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Mathematical formulae for the sampling variances of average hetero- 
zygosity and NEI'S genetic distance are developed. These sampling variances 
are decomposed into their two components, i.e. the inter-locus and intra-locus 
variances. The relationship between the number of loci and the number of 
individuals per locus to be examined for estimating average heterozygosity 
and genetic distance is also discussed. The utility of the inter-locus variance 
of heterozygosity for studying the mechanism of maintenance of genetic vari- 
ability in populations is indicated. 

genetic variability of a population is usually measured by the average 
TFe:erozygosity per locus, while the gene differences between two populations 
may be measured by the genetic distance recently proposed by NEI (1971,1972). 
The main purpose of this paper is to investigate the sampling variances of these 
quantities. 

We first present a general formula for each of these sampling variances and 
then study the components of the variance. As will be seen later, the sampling 
variance is made up of two components, i.e., the inter-locus and intra-locus vari- 
ances. The inter-locus variance depends on the genetic structure of populations, 
which is determined by all sorts of evolutionary forces, such as mutation, selec- 
tion and random genetic drift. It is, therefore, difficult to quantify its magnitude 
except for some special cases. On the other hand, the intra-locus variance solely 
depends on the sample size and gene frequencies of the locus studied, so that the 
mathematical formulation is easier. Knowledge of the intra-locus variance is 
required to compute the stalldard errors of heterozygosity and genetic distance 
for a particular locus or to estimate the magnitude of inter-locus variance. 

On the basis of the formulae €or the sampling variances of heterozygosity and 
genetic distance, we shall also discuss the number of loci and the number of indi- 
viduals to be studied for estimating these quantities. 

VARIANCE O F  HETEROZYGOSITY 

Consider a random mating population in which Z alleles (Al, A,, . . , A $ )  are 
segregating at a locus. Let p i  be the frequency of the i-th allele in the population 
( z p i  = 1, where the summation is over i). We assume that genotype frequencies 
are in Hardy-Weinberg proportions. Thus, the population homozygosity and 
heterozygosity are given by g = Xpt and 1 - g ,  respectively. We further assume 

' This study was supported in part by Public Health Service Grant GM 20293. 
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that there is no dominance and all heterozygotes are identifiable, as is usually the 
case with isozyme variations. (See DISCUSSION for the effect of dominance.) Then, 
if n genes (42 individuals in diploid organisms) are sampled at random from 
the population, the probability that there are nlAl genes, nzAz genes,. . , and 
nlA 1 genes in the sample is given by 

where hi = n and the population size is assumed to be much larger than the 
sample size. 

Let xi (= ni/n) be the sample gene frequency of the i-th allele. Clearly, this is 
the maximum likelihood estimate of pi .  The sample homozygosity and heterozy- 
gosity are given by j ,  = Zz; and h = 1 - j , ,  respectively. The expectation of 
sample homozygosity { E ( x z f ) }  is z p ;  + (1 - xp; ) /n  or g + (1 - g)Jn, since 
E ( x : )  = (1 - l / n ) p ; f p J n .  Therefore, j ,  is not an unbiased estimate of g, 
though it is asymptotically unbiased when n is large. The unbiased estimate is 
given by 

2 = (nxzt - l ) / ( n  - 1). (2) 

This is identical to the formula given by MORTON et al. (1971).  In  most popula- 
tion surveys, however, n is fairly large, so that the bias of ja: is generally negligi- 
ble. Furthermore, as is shown in the APPENDIX, the expectation of squared devia- 
tion of jx from g, i.e., E (jx - g) 2, is smaller than that of 2, E (&? - g )  2y when n is 
small, although j z  is statistically biased. For these reasons, we shall use jZ and h 
as the estimates of homozygosity and heterozygosity at a locus, respectively. 
Clearly, the variance of ix is equal to that of h. 

The average heterozygosity ( H )  of a population is defined as the average of h 
over all loci. In practice, only a limited number of loci are examined for poly- 
morphism. If r loci are examined, the average heterozygosity is estimated by 

where hk is the estimate of heterozygosity of the k-th locus. The sampling variance 
of h may be obtained by 

V ( A )  = V ( h ) / r  (4) 

in which V ( h )  is the expected variance of h and estimated by 
r 

V ( h )  = k=1 z ( h k - h ) 2 / ( r -  1). ( 5  1 

In deriving (4) we assumed that h's at different loci are not correlated. This 
assumption seems to be satisfactory, unless there are linkage disequilibria. 

Our empirical data for protein and blood group loci in man (NEI and ROY- 
CHOUDHURY, unpublished) indicate that the distribution of h is inverse J-shaped. 
(This is theoretically expected.) Therefore, the exact test of significance for A is 
difficult. However, if r is large, the distribution of A will be approximately normal 
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because of the central limit theorem. Thus, an ordinary statistical test may be 
made by using the variance obtained by (4). 

Let us now consider the following statistical model 

h k  = yk f sk (6) 

where h k  is the observed heterozygosity at the k-th locus, yk = ( 1  - gk) ( 1  - l/n) 
in which 1 - glc is the population heterozygosity at this locus, and sk is a random 
variable with mean = 0 and variance V ,  ( h k )  . Clearly, the expectation of yk over 
all loci is y = H (  1 - 1Jn) , while that of ~7~ is 0, in which n is assumed to be the 
same for all loci. Therefore, the variance (V (h)  ) of h k  over all loci is 

- 

V ( h )  = V J h )  + V,(h) ( 7 )  

where V y  ( h )  is the variance of yk, and V,(h) is the expectation of s i  and esti- 
mated by 

r 

k=1 
V,(h) = V,(hk)/r (8) 

if there are I* loci studied. We call Vy(h) and Vs ( h )  as the inter-locus and intra- 
locus variances of h, respectively. Since yk = ( 1  - g7,) (1 - l / n ) ,  v y  ( h )  may be 
written as 

vy = ( n  - I)",(h)/n~ (9) 

where V ,  (h )  is the variance of 1 - g (and also of g) among loci. 
We now derive the formula for the intra-locus variance of h. Mathematically 

it is convenient to study the intra-locus variance ( V s ( j x ) )  of j x  rather than h 
itself. Clearly, at a particular locus, 

VS(jX) = E{ (y)2) - Wq) IZ 
=zE(s4) + z E(x222) - {zE(x2)}2  (10) 

2 2. 2 f 3  z 3 l i b  

Using ( 1  ) we can determine the following moments: 

E ( & )  = pi 

E ( X : )  = { ( n  - I ) #  + p i l h  
E ( +  = { (n - 1 )  (n - 2)pf + 3 ( n  - l)p,2 + p i } /n2  

E(x: )  = { (n - 1 )  ( n  - 2)  ( n  - 3)pt + 6 ( n  - 1 )  ( n  - 2 ) p :  
-I- 7 ( n  - 1 ) ~ :  4- pz } /n3  

E ( X , X l )  = (n - l ) p i p i / n  

E(x:xJ ={(n-1)(n-2>p:pl  + ( n -  1)PiP31/n2 

i#j 

i# j 

E ( x : x , ~ )  = { (n  - 1) ( n  - 2)  ( n  - 3)p,2p,2 f ( n  - 1 )  
( n  - 
+ ( n  - 1>P2P31/n3 i#j 

+ ( n  - 1) (n - 2)p& 
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Substituting these moments into (IO), we have 

2(n-  1) 
V 8 ( j X )  = 

n3 
{ (3 - 2n) ( z p t ) 2 +  2(n - 2)zp;  + zpt} 

In practice, the population parameters zp: and Zp: are not known, so that they 
must be estimated by sample moments. The intra-locus variance of jx is then 
estimated by 

(12) 
2(n - 1) { ( 3  - 2n)ig + 2(n - 2)2x: + jx} . 

n3 
Note that V ,  (jx) is 0 if the locus is monomorphic, as it should be. 

Since V ,  ( h )  = V ,  ( jx) , the above formula may be used for obtaining the intra- 
locus variance of heterozygosity at a single locus. If this is computed for all the 
loci studied, the average intra-locus variance may be obtained by (8). Then, it is 
possible to estimate V y ( h )  or V g ( h ) .  

VARIANCE O F  GENETIC DISTANCE 

In recent years, several authors have proposed different measures of genetic 
distance between populations ( SANGHVI 1953; CAVALLI-SFORZA and EDWARDS 
1967; BALAKRISHNAN and SANGHVI 1968; ROGERS 1972; and others). Most of 
these measures are, however, constructed from the statistical point of view, and 
it is not clear what biological unit they are going to measure. In contrast to these 
measures, the genetic distance proposed by NEI (1971, 1972) is intended to esti- 
mate the number of net codon differences per locus between populations. He has 
devised three different estimates of this number, i.e., the minimum (Dm), stand- 
ard (D) and maximum (D’) distances. For the biological meanings of these esti- 
mates or distances, the reader may refer to NEI (1972, 1973a,b) and NEI and 
ROYCHOUDHURY (1972). They are all based on the identities of genes within and 
between populations. 

Let pi and qi be the frequencies of the i-th allele at a locus in populations X 
and Y ,  respectively. The identities of two randomly chosen genes in X and Y are 
then gx = Zp: and gp = Zq:, respectively. The identity of two genes, chosen at 
random one from X and one from Y, is gxy = Xpiq;. The three distance measures 
are then defined as: 

Minimum: D, = ( Gx + G Y )  /2 - GXy, (13a) 

Standard: D = -log, ( GXY/VGXGY),  (13b) 

Maximum: D’ = -log, (Giy/VG>G>),  (13c) 
___-  

where Gx, G y  and Gxy are the arithmetic means of gx, g p  and gxy, respectively, 
over all loci, including monomorphic ones, while Gx’, Gyp and Gxu‘ are the geo- 
metric means. 

In practice, of course, all the three distance measures are estimated by using 
the sample gene frequencies instead of population gene frequencies. In the follow- 
ing we denote by xi and yi the sample gene frequencies of the i-th allele in popu- 
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HETEROZYGOSITY AND GENETIC DISTANCE 383 

lations X and Y ,  respectively. Thus, gK,  gy and gxy are estimated by ix = Xz;’, 
iy  = zyiZ and j x y  = Xqyi, respectively. We know that j x  and i y  are not unbiased 
estimates, but for the reasons mentioned earlier we use these estimates. On the 
other hand, ixy is an unbiased estimate of gay. 

The three distance measures mentioned above are then estimated by 

Minimum: b, = (Ix f Jy) /2  - JxY, (144 

Standard: b = -log, ( J x y / d J x J y ) ,  (14b) 

Maximum: b’ = - l o g e ( J ~ y / ~ . 7 > J ~ ) ,  (14c) 

- 

where Jx, Jy and Jxy are the arithmetic means of ix, iy and ixy, respectively, over 
all loci including monomorphic ones, while J’y and JtxY are the geometric 
means. Obviously,J’xy is 0 if one of jlxy’s is 0; then the maximum estimate is 
meaningless. Actually, D’ always tends to be an overestimate, and it is safe not to 
use this estimate if anyone oi jxy’s is small compared with unity (NEI 1972). 
However, when local races of a species are compared, there is generally not much 
difference between b,, D and b’. Note also that b and D’ are not unbiased esti- 
mates even if the unbiased estimates of gx and gy  are used instead of ix and i y  in 
the formulae. Nevertheless, they are asymptotically unbiased and mathematic- 
ally simple. For these reasons we prefer these estimates. 

The estimate of minimum genetic distance may be written as 
c 

Dm = z dk/r, (15) 
k=1 

where dk is the value of d = (ix 4- i y ) / 2  - ixy for the k-th locus and I is the num- 
ber of loci examined. Note also that d may be written as Z (z; - yi) ‘/2, where i 
denotes the i-th allele. The sampling variance of& is then computed by 

c 
V ( d )  = Z ( d  - D,)’/(r - 1). 

k=1 

This variance may be used for a statistical test of the significance of b,. 
In analogy to h k ,  let d k  be 

drc = yk f sk (17) 
ny) for the k-th where yk = (gx f g ~ ) / 2  - g x y  + (1 - g x ) / ( 2 n x )  f (1 - gy)/(2 

locus, in which nx and ny are the sample sizes for populations X and Y ,  respec- 
tively, and sk is a random variable with mean = 0 and variance V ,  ( d )  . Since yk 

and sk are not correlated with each other, we have 

V ( d )  = Vy ( d )  f V s ( d ) ,  (18) 

where V y ( d )  and V , ( d )  are the expected variances of yk and sk over all loci, 
respectively. 

We now determine the intra-locus variance of d, i.e. V 8  ( d )  , considering one 
locus. Clearly, V ,  ( d )  is 
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V S ( d )  = {V, ( jx )  + V,(jY>}/4,+ V , ( j X Y >  - covB(jx,jxY) - COvs(jY,jxY> ( 1 9 )  

where V ,  and Cov, denote the intra-locus variance and covariance, respectively. 
Note that the sampling covariance between jx and j y  is 0. V ,  (jx) and V,(jy) in 
the above expression are obtained by ( 1 2 ) .  V , ( ~ X Y )  and C ~ v s ( j x , ~ x ~ >  may be 
written as 

v, ( j X Y >  = E{ (?XiYi) 2l - {E(FziYi) 1" 
= E{""T; + i&xiyiwd - {qwi) l2 

COvs(jx,jxY> = E{7";ri + i&xp2yj3 - E(fzp2)E(ZziYi)* 

Since the genes in populations X and Y are sampled independently, we have 

E(siyi) = p '  4% . 
E(z;y;) = piqi{(nx - 1 )  ( n y  - l ) p i q i  + (nx - l ) P i  

+ ( n y  - 1 ) q i  + l > / ( n x n y >  
E(z;yi)  == piq+{ (nx - 1 )  (nx - 2 ) ~ :  + 3 (nx - 1 )pi + I}/ni 
E(":zjyj) = (nx - l ) p i p j q j { ( n x  - 21pi + 1>/n: 
E(zisjyiyj) = (nx - 1 )  ( n Y  - 1 )P ip iq iqd (nxnY)  

where i # j .  Therefore, 

V , ( j x y )  = { ( 1  - nx - nY) (zpiqi12 + (nx - w p : q i  + (nY - w p , q ;  
+ z p i q i } / ( n x n y )  

cov,(jx,jxY) = 2(nx - 1 )  {zp:q, - ( Z q : )  (zpiqi) 

cov,(jY,jxY) = 2(ny - 1 )  {Zp& - 

* 

Similarly, 

(qw) >/n; . 
Putting these into ( 1  9), the intra-locus variance of d is obtained. In practice, of 

course, the population moments zpi2, z p i 3 ,  zpiqi, etc. must be replaced by the 
sample moments xzi2, Zxi3, zziyi, etc., respectively. The intra-locus variance of 
d estimated from r loci is then given by 

where V ,  ( d k )  is the variance of d at the k-th locus. 
It is not easy to get the exact sampling variances of D and b', but the asympto- 

tic variances when sample size is large are easily obtained. Namely, the asymp- 
totic variance of Ij is 
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HETEROZYGOSITY A N D  GENETIC DISTANCE 385 

approximately. Note that Cov(Jx,Jy) is not 0 in this case, since g’s in populations 
X and Y are generally correlated. Since J x ,  J y  and J x y  are the arithmetic means of 
j x ,  j y  and j x y ,  respectively, V ( J x )  , V ( Jy) , Cov ( J x , J y )  , etc, are easily obtained by 
the observed values of jx7s,  jy7s  and jxy’s .  For example, V ( J x )  is the same as V ( A )  
in (4) , and 

Cov(JdY) = 2 ( j m )  - J X )  ( j Y ( k )  - JY)/{T(T - 1 )  1. 

V ( b )  =--_-+- +- 

T 

k=l 

Theref ore, 
V ( J x )  ~ ( J Y )  + ~ ( J x Y )  COV(JX,JY) 

4J; 4 4  J i Y  ~ J x J Y  

Again, this may be used for the significance test of D. 
The intra-locus variance ( V , ( D ) )  of B is also obtained in the same way. 

Since the intra-locus variances (V,  (Ix), V ,  (Jp) etc.) of Jx, Jp, etc. are ZV, ( i x )  / 
r2, XV, (jy)/r2, etc., respectively, where the summation is over different loci, we 
have 

sV, (id Z V ,  ( j y )  + W 8  ( ~ x Y )  V , ( D )  = {--+-- 
4.7; 4Ji7 C Y  

~Cov,  ( j x , j x Y )  - ZCov, ( ~ Y , ~ x Y >  

JxJxv J Y J X Y  
> / r z  * (23 1 - - 

On the other hand, Is’ may be written as 

where dE; is the value of - (log,j, + logejY) /2 4- log,jxy for the k-th locus. Thus, 
V (19’) is obtained by formula ( 16) , simply replacing d% by d i  and 19, by 19’. Simi- 
larly, the intra-locus variance ( V ,  (d’) ) of d’ over all loci may be estimated by 
(20) , replacing V8 (dk) by 

for the k-th locus. 
As noted earlier, D is a poor estimate when any one of jxy7s is small. This is re- 

flected in the above formula; when j x y  -+ 0, V ( 0 ’ )  diverges. The values of j x  and 
j y  never become 0 in practice. 

Computer programs for estimating the sampling variances of A, D,, b and 23’ 
and their components have been developed. They are available by writing to the 
authors. 

DISCUSSION 

In the foregoing sections we assumed that genotype frequencies are in Hardy- 
Weinberg proportions. If this assumption is not fulfilled, our estimate of hetero- 
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zygosity is no longer true. For example, in a selfing population there are virtually 
no heterozygotes at equilibrium, so that our H does not measure the proportion of 
heterozygous loci in an individual. However, it is a good measure of genic varia- 
tion of the population. In this sense H may be called the heterogeneity index or 
gene diversity and used in any population. It is equal to the probability of non- 
identity of two randomly chosen genes. NEI’S measure of genetic distance has 
been defined in terms of identities of genes, so that it is affected neither by non- 
random mating nor by natural selection. 

Failure of the assumption of the Hardy-Weinberg equilibrium, however, af- 
fects the sampling variances of both heterogeneity index and genetic distance. 
This is because the multinomial distribution (1) no longer holds. If sample size 
remains the same, inbreeding is expected to increase the variances of these quanti- 
ties. For example, in a completely inbred population, homozygous genotypes 
rather than genes are sampled according to a multinomial distribution, so that 
sampling of N individuals in this population is equivalent to sampling of N genes 
( N / 2  individuals) in a Hardy-Weinberg population. Therefore, to compute the 
intra-locus variances of heterogeneity index and genetic distance, n (the num- 
ber of genes examined) should be replaced by the number of individuals exam- 
ined. Of course, if the degree of inbreeding is small, our formulae should hold 
approximately. 

The intra-locus variances of heterogeneity index and genetic distance are also 
affected by dominance. Dominance is generally expected to increase these vari- 
ances, but the effect should not be large, unless the frequencies of recessive genes 
are very small. 

In a Hardy-Weinberg population it is possible to estimate the average hetero- 
zygosity by examining the proportion of heterozygotes directly, provided that all 
heterozygotes are recognizable. The sampling variance of this estimate at a locus 
may be obtained by h (1 - A),”, where A is the proportion of heterozygotes in the 
sample and N is the number of individuals examined. Biologically, however, this 
estimate is subject to several difficulties. First, if the population size is small, the 
genotype frequencies in the population may deviate considerably from the 
Hardy-Weinberg proportions due to the sampling error at the time of fertiliza- 
tion. Generally speaking, gene frequencies are more stable than genotype fre- 
quencies in a finite population. Second, if strong natural selection operates in a 
developmental stage before observation, the proportion of heterozygotes would be 
distorted and the observed proportion will no longer correspond to the theoretical 
formulation of heterozygosity as determined by mutation rate, selection and pop- 
ulation size (KIMURA and OHTA 1971). Third, if there is inbreeding, the propor- 
tion of heterozygotes is a poor measure of genetic heterogeneity of a population. 
For these reasons, this method cannot be recommended for a general use. 

In  planning a survey on the genetic heterogeneity of a population, it is im- 
portant to know how many loci and how many individuals per locus should be 
examined when the total number is fixed. Theoretically, this problem may be 
solved by minimizing the sampling variance of €3, i.e, 
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V ( A )  = IVY ( h )  + V8(h) ) / r  
with the constraint of rn equal to a constant (the total number of genes to be 
studied) , though the sampling variance is not the sole criterion in this case. But 
the differentiation of V ( B )  with respect to n yields a cubic function of n, SO that 
the general solution is not simple. In practice, however, V,  (h )  is generally much 
smaller than V y  ( h )  unless n is extremely small. Since the Vy (h )  does not de- 
crease with increasing n, this indicates that n can be relatively small when aver- 
age heterozygosity is to be estimated. 

Let us examine this problem by using the data obtained by AVISE and SELAN- 
DER (1972). These authors studied the protein polymorphisms in three cave and 
nine surface populations of the characid fish Astyanax mexicanus. For illustra- 
tion, let us use the data for populations 3 (cave) and 4 (surface). The number of 
protein loci examined was 17, and the number of individuals examined ( 4 2 )  
was 45 for all protein loci in population 3 and 79 in population 4. From the gene 
frequency data given in their paper, we can get the estimate ( A )  of average 
heterozygosity, which becomes 0.0962 in population 3 and 0.1384 in population 
4. On the other hand, the estimates of V y ( h )  and V,(h) are 0.02407767 and 
0.00069046, respectively, for population 3 and 0.03061028 and 0.00072046 for 
population 4. Thus, in both populations the estimate of V y ( h )  is much larger 
than that of V ,  ( h )  . In population 4, we recomputed the estimates of Vy ( h )  and 
V 8 ( h ) ,  assuming that n/2 was 20 rather than 79. They are 0.02856154 and 
0.0027692, respectively. Therefore, even with 20 individuals per locus, the esti- 
mate of V7(h) is still larger than V,(h).  This indicates that, for the purpose of 
estimating average heterozygosity, it would have been better to examine 67 loci 
(or even 30 loci) and 20 individuals per locus rather than 17 loci and 79 indi- 
viduals per locus. Namely, i f  r = 67 and V (h )  and V ,  (h )  remain the same, the 
the standard error ( v V ( A ) )  of €2 is expected to be 0.0216, while with the 
original values of r = 17 cnd n = 79 it is 0.0429. On the other hand, the expected 
amount ( H / n )  of bias of A is 0.09% for n/2= 79 and 0.35% for  n/2 ~ 2 0 ,  
if H is assumed to be equal to 0.1384. Thus, the bias is very small even for 
n/2 = 20. 

It is noted that in many studies on average heterozygosity so far conducted, 
the number of loci examined is rather small, while the number of individuals 
per locus is large. For estimating the average heterozygosity per locus, however, 
it is better to examine a large number of loci rather lhan a large number of indi- 
viduals per locus, unless V y ( h )  is extremely small. Of course, the actual sample 
size depends on the purpose of the survey. For example, if one is interested in 
testing the Hardy-Weinberg equilibrium as well as in estimating average hetero- 
zygosity, a relatively large number of individuals should be examined for each 
polymorphic locus. Note also that if n is too small, the bias of the estimate Z2 
becomes large. 

In the above discussion we were concerned only with average heterozygosity. 
But a similar argument can be made about the optimum size for measuring ge- 
netic distance between populations. Our empirical studies with human popula- 

- 
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tions indicate that the single-locus genetic distance ( d )  varies considerably with 
locus. This suggests that a large number of loci should be used to estimate the 
average genetic distance per locus. In a computer simulation of the Brownian 
motionflule process evolution, KIDD and CAVALLI-SFORZA (1971) also noted the 
importance of measuring a large number of “characters” in reconstructing evo- 
lutionary trees. 

Some special comments are, however, necessary on the genetic distance be- 
tween closely related populations. Our three distance measures are all non-nega- 
tive, and thus the sampling variation of gene frequencies may produce non-zero 
estimates of distance even if the two populations under comparison are identical. 
The expected magnitude of this spurious distance when the two populations are 
identical may be evaluated by the method given by NEI (1973b). If the observed 
value of genetic distance is of the same order of magnitude as the spurious dis- 
tance, the distance is not significant. In such a case the hypothesis D, # 0 may 
be tested more appropriately by the ordinary x2 method, if the sample size is 
sufficiently large. In  the present case the x2 for a locus is computed by 

(Xi - yi12 
X J Z X  + y a y  

x2 = nxny Z 

with the number of degrees of freedom equal to the number of alleles minus one. 
The test of the hypothesis D, # 0 may be made by using the sum of these x2’s for 
all loci studied. If D,  # 0, clearly D # 0, and D’ # 0. 

In the present paper we have shown how the inter-locus variance of heterozy- 
gosity or genetic distance can be estimated. Estimates of the inter-locus variance 
of heterozygosity permit some inference about the mechanism of maintenance 
of genetic variability in populations. STEWART (unpublished) worked out the 
theoretical variance of population heterozygosity when neutral mutations and 
genetic random drift are balanced. It is given by 

where 0 =  NU, in which N is the effective population size and U is the mutation 
rate per locus per generation. Therefore, if we know 0, Var(h) can be obtained. 
One test of the neutral mutation theory is to compare this theoretical variance 
with the observed value. An estimate of 0 may be obtained by A/ (1 - A ) ,  since 
the expectation of fi is 0/(l I+ 0 ) .  EWENS (1972) proposed a method for esti- 
mating 0 from the actual number of alleles in a given sample of genes. However, 
if there are any deleterious genes segregating in the population, his method is ex- 
pected to give an overestimate, even if such genes exist in low frequency and 
contribute very little to genetic variability. 

In  the previous data of AVISE and SELANDER (1972), the estimate of average 
heterozygosity is 0.0962 in population 3 and 0.1384 in population 4. Thus, the 
estimate of 0 becomes 0.1064 in population 3 and 0.1607 in population 4. Hence, 
Var(h) is estimated to be 0.0266 in population 3 and 0.0349 in population 4. On 
the other hand, the estimate of T/,(h) is 0.0246 in population 3 and 0.0310 in 
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population 4. Therefore, the expected and observed values of the variance of 
heterozygosity agree with each other surprisingly well. Of course, this may be 
coincidental and is not the proof for the neutral mutation hypothesis, since cer- 
tain kinds of selection and varying mutation rates may produce the same effect. 
Apparently, more data should be analyzed before we make any conclusion from 
this sort of study. 

We thank DRS. RANAJIT CHAKRABORTY and STEPHEN GEORGE for their helpful discussions. 

APPENDIX 

EXPECTED SQUARED DEVIATIONS OF ix AND 2 FROM g 

In the text we have defined g, j z  and 0 as follows: 
a x ;  - 1 

g = Z p : ,  j x = Z x : ,  g== 
n - I  

Thus, 

The expectation of (2 - g) 2 is 

- 
where fx = E ( j , )  and E ( j ,  - G ) 2  is equal to V, ( jx )  in (11)  in the text. Therefore, we obtain 

E(g-g )2 '  -E(j ,-g)z= [4 (2n-  1 )  (n--)(Zp:-g%) 
+ (I - g ) { ( n 2 ~ + 3 n - 2 ) g - n ( n -  1 ) } ] / [ n 3 ( n - l ) ] .  (A31 

If E (0 - g )  2 - E ( j x  - g )  2 is positive, then jx is a better estimate of g than 2. If it is negative, 
2 is a better estimate. The first term inside the bracket in (A3) is always positive or 0, since 

- ( Z P t )  = ( Z P ; )  @Pi 1 - ( Z P t )  

= & P i P i ( P ;  - P i P j )  
- - 2 P i P i ( P 6  - Pi12 2 0. 

i> j  
The second term is positive if 

n2 - n 
n 2 + 3 n - 2  g >  

Empirical data indicate that g is generally close to 1,  the average being about 0.9. Therefore, the 
second term is also positive in a majority of cases if n is small. For example, if g = 0.9, then the 
second term is positive if n is smaller than 36. Then, j x  is a better estimate than 2. If n is large, 
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it is not clear which is a better estimate, because of the second term in (M). In this case, how- 
ever, the difference between E( i -g)2  and E ( j , - g ) 2  is very small, since the denominator 
{n3(n - I)} in (A3) rapidly increases with increasing n. In  general, therefore, jx seems to be 
a better estimate than 8. 
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