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Abstract

Background: Metatranscriptomics has been used widely for investigation and quantification of microbial communities’
activity in response to external stimuli. By assessing the genes expressed, metatranscriptomics provides an understanding
of the interactions between different major functional guilds and the environment. Here, we present a de novo
assembly-based Comparative Metatranscriptomics Workflow (CoMW) implemented in a modular, reproducible structure.
Metatranscriptomics typically uses short sequence reads, which can either be directly aligned to external reference
databases (“assembly-free approach”) or first assembled into contigs before alignment (“assembly-based approach”). We
also compare CoMW (assembly-based implementation) with an assembly-free alternative workflow, using simulated and
real-world metatranscriptomes from Arctic and temperate terrestrial environments. We evaluate their accuracy in
precision and recall using generic and specialized hierarchical protein databases. Results: CoMW provided significantly
fewer false-positive results, resulting in more precise identification and quantification of functional genes in
metatranscriptomes. Using the comprehensive database M5nr, the assembly-based approach identified genes with only
0.6% false-positive results at thresholds ranging from inclusive to stringent compared with the assembly-free approach,
which yielded up to 15% false-positive results. Using specialized databases (carbohydrate-active enzyme and nitrogen
cycle), the assembly-based approach identified and quantified genes with 3–5 times fewer false-positive results. We also
evaluated the impact of both approaches on real-world datasets. Conclusions: We present an open source de novo
assembly-based CoMW. Our benchmarking findings support assembling short reads into contigs before alignment to a
reference database because this provides higher precision and minimizes false-positive results.
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Introduction

Metatranscriptomics provides an unprecedented insight to com-
plex functional dynamics of microbial communities in various
environments. The method has been applied to study the micro-
bial activity in thawing permafrost and the related biogeochem-

ical mechanisms contributing to greenhouse gas emissions [1],
and Gonzalez et al. [2] applied metatranscriptomics to evaluate
root microbiome response to soil contamination. Metatranscrip-
tomics has also been used to study the functional human gut mi-
crobiota [3, 4]. The method is typically used to identify, quantify,
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2 CoMW

and compare the functional response of microbial communities
in natural habitats or in relation to environmental or physio-
chemical impacts.

Using high-throughput sequencing techniques such as Illu-
mina, metatranscriptomics offers a non-PCR–biased method for
looking at transcriptional activity occurring within a complex
and diverse microbial population at a specific point in time [5].
However, curation and annotation of these complex data has
emerged as a major challenge. To date, several studies have
used various analytic workflows. Typically, short sequence reads
are used, which can be either individually aligned directly to
external reference databases (hereafter “assembly-free”) or as-
sembled into longer contiguous fragments (contigs) for align-
ment (hereafter “assembly-based”). Various studies have used
either of these 2 general approaches. For example, Poulsen et al.
[6] used an assembly-based approach. An open-source pipeline,
IMP [7] also uses this approach in integrated metagenomic and
metatranscriptomic analyses. The assembly-free approach has
instead been used by, e.g., Jung et al. [8], aligning short reads
to reference genomes of lactic acid bacterial strains associated
with the kimchi microbial community. Similarly, an open source
pipeline developed by Martinez et al. [9] to analyse metatran-
scriptomics datasets also aligns short reads directly to a protein
database before annotation. The choice of either of these 2 alter-
natives for metatranscriptomics analyses may depend on lack
of thorough comparisons. Because no independent and direct
comparison between them has been performed, various meta-
transcriptomics analysis approaches may at times produce in-
consistent observations, even if identical databases are used
in the analysis. Thus, standardization of computational analy-
sis is necessary to enable further propagation of metatranscrip-
tomics approaches and their integration into microbial ecology
research. Benchmarking provides a critical view of the efficiency
and precision of different workflows, and use of simulated com-
munities for benchmarking enables the analysis to be indepen-
dent of experimental variation and biases [10].

Here, we present the Comparative Metatranscriptomic Work-
flow (CoMW) implemented using the de novo assembly-based
approach, standardized and validated for functional annotation
and quantitative expression analysis. We validated the suitabil-
ity of CoMW for functional analysis by comparing it with a typi-
cal assembly-free approach using simulated datasets and evalu-
ated the accuracy of both approaches using precision, recall, and
false discovery rates (FDRs). Three different protein databases
were selected for this benchmarking in order to include a repre-
sentative selection of 3 different degrees of specialization, on a
range from a more inclusive database with wide coverage (uni-
versality) and low degree of expert curation to a smaller, highly
curated database, with more narrow coverage: (i) M5nr [11], an
inclusive and comprehensive non-redundant protein database
in combination with Evolutionary Genealogy of Genes: Non-
supervised Orthologous Groups (eggNOG) hierarchical annota-
tion; (ii) Carbohydrate-Active Enzymes (CAZy) [12], a database
dedicated to describing the families of structurally related cat-
alytic and carbohydrate-binding modules of enzymes; and (iii)
Nitrogen Cycling Database (NCycDB) [13], a specialized and man-
ually curated database covering only nitrogen cycle genes. Fi-
nally, to estimate the consistency and variance in the results
caused by the choice of approach, we then applied them to real-
world metatranscriptomes from microbial communities in (i)
active-layer permafrost soil from Svalbard, Norway [14], and (ii)
ash-impacted Danish forest soil [15].

Findings
Comparative Metatranscriptomics Workflow

We have standardized, implemented, and validated a metatran-
scriptomic workflow (CoMW) using a de novo assembly-based ap-
proach that can assist in analysing large metatranscriptomics
data. It makes each step of the metatranscriptomic workflow
straightforward and helps to make these complex analyses more
reproducible and the components re-useable in different con-
texts. The core processes such as open reading frame (ORF) de-
tection and alignment against the functional database are vital
in any metatranscriptomic analyses and are, therefore, present
uniformly in all workflows. However, because most of the tools
performing these core processes are ever improving, the work-
flow is implemented in modular format to provide the possibility
of using alternative tools and databases if preferred or a newer
version of these tools. Modularity additionally provides choice—
optional steps can be skipped, changed, or even improved in a
structural manner; e.g., the scripts are designed to cater con-
tigs from >1 assembler. In addition to core process CoMW has
a couple of optional steps such as abundance-based and non-
coding RNA filtering, which can be different in datasets from a
different environment. CoMW is an open source workflow writ-
ten in Python available at GitHub [16] and published as a com-
putational capsule on codeocean [17]. An Anaconda cloud en-
vironment is created with the provided configuration file to in-
stall third-party tools and dependencies. Help regarding input,
output, and parameters is provided with each script, and a com-
prehensive tutorial is presented in the GitHub repository.

Evaluation of CoMW (assembly-based approach) and
comparison with an assembly-free method

To compare the performance of the assembly-based workflow
CoMW and assembly-free approaches, we simulated commu-
nity transcript data using 4,943 full-length genes provided by
Martinez et al. [9]. We analysed both approaches separately and
compared against direct annotation of full-length genes. The
full-length genes were annotated using all 3 databases (M5nr,
CAZy, and NCycDB) independently to classify them into func-
tional subsystems and gene families. Fig. 1 shows a detailed
workflow of comparative analysis using both approaches.

Functional assignment

M5nr alignment
Full-length genes of the simulated community dataset were
aligned and identified into 671 unique eggNOG orthologs, be-
longing to 19 distinct functional subsystems (Level II). At the
default confidence threshold (bit score 50), the assembly-free
approach produced alignments to 820 orthologs with a preci-
sion of 85% (14.9% false-positive results [FPs]), whereas CoMW
identified 665 orthologs with a precision of 99.3% (0.6% FPs) at
the default confidence threshold of 1E−5. Repeating the align-
ments using a gradient of 15 varying confidence thresholds for
each approach (low [TL], medium [TM], and high [TH]; 5 thresh-
olds/category) resulted in dissimilar performance for the 2 ap-
proaches. The precision and recall of CoMW did not decrease
below 99.3% and 98.5%, respectively, throughout all categories
whereas the assembly-free approach had a maximum precision
of 96.3% at TM and decreased to 85% at TL and TH. CoMW also
produced fewer (only 0.6%) FPs consistently compared to the
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Anwar et al. 3

Figure 1: Flow chart illustrating the evaluation and benchmarking scheme used for the comparison of alternative approaches. Red path indicates the full-length genes
workflow, green indicates the steps in the assembly-based workflow CoMW, and blue indicates the steps in the assembly-free approach.

assembly-free approach, in which FPs ranged from 14.9% to a
minimum of 3.6% at highest precision. Based on F-score the
most optimal alignment for each approach is given in Table 1,
whereas detailed values for precision, recall, F-score, and FDR
are listed in Supplementary Table S1. We then also evaluated
both approaches by selectively removing sequences belonging to
a certain functional subsystem from the M5nr database in a con-
trolled manner (segmented cross-validation) in order to repli-
cate real-world metatranscriptomes where a certain functional

subsystem can be completely or partially absent from the refer-
ence database. We removed 4 (Level II) subsystems (“[D] Cell cy-
cle control, cell division, chromosome partitioning”; “[L] Replica-
tion, recombination, and repair”; “[E] Amino acid transport and
metabolism”; and “[R] General function prediction only” and “[S]
Function unknown”). The Level II subsystems were randomly re-
moved (see data availability for the script used for the removal)
one at a time, realigning full-length genes and simulated reads
using both CoMW and assembly-free approaches to the cropped
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4 CoMW

Table 1: Comparison of precision, recall, F-score, and FDR for the assembly-free and the CoMW (assembly-based) approaches using all 3
databases based on best F-score

Database Approach Threshold Threshold category Recall Precision F-score FDR (%)

eggNOG Assembly-free BTS 120 Strict (TH) 0.9880 0.9540 0.9707 4.5977
CoMW 1.00E−15 Strict (TH) 0.9851 0.9939 0.9895 0.6006

CAZy Assembly-free BTS 110 Strict (TH) 0.3510 0.5325 0.4231 46.7433
CoMW 1.00E−08 Medium (TM) 0.8131 0.7759 0.7940 22.4096

NCycDB Assembly-free BTS 150 Strict (TH) 0.1666 0.0581 0.0862 94.1860
CoMW 1.00E−14 Strict (TH) 0.6666 0.8333 0.7407 16.6666

Full table for both approaches and databases can be seen in Tables S1–S3. Boldface emphasizes better precision, recall, F-score, and FDR in each database between

both approaches.

database to compare identification consistency. In each valida-
tion round, both precision and recall of CoMW were significantly
higher than with the assembly-free approach. The recall abil-
ity of the assembly-free approach decreased significantly in this
validation as compared to the full database comparison. CoMW
also produced fewer FPs as compared to the assembly-free ap-
proach. Table 2 provides details for each validation cycle.

CAZy alignment
From 2,395 full-length genes, 500 sequences were aligned to 395
unique functional genes in the CAZy database, which belonged
to 130 gene families and were further classified as 7 enzyme
classes. Using default confidence thresholds (BTS 50, 1E−5), the
assembly-free approach identified 765 functional genes belong-
ing to 112 unique families and 6 enzyme classes with a preci-
sion of 28.5% (71.4% FPs). CoMW identified 488 functional genes
from the CAZy database that were classified into 147 gene fam-
ilies from 7 enzyme classes with a precision of 66.0% (FDR
33.9%) at the default confidence threshold. However, when we
repeated the process with 15 various confidence thresholds, pre-
cision improved consistently and FPs decreased, whereas for the
assembly-free approach, precision decreased significantly with
increasing confidence threshold (see Table 1 and Supplementary
Table S2).

NCycDB alignment
A total of 410 of the 2,395 full-length genes were aligned to this
database, identified as 29 unique nitrogen cycle genes and fur-
ther belonging to 15 functional gene families in 5 pathways. Us-
ing default confidence thresholds, the assembly-free approach
identified 1,541 functional genes belonging to 25 functional gene
families classified into 6 pathways with a precision of 0.9%
(99.0% FPs). CoMW identified 42 nitrogen cycle genes classified
into 25 gene families from 6 pathways with a precision of 59.5%
(40.4% FPs) at a default confidence threshold of 1E−5. As with
the comparisons against M5nr and CAZy we repeated the pro-
cess with 15 different confidence thresholds for each approach.
Precision improved significantly for CoMW at stringent thresh-
olds whereas for the assembly-free approach, the best precision
achieved was 5.8% (Table 1, Supplementary Table S3).

Expression quantification

We also compared the ability of both approaches to quantify
the expression of identified transcripts by performing differen-
tial expression analysis of 2 groups in simulated communities
and compared against the full-length gene expression simu-
lated. We selected the 3 best identification thresholds for both
approaches based on highest F-score and performed differen-
tial expression analysis. This analysis for both approaches was

carried out against all 3 databases using the most specific level
of hierarchy in the respective databases in order to capture their
ability to quantify expression levels of specific genes.

According to full-length gene alignments against eggNOG,
123 genes were significantly upregulated and 270 were signifi-
cantly downregulated. According to the assembly-free approach
(with the best resulting F-score), 73 genes were upregulated
(precision 94.5%, 5.4% FPs) and 380 (precision 65.7%, 34.2% FPs)
were downregulated, whereas using the assembly-based ap-
proach (CoMW), 99 genes were identified as upregulated (pre-
cision 94.9%, 5.1% FPs) and 249 downregulated (precision 97.1%,
2.8% FPs). For the CAZy database full-length genes, 81 and 189
genes were identified as significantly up- and downregulated,
respectively. Using the assembly-free approach 31 upregulated
(precision 19.3%, 80.6% FPs) and 137 downregulated genes (preci-
sion 52.5%, 47.4% FPs) were identified, whereas the CoMW iden-
tified 83 (precision 71.2%, 28.9% FPs) and 191 (precision 73.8%,
26.1% FPs), respectively. In the NCycDB expression analysis, 3
and 14 genes were seen as significantly up- and downregulated,
respectively, using full-length genes. According to the assembly-
free approach, 26 (precision 0%, 100% FPs) and 107 (precision
4.6%, 95.3% FPs) genes were up- and downregulated, respec-
tively, whereas according to CoMW, 3 (precision 33.3%, 66.6% FPs)
genes were upregulated and 18 (precision 55.5%, 44.4% FPs) were
downregulated. Precision, recall, and FDR for both approaches
against all 3 databases are available in Supplementary Table S4.
Additionally, we collapsed the functional genes into functional
subsystems and gene families to remove FPs produced due to
identification of homologous proteins or proteins with multiple
inheritance. Fold change (log2 transformed) was then calculated
for each subsystem/gene family (see Fig. 2).

Real-world metatranscriptomes
To evaluate the effect of the 2 approaches on real-world data, 2
metatranscriptomes from microbial communities were studied.
In the first study we investigated the transcriptional response
during warming from −10◦C to 2◦C and subsequent cooling from
2◦C to −10◦C of an Arctic tundra active layer soil from Svalbard,
Norway. The aim of the study was to understand taxonomic and
functional shifts in microbial communities caused by thawing
and freezing of Arctic soil. A pronounced shift during the incuba-
tion period was noticed by Schostag et al. [14] that was not repli-
cated by the assembly-free approach. However, using CoMW, we
identified an increase of genes in the subsystem “[P] Inorganic
ion transport and metabolism.” During cooling, CoMW also cap-
tured the upregulation and downregulation of genes related to
“[J] Translation, ribosomal structure, and biogenesis” and “[C]
Energy production and conversion,” respectively (Fig. 3), unlike
the assembly-free approach. These findings may have implica-
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Anwar et al. 5

Table 2: Comparison of precision, recall, F-score, and FDR for the assembly-free and CoMW (assembly-based) approaches using the selective
removal of functional subsystems from eggNOG database (segmented cross-validation) to evaluate the consistency of both approaches

Removed subsystem Approach Recall Precision F-score FDR (%)

Cell wall/membrane/envelope biogenesis [M] Assembly-free 0.8726 0.9580 0.9133 4.1958
CoMW 0.9792 0.9855 0.9824 1.4423

Replication, recombination, and repair [L] Assembly-free 0.8734 0.9588 0.9141 4.1166
CoMW 0.9796 0.9858 0.9827 1.415

Amino acid transport and metabolism [E] Assembly-free 0.8750 0.9589 0.9150 4.1095
CoMW 0.9812 0.9874 0.9843 1.2578

General function prediction only and Function unknown [R], [S] Assembly-free 0.8933 0.9281 0.9104 7.1856
CoMW 0.9884 0.97443 0.9814 2.5568

Boldface emphasizes better consistency compared with full-length genes.

Figure 2: Differential expression comparison of the assembly-free and the CoMW assembly-based approaches using (A) eggNOG database, (B) CAZy, and (C) NCycDB

database.

tions for our understanding of carbon dioxide emission, nitrogen
cycling, and plant nutrient availability in Arctic soils.

In the second study, we investigated the effects of wood ash
amendment on Danish forest soils [15]. Ash was added in 3 dif-
ferent quantities (0/control, 3, 12, and 90 tonnes ash per hectare
[t ha−1]) and the effect over time was analysed in soil communi-
ties at 0, 3, 30, and 100 days after ash addition. This resulted in
strong effects on functional expression as seen in Fig. 4. Both ap-
proaches once again displayed varying results such as changes
in genes related to eggNOG functional subsystem “[W] Extra-
cellular structures.” The assembly-free approach also identified
75% of genes as “[S] Function unknown” consistently, unlike the
assembly-based approach.

Discussion

The application of metatranscriptomics is less common than
other DNA-based genomics techniques, and thus most analy-
sis pipelines are built ad hoc [18]. An assembly-free approach is
used in a few pipelines/workflows such as COMAN [19], Meta-
trans [9], and SAMSA2 [20], while an assembly-based approach
is used in a few pipelines as well such as IMP [7]. The lack
of thorough benchmarking studies and standardized workflows
in metatranscriptomics has made it a more challenging task
to analyse the typically big datasets produced. Previous stud-
ies, e.g., Zhao et al. [21] and Celaj et al. [22], have compared de
novo sequence assemblers including Trinity [23], MetaVelvet [24],

Oases [25], ABySS [26], and SOAPdenovo [27]. Similarly, for the
assembly-free approach direct short-read mappers have been
compared thoroughly such as DIAMOND [28], BLASTX [29], and
RAPSearch2 [30], but an independent comparison of the 2 differ-
ent approaches based on including assembly or directly aligning
reads (here “assembly-free”) has been lacking. Critical Assess-
ment of Metagenomic Interpreter (CAMI) [31] is so far the most
comprehensive benchmarking effort; however, it lacks any sim-
ilar metatranscriptomics benchmarking. IMP [7] uses an inte-
grated approach of metagenomics and metatranscriptomics and
has some overlapping areas to CoMW and can be used together
owing to the modular approach of CoMW.

Using simulated samples composed of genes collected from
abundant genomes provided by Martinez et al. [9], we show that
both approaches provide similarly high recall rates against the
general comprehensive database M5nr. However, CoMW pro-
vided a significantly better precision and a lower FDR for iden-
tification and quantification. For relatively compact and spe-
cialized databases, recall and precision decrease for both ap-
proaches (especially for the most compact database NCycDB);
whereas CoMW still seemed to be more precise, meaning that
fewer genes were misassigned against these databases and sig-
nificantly fewer FPs were produced.

We have attempted to assist this decision making for pro-
cessing metatranscriptomic analysis by independently assess-
ing the performance of the 2 most common approaches and
provide a road map for functional annotation and expression
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6 CoMW

Figure 3: Relative abundance of eggNOG functional subsystems in Arctic permafrost soil identified and quantified using both CoMW and the assembly-free approach
compares the differences in observed functional dynamics. Blue dotted line represents trends using CoMW (assembly-based) whereas red solid line represents the
assembly-free approach.

quantification against databases ranging from inclusive to spe-
cialized. The significantly higher precision in identification and
quantification for gene families and functional subsystems in
simulated samples, against all 3 databases, confirmed that while
an assembly step is challenging computationally, it holds the
potential to reveal information regarding gene expression that
is not attainable without it. Selecting a single best workflow or
pipeline for all types of metatranscriptomics studies is not a
straightforward affair, and we believe that choice of approach
changes the outcome of study significantly as observed with
real-world datasets from active-layer permafrost soil from Sval-
bard, Norway, and ash-impacted Danish forest soil. In addition
to choosing the right workflow, combining that with the appro-
priate reference database is equally important to ensure the best
annotation performance. With databases specialized for ≥1 spe-
cific environments or functional categories, the assembly-free
approach underperforms owing to its inability to identify align-
ments to homologues in the reference database. We also show
that the assembly-free approach can increase the FDR in anno-
tation when a database is dominant in specific functional sub-
system, which can also lead to wrong estimation of fold change
in expression.

While taxonomic annotation is beyond the scope of CoMW
and thus our benchmarking analyses, it is important to con-
sider the limited value of most functional genes for and thus
functional metatranscriptomics alone for structural profiling of

environmental communities, due to the high rate of horizon-
tal gene transfer [32]. Approaches for this purpose include the
identification of a limited set of “phylogenetic marker genes”
(e.g., [33]) or “total RNA” metatranscriptomics whereby the ri-
bosomal RNA content is retained and used for taxonomic anal-
ysis [34]. Although not shown here, we expect that the former
approach would also benefit in accuracy from assembling mes-
senger RNA to full-length transcripts before classification, based
on our results regarding functional diversity. The total RNA ap-
proach also benefits from custom ribosomal RNA targeted as-
sembly [15], which may be incorporated into CoMW thanks to
its modularity.

In summary, we present the assembly-based workflow
CoMW and show that this approach results in consistently better
accuracy for functional analysis of metatranscriptomics data.
Our benchmarking results show that the choice of approach
(assembly-free vs assembly-based) and database significantly
affects the quality of the identification, annotation, and expres-
sion results. Given the impact of each of these variables, it is
inevitable that it significantly affects the results of an individ-
ual study and comparison across studies. We believe that the
work presented here will both provide a useful tool for and as-
sist the microbial ecology research community to make more
informed decisions about the most appropriate methodological
approach to analyse large metatranscriptomic datasets with im-
proved precision.
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Anwar et al. 7

Figure 4: Relative abundance of eggNOG functional subsystems in ash-deposited Danish forest soil with time identified using both the CoMW and an assembly-free
approach. Blue dotted line represents trends using CoMW (assembly-based) whereas red solid line represents the assembly-free approach.

Methods
CoMW implementation

CoMW (assembly-based) is based on 4 major steps: (i) de novo as-
sembly and mapping, (ii) filtering, (iii) gene prediction and align-
ment, and (iv) annotation.

De novo assembly and mapping of short reads back to assem-
bled contigs is done using Trinity [23] and BWA [35], respectively.
Various tools have been developed for de novo metatranscrip-
tome reconstruction that usually rely on graph theory. Trinity,
however, generates the most optimal assemblies for coding RNA
reads [18, 22, 36]. Nevertheless, in CoMW, the user can assemble
short reads into contigs by any assembler preferred but it can
reduce the quality of the following steps such as alignment of
contigs.

Filtering of contigs is done to remove variance in se-
quences/samples. Because CoMW is assembly-based, after we
assemble the reads into longer contigs we also propose a 2-step
filtering of the contigs to remove any chimeric or false contig
made as a result of assembly or sequencing error by removing
contigs that have an expression level less than a specific thresh-
old and to remove any potential non-coding RNA contigs assem-
bled. We can filter contig abundance data by removing all con-
tigs with relative expression lower than a specific cut-off, e.g., 1%
(selected on the basis of dataset variance) of the number of se-
quences in the dataset with the fewest sequences. This thresh-
old is also flexible for different datasets and in some cases not

required at all, so CoMW allows the user to bypass this step or
change the threshold up and down on the basis of data variation.
The filtered contigs are subject to potential non-coding RNA fil-
tration by aligning them against the RFam database [37] using
infernal [38], which is a secondary-structure–aware aligner that
predicts the secondary structure of RNA sequences and similar-
ities based on the consensus structure models. Once again, the
non-coding RNA filtering is an optional step in CoMW, although
highly recommended in order to reduce FPs.

Gene prediction and alignment is done using Transeq from
EMBOSS [39] to predict probable ORFs of the contigs (customiz-
able, by default 6 per contig). We used SWORD [40] as alignment
tool against reference databases. SWORD can be used in paral-
lel based on computational resources available, and the aligned
results are parsed and cut off at a specific confidence threshold
of combination of E-value and alignment length (usually 1E−5,
can be changed given the assembly distribution in datasets).

Annotation of aligned transcripts from the previous step can
be done using the databases such as eggNOG, which is a hier-
archically structured annotation using a graph-based unsuper-
vised clustering available algorithm to produce genome-wide or-
thology inferences; CAZy, which is a knowledge-based resource
specializing in glycogenomics; and NCycDB, a nitrogen cycle
database. Aligned proteins are then placed into functional sub-
systems or gene families based on their best hits. This results in
a count table with a contig and eggNOG ortholog or CAZy gene or
NCyc gene having a certain count from each sample depending
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8 CoMW

on database used. This count table can be then used for differen-
tial expression using a state-of-the-art expression analysis suite
such as DESeq2 [41] or its wrapper SARTools [42]. For evaluation
of CoMW we used the template script provided by the SARTools
for DeSeq2 analysis, where we specified first group of samples
as the reference samples and second group as condition with a
parametric mean variance and Benjamini-Hochberg method for
P adjustment [43].

Assembly-free workflow

For the assembly-free approach we used the Metatrans pipeline
[9], which uses FragGeneScan [44] for ORF predictions in short
reads, CD-HIT [45] for gene clustering, and Diamond [28] for
alignment against the M5nr, CAZy, and NCyc [11–13] databases.
We then used the same annotation script, which Is included in
CoMW. For expression analysis gene counts were normalized be-
tween samples using the DESeq2 [41] algorithm. Significantly
differentially expressed genes were analysed in SARTools [42]
using a parametric relationship and P-value of 0.05 as signifi-
cance threshold. The Benjamini-Hochberg correction procedure
[43] was used to adjust P-value. For parameters and versions of
tools used in Metatrans see supplementary GitHub repository in
data availability.

Composition of simulated communities

In this study we used a set of simulated communities from Mar-
tinez et al. [9], who collected 4,943 genes (coding regions) from
5 abundant microbial genomes: Bacteroides vulgatus ATCC 8482,
Ruminococcus torques L2–14, Faecalibacterium prausnitzii SL3/3, Bac-
teroides thetaiotaomicron VPI-5482, and Parabacteroides distasonis
ATCC 8503. We simulated short reads into 100 samples using
Polyester [46] embedded in a script provided by Martinez et al.
[9] at coverage of 20×, which resulted in a count table and short
reads with 2,395 genes to add the impact of sequencing coverage
that the simulator mimics. The process of regulation of abun-
dance was done by first dividing the 100 samples into 2 groups
(“A” and “B”) and then the abundance of a randomly selected 10%
of the genes was upregulated and downregulated ≤4-fold; in ad-
dition, we knocked out (0 abundance) 5% of genes completely
from both simulated reads and count tables. The process of se-
lection of samples and genes was random but tracked. To in-
clude quality and coverage bias, we used the ART simulator [47]
that mimics the coverage bias, and thus some genes were re-
moved to produce an equal number of reads in FASTQ format to
those produced by Polyester. ART was initially trained with Hi-
Seq 2500 Illumina quality error model from the aforementioned
dataset to have a consistent error bias. After simulating FASTQ
files we then extracted the quality data and bound them to the
FASTA files, generating new FASTQ files. With the coverage bias
and quality training included we had a total of 62,035,912 reads
(310,179 ± 3,454 reads/sample).

Evaluation measures

We used the standard measures of precision (aka positive pre-
dictive value), accounting for how many annotations and iden-
tifications of significantly differentially expressed gene fami-
lies and subsystems are correct and defined as TP/(TP + FP),
and recall (aka sensitivity or true positive [TP] rate), account-
ing for how many correct annotations are selected, defined as
TP/(TP + FN), where TP indicates the number of orthologs that
have been correctly annotated, FN indicates the number of or-

thologs/genes/functional subsystems that are in the simulated
communities but were not found by a certain approach, and
FP indicates the number of orthologs/genes/functional subsys-
tems that have been wrongly annotated (because they do not
appear in the simulated communities). The F-score is the har-
monic mean of precision and recall, defined as (2 × Precision ×
Recall)/(Precision + Recall).

Availability of source code and requirements
� Project name: Comparative Metatranscriptomics Workflow

(CoMW)
� Project home page: https://github.com/anwarMZ/CoMW
� Operating system(s): Platform independent
� Programming language: Python, R, and bash
� Other requirements: Requirements mentioned in detailed

manual at GitHub
� License: GNU General Public License v3.0

Availability of supporting data and materials
� An archival copy of the code and supporting data are avail-

able via the GigaScience database, GigaDB [48]
� Raw sequence data generated using simulation of full-length

genes were deposited in the NCBI SRA and are accessible
through BioProject accession number PRJNA509064

� Project supplementary scripts: https://github.com/anwarMZ
/CoMW supp

� CoMW is published as computational capsule on codeocean
[17] and can be accessed through https://doi.org/10.24433/C
O.1793842.v1

� CoMW is registered at SciCrunch.org with RRID:SCR 017109

Additional files

Supplementary File 1–Precision recall analysis of both ap-
proaches.
Supplementary File 2–Differential expression analysis of all ap-
proaches using eggNOG database.
Supplementary File 3–Differential expression analysis of all ap-
proaches using CAZy database.
Supplementary File 4–Differential expression analysis of all ap-
proaches using NCyc database.
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