p3).  Thus, since the effects of the loci are equal and additive, ,p3-p1 is the 
sum of I-2m such effects. It follows that in a backcross individual a locus homo- 
zygous as one of the m loci in parent 1 (or as one of the I-m loci in parent 3 )  
contributes 

a locus homozygous as one of the I-m loci in parent 1 (or as one of the m loci in 
parent 3 )  contributes 

{ ( l - m ) p l  - m p 3 ) / l ( l - - 2 m ) ;  
and a heterozygous locus contributes p 2 / l ,  towards the mean of its distribution. 
(Note that when m=O the homozygous loci each contribute f i 3 / Z  and pi/& respec- 
tively, as we should expect). If one of the nIz backcross observations is homozy- 
gous at h of the m loci and k of the I-m loci in parent 1, then it comes from a 
normal distribution with mean 

- { m p l  - ( I - m > p a ) / l ( l - 2 m ) ;  
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ANALYSIS O F  QUANTITATIVE TRAITS 70 1 

1 
1 (1-2m) C-h{mpl - (1-m)p3} + k{ (l-m)pl-mp3}l + 

(1-h-k) pz/1 = &hk, say, (7) 

h=O, 1, . . . ., m; k=O, 1, . . . . , I-m. 

Thus the nlz backcross observations xl2 are distributed as a mixture of 
(mi-I ) (1-m+l ) normal distributions: a fraction 

Interchanging the subscripts 1 and 3 gives the distribution for the n3z observations 
x32, and so fo r  these a fraction 

where p3hk is (7) with the subscripts 1 and 3 interchanged. The log likelihood of 
all the observations under this model thus becomes 

When 1=1 we must have m=O, and then (8) reduces to (1 ) , as it should. What- 
ever values are taken for 1 and m, the same starting values, as given in section (i) 
for (1) , are reasonable. 

A special case that may sometimes be of interest is that of equal and additive 
genes at each of the 1 loci, i.e., the same model as we have just considered, but 
with no dominance. The appropriate log likelihood is then also given by (8) pro- 
vided we add the restriction (4 ) .  In this case the number of independent param- 
eters to estimate is reduced by one, and the starting value for pz is determined by 
the starting values for p1 and p3. 

Another special case is what happens as 1 and m become large. Rewriting (7) 

and utilizing the fact that as 1 and m become large we have, approximately, 

h is N (m/2, m/4) 
and k is N ( (1-m) /2,  (Z-m) /4 )  , 

we see that the distribution of the backcross observations x12 becomes approxi- 
mately normal with mean 

m 
Cmpl + (1-2m)p2 - 21 (1-2m) p 1 m  = p2 - 
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702 R. C .  ELSTON A N D  J. STEWART 

and variance 
m 

4Z2 (I-2m) 
U: = U 2  + [ m p l  + (I-2m)p2 - ( I -m)p3]2 + 

Now, in the limit as 1 and m tend to infinity, provided m/I remains at some con- 
stant value less than one-half, u~~ tends to oz. Thus, analogously defining pLam = 
( p 3  + p2) /2, the log likelihood for this model is 

m %  n12 1E32 

L zx K-N +. 2 . ~ 1  X 3=1 f i j  (pi) + 3=1 .E f l z j  (,PI,) +. j=1 f 3 2 j  ( ~ 3 m )  * (10) 

It is interesting to note that this is identical with the result obtained if we impose 
on (2) the restrictions 

= 1, plZ = p21 I= (/-4lfp2)/27 p32 = p23 = (!-b+p2)/2; 

not only can this be more convenient fo r  programming, but it also shows that, 
from a statistical point of view, this model is a special case (involving the one 
restriction X = 1) of the model implied by ( 2 )  and ( 3 )  taken together. As will be 
seen later, this fact can be utilized if we wish to test for a significant difference 
between the two models. As before, we can also add restriction (4) for the case of 
equal and additive genes. 

Now the model implied by (10) will in practice often be unsatisfactory as an 
approximation to what happens as Z and m become large, since it assumes that 
the variance in the backcross observations is the same as that in the parental ob- 
servations. For this reason it is of interest to coiisider the limiting situation in 
which the last two terms of (9) are neither zero nor infinite. This will occur if 
I and m tend to infinity in such a way that (I-2m) tends to a constant, C, say. 
These same conditions also imply m/Z tends to a half, and in the limit 

U, = U' f (p1- p3)  2/16C. (11) 

Thus a log likelihood that is appropriate for large Z and m, provided m/ l  is not too 
far from one-half, is again given by (10) if we redefine 

f 1 2 3  .( P 1 m  )I-( x123 . -  

f 3 2 j  ( ~ 3 m )  = - ( 5 3 2 1  - p 3 m )  ' / ~ u Z  . 
, 

(12) 

The net effect of this is to allow the common backcross variance, u2,, to differ 
from the variance in the parental and F, strains; but if +', is estimated to be 
smaller than u2, (10) without the redefinition (12) is more appropriate. 

(iv) One major locus and an infinite number of equal and additive loci: If we 
now suppose there is also, acting additively to these Z loci, one locus with a major 
effect, then the individuals in a given backcross will be either homozygous o r  
heterozygous at the major locus. It follows that each backcross will be a 1: 1 mix- 
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ANALYSIS O F  QUANTITATIVE TRAITS 703 

ture of two distributions, each with variance uZm. If we let the means of these two 
distributions be J L E . L ~ ~  and p2 i  for the ni, backcross individuals, i=1,3, then the log 
likelihood of the whole sample is 

“i 

L = K - N I n a + , Z  fi j(pi) ,+ 
%=l j=1 

n i z  

j=1 
z In( l/efizj(plz) + l/eLj(fiZJ) ,+ 

provided we use the definitions (12). In the special case that uZm = uz, this is 
exactly the same as (2) with A = 1, and so here again, for programming and 
from a testing point of view, it can be useful to consider this log likelihood as a 
special case of (2). 

As with the case of two loci, (13) can be used with any appropriate combina- 
tion of (4), ( 5 )  and ( 6 ) .  Provided ( 6 )  can be used, (4) implies the average 
dominance effect of all loci is zero and (5a) implies that the dominance ratio for 
the major locus is the same as that for the “infinite” number of equal and additive 
loci. 

3. MODELS FOR TWO TRAITS 

If for each of two traits no more than two loci need be postulated to account 
for the observed genetic variation, then it may be possible to elucidate the linkage 
relationships among the loci involved; if more than two loci need be postulated 
it is doubtful whether further numerical analysis, in the absence of more exten- 
tive experimental data, will be very helpful. For this reason this section will con- 
sider only the model in which two linked loci are assumed for each of the two 
traits. This, however, will include as special cases models in which one or bobkc 
of the traits are due to just one locus (by setting the appropriate recombination 
fraction (s) equal to zero), and models in which one or both of the traits are due 
to two unlinked loci (by setting the appropriate recombination fraction(s) equal 
to 0.5). 

In general, then, we can suppose the two traits are x and y ,  and that there are 
18 corresponding parameters; it will be helpful for the sequel to denote the pa- 
rental and F, means by the double subscripts ll ,  33, and 22, rather than just 
single subscripts, and so the 18 parameters are: 

pX117 px22, px33, px12, pXz1, px32, pXz3 ,  uZx, Ax for x, 
and 

pal117 PLY227 pY337 pY127 pY217 h 3 2 7  !%I237 u2Y7 for 

If A,=O, then &12, pEI2, p,32 and J J . ~ ~ ~  are non-existent; and analogously if X,=O. 
There are now up to four other parameters that we are interested in, namely 
each (i,j=1,2), the recombination fraction between the i-th locus for x and the 
j - th locus for y. If A, orA, is zero there are only two such recombination frac- 
tions, and if both A, and A, are zero there is only me. 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/73/4/695/5990811 by guest on 20 M

arch 2024



704 R. C. ELSTON AND J. STEWART 

We now have five sets of vector observations (z,y).  If, for each genotype, z 
and y are uncorrelated then the log likelihood for the n, vectors (zlj ylj), the n3 
vectors (x3j,  y3j)  and the n, vectors (x2j ,  y Z j )  is simply the sum of the correspond- 
ing log likelihoods for x and y separately; more generally, however, the correla- 
tion must be taken into account, as will now be indicated. Specifically, we shall 
assume that, for each genotype, 5 and y follow a bivariate normal distribution, 
and that only the means of this distribution change with genotype, the covariance 
matrix being the same fo r  all genotypes. Thus we need only introduce one further 
parameter, the common environmental correlation p, to completely specify all of 
these bivariate distributions. Analogous to the univariate case, we define 

It follows immediatelv that the log likelihood for  the two parental and F,  observa- 
tions is 

constant - 

Each set of backcross observations is distributed as a mixture of 16 bivariate 
normal distributions; for there are four loci involved, and at each locus an indi- 
vidual may be homozygous or heterozygous. In order to develop the appropriate 
likelihood, assume for the moment that crossing over between any pair of loci is 
independent of crossing over between any other pair of loci (even though there 
may be one locus in common). Let 

Y i j ( - h )  = 
I--h if i=j 

if i+j . 
The log likelihood for  the nlr observations (z12j, yI2j) is then 

constant - n,, In [ d ( 1-p2) a , ~ , ]  

The expression for the n32 observations (xj2j, y32j) is analogous, 3 replacing 1 
appropriately; thus the complete log likelihood is given by the sum of (14), (1 5 ) ,  
and the corresponding expression with 3 replacing 1. 

Now if the crossover frequencies between pairs of loci are not independent, 
then there are functional relations that hold among the recombination fractions. 
Rather than trying to develop a likelihood that incorporates these relations di- 
rectly, it is simpler to obtain maximum likelihood estimates by maximizing the 
likelihood just given, but under the restrictions implied by these functional rela- 
tions; this will lead to  exactly the same results. Unfortunately, however, there is 
no certainty as to what functional relations are most appropriate, fo r  two reasons: 
first, the type of dependency among the crossover frequencies is unknown; and 
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11 + x21 - 2h 

h y = x  21 + h22 - 2h21h22 

A12 = All + h2l + A22 i x  + 4hi1h21h22 

h 11 2 1  A = h  

- 2("1X21 + Xllh22 + A21X22) 

705 

FIGURE 1.-Basic set of three orders for four loci, and the functional relations among the six 
recombination fractions implied by TROW'S formula, i f  all four loci are linked. 

second, the order of the loci is unknown. Although other formulae have been 
suggested, as a first approximation TROW'S (1913) formula is probably the best 
to use to describe the dependency among crossover frequencies for loci on the 
same chromosome; this is equivalent to assuming a lack of interference. There 
are twelve different orders possible for the sequence of four loci (24 if a distinc- 
tion is made between the start and finish of a sequence), and a basic set of three 
orders is shown in Figure 1. All the other orders can be derived from these by 
interchanging Xz and Ay, X i j  and X,j and/or hil and hi2, as necessary. There are 
only three functionally independent distances, and so, since six recombination 
fractions are involved, we must have three independent restrictions. The restric- 
tions that follow from the use of TROW'S formulae are given in the figure for each 
of the three basic cases. Which order to assume, and hence which set of restric- 
tions to use, is only a problem when at least three of the loci lie on the same chro- 
mosome. It is suggested that in the first place the six recombination fractions 
should be estimated without any restrictions at all, and the resulting estimates, 
though incorrect, will be adequate to eliminate all but a few possible orders; these 
can be tried in turn, and the order that results in the largest log likelihood at its 
maximum chosen. 
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Before any pair of traits is analyzed in the manner indicated in this section, 
each trait should have been analyzed separately as indicated in the previous sec- 
tion. Any restrictions on the means thot have been found appropriate when the 
traits are analyzed separately should be kept when the traits are analyzed to- 
gether. In fact, to avoid the excessive amount of computational time that may be 
needed for the simultaneous estimation of twenty or more parameters, the likeli- 
hood derived in this section can be used to estimate only the recombination frac- 
tions and the environmental correlation (a maximum of four independent pa- 
rameters) ; the means and variances may be reasonably fixed equal to the esti- 
mates that are obtained from the separate single trait analyses. Terms in U$ and U, 
are then considered as constant, and so the whole likelihood can be simply ex- 
pressed as 

4. SIMPLE MULTIVARIATE MODELS 

In this section we describe briefly just two ways in which all the models given 
in section 2 can be adapted for the multivariate examination of p traits. Each 
observation xij is now replaced by the p X 1 vector observation zij, which will be 
assumed to follow a p-variate normal distribution. 

The first, and simplest, method is to consider the linear function dxig as a new 
trait, and replace this for xij in all the log likelihoods given so far. The coefficient 
vector a may be chosen a priori on the basis of what may be biologically meaning- 
ful. For example, if the p measures in x b j  are all measurements of the same char- 
acter, but at p different stages in the individual's development, then the coefficient 
a could be chosen to give the linear (or quadratic, etc.) change in the character 
with time. On the other hand, a may be left arbitrary in the expression of the log 
likelihood, its elements being estimated simultaneously with the other parameters 
of the model. In this way we can estimate that linear function of the p traits that 
best fits a one-locus model, in which case we would use (1) to estimate pl, p2, p3, 
u2 and a simultaneously; whereas perhaps none of the p measures taken indi- 
vidually fit a one-locus model, a linear function of them may well be found to do 
so. (Indeed, WEBER (1959) has already demonstrated how, in Lycopersicum 
esculentum Mill, a discriminant that utilizes the quotient of length by width of 
the cotyledon and the area of the cotelydon can accurately detect the segregation 
of a major gene.) Since any multiple of a gives the same linear function, apart 
from a scale factor, only p-I independent parameters can be estimated; it is con- 
venient to let the sum of the squared elements of a equal unity, but other restric- 
tions on the elements of a are possible. Any linear functions a'xij can of course be 
used as one of the two traits in the models discussed in section 3. 
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The second method for the multivariate examination of the p traits xij consid- 
ers a model in which it is the same loci that govern all traits. This is thus a model 
for pleiotropic action, but it must be remembered that tight linkage would in 
practice be indistinguishable from this. Let the variance-covariance matrix of 
xij, for each given genotype, be 2 ;  also, analogous to the univariate case, let 

where now pk is the p x 1 vector mean of the distribution for a particular geno- 
type. Then the multivariate analog of each of the univariate models considered 
in section 2 is given by substituting I Z I and f i  j (pk) for U and fi  j ( p k )  respec- 
tively; and the appropriate log likelihoods are given, with this substitution, by 
(11, W, (81, (10) and (13).  

This multivariate analysis will usually be performed after the traits have 
been analyzed separately and in pairs, using the methods in sections 2 and 3. 
Then, if several traits seem to have the same underlying genetic mechanism, this 
multivariate analysis can be performed to obtain estimates on the assumption 
that it is the same loci that are involved for all traits. Two traits that enter such 
an analysis must necessarily have approximately the same correlation in the 
parental and backcross classes; and analysis by the methods of section 3 should 
indicate no significant departure from the case All = 0 and Xlz = hzl = A, = 
A,. For each trait, that restriction on the means that has been found to be most 
appropriate in the univariate analysis is automatically retained in the multi- 
variate analysis: it is not necessary to have the same restriction for all p traits. 
Thus the univariate analyses supply all the starting estimates required for the 
multivariate analysis, except for the off-diagonal elements of Z; starting esti- 
mates for these can be obtained as the pooled within groups covariances from the 
two parental classes and the F, alone, since these do not involve mixtures of dis- 
tributions. In fact it is suggested, in order to keep down the number of parameters 
that need be estimated, that the (ij) -th element of I: be set equal to iijuiuj, where 
i i j  is the pooled sample correlation within the parental classes and the F,; ui and 
aj are the standard deviations of the i-th and j-th traits respectively, estimated 
jointly with the means and the recombination fraction. This procedure reduces 
the number of parameters that need to be estimated iteratively by p (p-1 ) /2. 

5. TESTING MODEL FIT 

Finally, we discuss some methods of determining which models can, and which 
cannot, be excluded on the basis of a given set of data of the type we have been 
discussing. We restrict our attention here to a univariate trait, though some of 
the methods could just as easily be extended to the multivariate situation. 

A simple pictorial method is to plot, separately for each of the five classes of 
individuals, the empirical distribution together with one or more theoretical dis- 
tributions, the latter being represented by the appropriate model with maximum 
likelihood estimates in place of the unknown parameters. Cumulative plots 
should be used, so that each theoretical distribution is either a cumulative normal 
or a mixture of cumulative normal distributions. The empirical distribution is 
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plotted as a series of n points, one for each of the n individuals in the class; in each 
case the ordinate is r (z ) / (n+ l ) ,  where ~ ( s )  is the rank of the individual with 
measurement z (the individual with smallest s has rank 1,  the one with the 
largest x has rank n)  . By a comparison of the plots a rough idea of how well each 
model fits the data points is obtained at  a glance. 

A simple quantitative measure of how the different models compare with each 
other, but not of how they compare with the data points, is obtained by compar- 
ing the log likelihoods for the various models: a difference of D in the log likeli- 
hood indicates that under one model the data are (antilog D)-fold more likely 
than under another. Furthermore if die two mDdels being compared are such that 
one is a special case of the other, involving d independent restrictions, we can 
use the likelihood ratio criterion to test whether the more general model fits sig- 
nificantly better than the restricted model. The test statistic to take is twice the 
difference between the two corresponding log likelihoods, and this should be com- 
pared with a chi-square distribution with d degrees of freedom (KENDALL and 
STUART 1961 ) . In this way, for example, a chi-square with one degree of freedom 
can be obtained to determine if restriction (4) leads to a significantly worse fit, 
or if the model implied by ( I O )  is significantly worse than two linked loci with 
equal and additive effects. 

In order to assess how well a set of data fit any given model, we recommend 
the use of four different statistics. These were chosen from among over twenty 
test statistics, including all those discussed by PYKE (1965) , on the basis of how 
they performed empirically on a fair-sized body of data. Some of the test statistics 
never gave rise to significant results whatever genetic model was assumed, and 
so lacked power; others always gave rise to significant results, due to the fact that 
an excessively large sample size is necessary before the assumed asymptotic sam- 
pling distribution of the test statistic is approximated. The following four statis- 
tics, however, were both robust and powerful against some of the alternative 
hypotheses of interest, and so can be recommended to judge whether, on the basis 
of the data available, a given genetic model is acceptable or not. Two of the test 
statistics are based directly on NEYMAN’S smooth test (NEYMAN 1937; results for 
small sample sizes are given by BARTON 1953a and 1953b), one is based indirectly 
on N E Y M A N ’ S  smooth test, and the last is based on the modified mean test pro- 
posed by LEWIS (1965). 

Let the cumulative distribution for a particular class of individuals, assuming 
as a null hypothesis the genetic model that we wish to test, be F ( s )  ; for the pa- 
rental classes this will be a cumulative normal distribution, and for the backcross 
classes this will be a mixture of such distributions. Then under the null hypoth- 
esis F ( x j ) ,  where xj is the j-th observed measurement for a particular class of 
individuals, will be uniformly distributed on the unit interval. We therefore 
calculate F ( s j )  for each observed measurement in the class, assuming the un- 
known parameters in F are equal to their maximum likelihood estimates, and 
(ignoring the fact that the parameters have been estimated) test whether the re- 
sulting quantities could in fact be a sample of independently and uniformly dis- 
tributed random variables. In each of the four tests this is done by means of a dif- 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/73/4/695/5990811 by guest on 20 M

arch 2024



ANALYSIS O F  QUANTITATIVE TRAITS 709 

ferent chi-square statistic with one degree of freedom, as will be explained be- 
low; this statistic is then summed over the five classes (or fewer classes, if some of 
the n's are zero) to yield a chi-square with five (or fewer) degrees of freedom. 
Provided the number of parameters estimated is small compared with the total 
sample size N ,  and provided no class (unless it is non-existent) has fewer than 
five individuals in it, the assumption of a chi-square distribution under the null 
hypothesis will be accurate enough for all practical purposes. 

The first chi-square statistic with one degree of freedom tests whether the 
mean value of F (xi) for each class is equal to one-half. If n measures are observed 
in the class, the statistic is 

~ : = 1 2 [  j=1 (F  (xi) --i/e)]'/n. 

The second of the chi-square statistics with one degree of freedom tests whether 
the variance of F ( s j )  for each class is equal to 1/12. It is thus 

ut = 180 [ j=1 ( F  (si) - 1/)' - n/12]' /n. (19) 

The third and fourth tests consider the spacings between the F ( x j ) .  Let x( j )  
denote the ranked observations, so that 

X ( 1 )  5 5(')  I . . . 5 X(%). 

Then the IZ + 1 spacings are given by 

DJ = F ( s ( j , )  - F ( X ( + ~ ) ) ,  i = 1, 2, . . . , n + 1, 

where we define F(x(,,,) = 0 and F ( X ( ~ + ~ , )  = 1. Under the null hypothesis 
1 - (1 - Dj)" is uniformly distributed on the unit interval, and the third chi- 
square statistic tests whether the variance of this for each class is equal to one- 
twelfth (ignoring the small correlation among these n + 1 quantities). Thus 
analogous to ( 19), the statistic is 

n f l  
U: = 180[ 3 .I: =1 (%-(l-Dj)fl)2 - (n+ l ) / l 2 ] > ( n +  1). 

The last statistic is based on the statistic S' proposed by LEWIS (1965). Denot- 

D(1) 5 D(2) 5 . . . I D(flf1) 7 

ing the ranked spacings by D ( i ) ,  so that 

the chi-square statistic with one degree of freedom is 
n+1 

Z2 = 144 [ 2 ( n  4- 1 ) - 2 i& i D(i  1 - '1 /n2 . 
2 

As explained above, in each case the statistic (18), (19) , (20) or (21) is calcu- 
later for each class, and the resulting sums over all classes, which we can con- 
veniently denote by U',, UZ2, U'22, or L2 respec t i d y ,  are compared with the chi- 
square distribution with five (or possibly fewer) degrees of freedom. It is of 
course never possible to prove a null hypothesis; but if, for a particular genetic 
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model, none of these four statistics is significant, we can be reasonably sure 
that the data adequately fit the model in question. On the other hand if any one 
of the four statistics shows significance, the model is thrown into doubt and the 
data should be examined to determine the reason for the significance. It should be 
noted that these four statistics between them will detect many kinds of departure 
from the null hypothesis, including departure from a normal distribution with 
constant environmental variance for each genotype. Unequal variances in the 
parental distributions will often cause U2, to be significant, and non-normality 
(especially tied values, which occur with probability zero in truly normal dis- 
tributions) tend to cause U’,2 and Lz to be significant. Thus by examining the 
original data, and by comparing the parental class means and variances with the 
maximum likelihood estimates, it is possible to distinguish whether a test statistic 
is significant because of the genetic or the environmental part of the assumed 
model. If the latter, then the genetic model may nevertheless be acceptable. 

Finally we wish to note the empirical finding that even though the environ- 
mental part of the model may be seriously violated, and this detected by one or 
more of the test statistics, the maximum likelihood procedure described in this 
paper (which assumes normality and a common variance) is nevertheless very 
robust. A model which genetically fits the data always leads to a greater likeli- 
hood than one that does not; and the maximum likelihood estimates of the class 
means and common variance so obtained are always in good agreement with the 
empirical class means and average parental variance. This fact, which is illus- 
trated in an accompanying paper (STEWART and ELSTON 1973), lends support 
to the general utility of the methods presented here. 
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