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S U M M A R Y
Constraining initial conditions and parameters of mantle convection for a planet often requires
running several hundred computationally expensive simulations in order to find those matching
certain ‘observables’, such as crustal thickness, duration of volcanism, or radial contraction. A
lower fidelity alternative is to use 1-D evolution models based on scaling laws that parametrize
convective heat transfer. However, this approach is often limited in the amount of physics
that scaling laws can accurately represent (e.g. temperature and pressure-dependent rheologies
or mineralogical phase transitions can only be marginally simulated). We leverage neural
networks to build a surrogate model that can predict the entire evolution (0–4.5 Gyr) of the
1-D temperature profile of a Mars-like planet for a wide range of values of five different
parameters: reference viscosity, activation energy and activation volume of diffusion creep,
enrichment factor of heat-producing elements in the crust and initial temperature of the mantle.
The neural network we evaluate and present here has been trained from a subset of ∼10 000
evolution simulations of Mars ran on a 2-D quarter-cylindrical grid, from which we extracted
laterally averaged 1-D temperature profiles. The temperature profiles predicted by this trained
network match those of an unseen batch of 2-D simulations with an average accuracy of
99.7 per cent.
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1 I N T RO D U C T I O N

The evolution of terrestrial planets is governed by subsolidus mantle
convection (e.g. Breuer & Moore 2015). The physics of mantle con-
vection can be quantified by solving the conservation equations of
mass, momentum and energy for a fluid with an extremely high vis-
cosity and negligible inertia. These are coupled nonlinear partial dif-
ferential equations that are typically solved numerically using dedi-
cated fluid dynamics codes (see e.g. the review of Zhong et al. 2015).

The initial conditions and large number of parameters required
to run mantle convection simulations are often poorly known and/or
largely unconstrained. However, certain outputs of the simulations
can be related to ‘observables’ that can be inferred through plan-
etary space missions using camera data, remote-sensing, or in situ
measurements (e.g. radial contraction, surface heat flux, surface
magnetization, duration and timing of volcanism, crustal thickness
and elastic lithosphere thickness). These observables can be used
as constraints to infer key model parameters and initial conditions,
with the goal of learning about the basic physics and evolution of
planets (e.g. Tosi & Padovan 2020).

However, it can be computationally prohibitive to thoroughly
scan the relevant parameter space through the solution of the full

set of mantle convection equations in 2-D or 3-D. Hence, it is desir-
able to have a low-dimensional mapping that can rapidly predict the
evolution for several parameters. The development of parametrized
evolution models in the last few decades goes in this direction.
They are essentially based on stacking several steady-state convec-
tive solutions (derived from experiments or numerical convection
models), which are then advanced in time according to an energy
balance equation (e.g. Stevenson et al. 1983; Gurnis 1989). The
steady-state solutions are mostly expressed as scaling laws relating
the vigour of convection, quantified through the non-dimensional
Rayleigh number (Ra), and the non-dimensional ratio of convec-
tive to total heat flux at the surface, quantified through the non-
dimensional Nusselt number (Nu, e.g. Reese et al. 1998; Dumoulin
et al. 1999; Solomatov & Moresi 2000; Deschamps & Sotin 2001).
Such scaling laws are obtained by using a linear one-to-one (Ra-to-
Nu) regression approach. However, the scaling laws obtained using
this low-dimensional regression method and thereby the resulting
parametrized evolution models have the disadvantage of being lim-
ited to relatively simple flows, mostly with constant material prop-
erties. For example, expanding on previous studies based on incom-
pressible convection, Čı́žková et al. (2017), using a Cartesian 2-D
convection model, investigated the impact of compressibility. They
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Figure 1. Our strategy for building a forward surrogate of the thermal evolution of Mars. (a) Five different parameters are randomly drawn from a uniform
distribution: reference viscosity (ηref); crustal enrichment factor (�) with respect to a given bulk composition of radiogenic elements; initial mantle temperature
(Tini); activation energy (E) and activation volume (V) governing the temperature and pressure dependence of the viscosity. (b) These are used as inputs for
2-D convection simulations. (c) For each simulation sn, we obtain a series of 2-D temperature fields as a function of time. (d) These temperature fields are then
laterally averaged to arrive at a sequence of 1-D temperature profiles. e) We train our network G(x, w) using these profiles. A trained surrogate G(x, w∗) can
then use the optimized weights w∗ to instantaneously predict temperature profiles for the given parameters.

parametrized its influence through an additional non-dimensional
number, the so-called dissipation number Di (e.g. King et al. 2010),
and derived different Nu to Ra scaling relationships for different
values of Di. This approach, however, becomes impractical as the
number of parameters to test, such as Di, begins to grow.

Neural networks (NNs) have been increasingly used for study-
ing multivariate problems by approximating unknown high-
dimensional functions from image classification to text recognition,
all the way to geodynamics. For example, Baumann & Kaus (2015)
show that Markov Chain Monte Carlo methods can be used to con-
strain rheology and dynamics of the lithosphere in collision zones.
In a different, yet related work, Baumann (2016) use NNs to study
the same geodynamic inversion problem using an unsupervised
classification algorithm called self-organizing map (Vesanto & Al-
honiemi 2000). Another notable work is by Atkins et al. (2016),
where they used a specific type of NN – called Mixture Density
Networks (MDNs, Bishop 1994) – to study mantle convection as a
pattern recognition problem. They inverted reduced representations
of temperature fields to constrain parameters such as reference vis-
cosity, yield stress and initial temperature. Shahnas et al. (2018)
used support vector machine to estimate the magnitude of density
anomalies from snapshots of mantle temperature fields. Recently,
Baumeister et al. (2020) used MDNs to predict the distribution of
the possible interior structures of extrasolar planets given observa-
tions of their mass and radius. All the above works are examples
of inverse problems, where machine learning (ML) is used to in-
fer parameters from observables. However, there have been fewer
studies on NN-based forward surrogates. Atkins (2017) proposed
a forward surrogate model for the Earth capable of predicting the
mean mantle temperature and the degree of lateral heterogeneity us-
ing MDNs. Gillooly et al. (2019) used convection simulations with
plate-like behaviour together with Generative Adversial Networks
in order to complement plate reconstructions with an algorithm able
to interpolate plate boundaries in unresolved regions.

With the goal of providing a tool to rapidly explore the thermal
evolution of a Mars-like planet using the relevant physics, in this
paper we build a 1-D surrogate model. As shown in Fig. 1, we
use NNs to find nonlinear mappings from five parameters (plus

time) to the temporal evolution of the 1-D temperature profile of
the silicate mantle. A trained network that can be used to model the
thermal evolution of a simplified Mars-like planet for a given set
of parameters is freely available at https://github.com/agsiddhant/
ForwardSurrogate Mars 1D.

The paper is organized as follows. We begin by outlining the
basics of NNs and the specific algorithms that we use to train the
networks (Section 2). We then present the setup of the numerical
simulations used to generate a data set of thermal evolutions of Mars
calculated with our finite-volume code GAIA (Hüttig et al. 2013).
Then, in Section 4, we present the data set, the results from training
the NNs, and a comparison of the thermal evolutions predicted by
the network with an independent set of GAIA simulations not used
in training or evaluating the NNs. We then conclude by discussing
some future avenues for the application of surrogate modelling in
mantle convection research. Two appendices containing the more
technical details of the NNs (Appendix A) and mantle convection
model (Appendix B) complete the work.

2 N E U R A L N E T W O R K S F O R
H I G H - D I M E N S I O NA L R E G R E S S I O N

In this section, we outline the basics of NNs. For a more detailed,
yet accessible, introduction we refer to Bishop (1997). Consider a
simple NN, like the one illustrated in Fig. 2. Here, only one hidden
layer is shown. However, typically NNs will have more than one.
The NN connects inputs nodes to outputs nodes via a hidden layer
h with n neurons. Each neuron receives n inputs from the previous
layer and outputs:

z(x) = g

(
n∑

i=1

wi xi + w0x0

)
, (1)

where, g() is the activation function, which allows modelling nonlin-
earities. In this study, we use tanh () as activation function. Further-
more, x0 = 1 is a ‘bias’ neuron added to each layer in the network—
serves to translate the activation function to the left or to the right
so that the origin of the activation function is not fixed at zero. In a
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Figure 2. Schematic of how a basic NN is used to build a forward surrogate model. The input nodes are connected to the output nodes via neurons in so-called
‘hidden layers’. Each connection is quantified by an adjustable weight, which is optimized over several iterations by backpropagating the error in NN prediction.
Typically, NNs will have more than one hidden layer. The trained network can then take inputs t, ηref, �, Tini, E and V and predicts the temperature profile at
time t. This way the network can be evaluated at multiple values of t to produce an entire evolution.

fully connected NN, each neuron is connected with all the neurons
in the previous layer. In this way, NNs provide a structure capable of
approximating highly complex nonlinear maps (Baum & Haussler
1989).

A mapping, say G(x), can be modelled by an NN as G(x, w),
where w are adjustable weights. Once the structure of the NN has
been defined, one needs to optimize the weights w. This can be
done by defining a cost function that depends on w. One of the most
commonly used cost functions is the mean-squared error (MSE).
Its derivation is available in Appendix A. The standard approach to
optimizing this cost function is error backpropagation. (e.g. Werbos
1982; Rumelhart et al. 1986). For an NN like the one illustrated
in Fig. 2, the method of backpropagation would generally work
as follows. The error in prediction by the network is propagated
backwards through all the hidden layers using the principles of
chain rule for differentiation. The derivatives of errors with respect
to weights are used to update the adjustable parameters in a hid-
den layer at each iteration. This process is called gradient descent.
There are several variants of gradient descent. We use a popular
stochastic gradient descent optimizer called Adam (Kingma & Ba
2014, adaptive moment estimation) on mini-batches of the training
set (which improves computational efficiency).

The derivatives needed during gradient descent can be calculated
analytically or by automatic differentiation (AD), now offered by
several ML libraries. We use TensorFlow (Abadi et al. 2015), where
one only needs to set up the computational graph by defining the
NN architecture and specifying the cost function. TensorFlow uses
AD and one of the several already included optimizers (Adam in
our case) to minimize the cost function. To systematically train and
evaluate the performance of our networks, we split the data into
three parts by first randomly shuffling the entire data set and then
taking the desired number of samples. Training set: subset of data
that is used to train the network; Validation set: half of the remaining
data are used to fine tune the hyperparameters of the NN and make
sure the network is not overfitting; Test set: the second half of the
remaining data is used to evaluate the results. This last subset of the
data is needed for assessing how well the NN performs because it is
not seen by the network at any point in training or validating. In this
study, we maintain a training/validating/testing split of (80 per cent,

10 per cent, and 10 per cent). We employ two different techniques
to prevent overfitting. First, we modify the error function to include
L2-regularization (see Appendix A). Second, we use early-stopping
(Prechelt 2012), that is we only let the network train until the error
function evaluated on the validation set starts increasing beyond a
certain threshold.

3 S I M U L AT I O N S S E T U P

To train our ML algorithm, we generate a data set of simulations
of the thermal evolution of Mars based on a setup similar to that
used by Plesa et al. (2015). We consider a fluid with Newtonian
rheology and infinite Prandtl number under the extended Boussi-
nesq approximation (EBA, e.g. King et al. 2010). The viscosity
is calculated using the Arrhenius law of diffusion creep (Hirth &
Kohlstedt 2003). The thermal expansivity and conductivity are also
temperature- and pressure-dependent (Tosi et al. 2013). Assuming
that a crust of fixed thickness dcr formed early (Nimmo & Tanaka
2005), we adjust the bulk abundance of all heat-producing elements
in the whole mantle to a new bulk composition according to a given
crustal enrichment factor �. The model includes the effects of par-
tial melting on the energy balance as well as on the depletion of
heat-producing elements (Padovan et al. 2017). Two phase transi-
tions in the olivine system are included using the standard approach
of Christensen & Yuen (1985). The model is completed by a cooling
boundary condition to treat the evolution of the core temperature.
A detailed explanation of the thermal evolution model along with
the corresponding equations is available in Appendix B.

4 R E S U LT S

4.1 Data set of Mars simulations

We built a data set with 10 453 evolution simulations using the setup
described in Section 3, generating 2 TB of data using approximately
200 000 CPU hours. In this data set, we vary five parameters: the ref-
erence viscosity, the enrichment factor, the initial temperature and
the activation energy and the activation volume, which, as shown
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Figure 3. Evolution simulations colour-coded according to the reference viscosity ηref. The four panels on the left show the evolution of the (a) CMB
temperature, (b) mean mantle temperature, (c) CMB heat flux and (d) surface heat flux. Panel (e) shows the temperature profiles at the end of the evo-
lution from the simulations that reached 4.5 Gyr. Some simulations did not finish but the partial time-series were still used to train the NN (see the text
for details).

by previous thermal evolution models of Mars (e.g. Grott & Wiec-
zorek 2012; Plesa et al. 2015, 2018), strongly influence the thermal
evolution but are not well constrained. The parameters to vary are
drawn from a uniform distribution randomly generated for specified
ranges as shown in Fig. 1: ηref ∈ [1019, 1022] Pa s, � ∈ [1, 50], Tini

∈ [1600, 1800] K, E ∈ [105, 5 × 105] J mol−1 and V ∈ [4 × 10−6,
10 × 10−6] m3 mol−1. For each combination of the parameters, we
ran a thermal evolution over 4.5 Gyr. However, not all simulations
reached 4.5 Gyr. For certain combinations of parameters, convection
can be extremely vigorous, which dramatically restricts the size of
time-steps while rendering the systems of linear equations to solve
particularly stiff. For certain simulations, the linear solver did not
converge, invalidating the numerical solution. We filtered out such
simulations by considering the root mean square of the magnitude
of the velocity in the mantle u′

rms. We empirically chose an upper
bound of 20 000 for u′

rms to ensure sufficient accuracy without los-
ing too many simulations. Overall, 9524 out of 10 453 simulations
satisfied the criterion of u′

rms ≤ 20 000.
Of these 9524 simulations, we used all the available time steps

– even from simulations that did not finish. This is because our
input vector x to the NN includes time and equals [t, ηref, E, V, �,
Tini]. The number of time-steps available for each simulation can
vary greatly because while running the simulations, we chose to
save an output every 4000th flow solver iteration as well as every
90 Myr. This was done to ensure that even for numerically stiff
simulations, at least some time-steps were available. In total, we
stored 337 848 time-steps from the filtered data, averaging 35 per
simulation.

Fig. 3 shows the evolution of the mean mantle and core–mantle
boundary (CMB) temperatures, and of the surface and CMB heat

fluxes, coloured according to the reference viscosity, from high
(blue) to low (red). Temperature profiles from finished evolution
simulations after 4.5 Gyr are also shown. It is clear that there ex-
ists some pattern in the outcome of the simulations. For example,
lower values of the reference viscosity (hence higher values of the
Rayleigh number), signifying vigorous convection, show more ef-
ficient heat transfer out of the mantle, thus a more rapid cooling.
Therefore, profiles corresponding to high Rayleigh numbers exhibit
a steep thermal gradient at the surface and an overall cooler profile.
We demonstrate that these trends can be captured by our NN.

In order to accelerate the training of NNs, we reduced the size of
the 1D temperature profiles of 200 points by two-thirds, while still
capturing the shape of the temperature profiles. The temperature
profiles are coarsened by taking every third point in the profile
except at the surface and at the CMB. The temperature at the surface
and the next two points the next two points correspond to those of the
numerical grid to ensure the same precision as that of the numerical
simulations. The same is done at the CMB.

We further normalize all the training inputs to be between 0 and
1 using the maximum and minimum values of each parameter. For
ηref, we take its log first and then normalize the powers to be between
0 and 1 which are then used as input to the network. This produces
the parameter distribution from the training set shown in Fig. 4.
This is what the network sees when training. The parameter space is
well covered, except some ‘corners’ of the data. This is particularly
true for simulations with low reference viscosity and high activation
energy. Some such simulations failed to reach convergence and were
discarded under the filtering criterion of u′

rms ≤ 20 000. Hence, one
can expect less prediction accuracy at later time-steps where the
data are scarcer.
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Figure 4. Distribution of the non-dimensionalized input parameters from the filtered training set as seen by the NNs. These correspond to the following
dimensional values: ηref ∈ [1019, 1022] Pa s, � ∈ [1, 50], Tini ∈ [1600, 1800] K, E ∈ [105, 5 × 105] J mol−1 and V ∈ [4 × 10−6, 10 × 10−6] m3 mol−1.

4.2 Training of neural networks

We train our surrogate model G(x, w) from 80 per cent of the entire
data set. We then use 10 per cent of the data to test different network
architectures and prevent overfitting and the remaining 10 per cent
to evaluate the accuracy of the trained surrogate G(x, w∗). For
337 848 samples (simulations × time-steps), this results in a train-
validation-test split of 270278 − 33785 − 33785.

After trial and error using NNs with architectures of different
number of hidden layers and neurons per hidden layer, we found
that relatively small architectures with a total number of neurons
under 200 distributed across 2–3 hidden layers seemed to perform
the best.

In Fig. 5 we present, as an example, results from a network with
3 hidden layers with 90, 60 and 30 neurons, trained for 4.4 million
epochs. Fig. 5(a) shows some randomly selected temperature pro-
files from the test set plotted against the ones predicted by the NN.
These can correspond to a temperature profile of any simulation
at any time. Fig. 5(b) then shows the average absolute error and
the average relative error in predicting all the temperature profiles
in the test set. On average, the prediction errors are low, peaking
to 6 K near the surface. One possibility for this behaviour can be
that the temperatures near the surface are more degenerate. In other
words, upon inspecting Fig. 3(e), one can see that the top part of

the temperature profiles shows a less obvious colouring pattern than
the rest. This could be a hint that the surface heat flux is more ill-
conditioned, that is broader ranges of parameters can lead to the
same heat flux. A second possibility is that numerical precision is
smeared by the act of averaging the 2-D temperature field to a 1-D
profile of points connected by linear elements and/or by the act of
further reducing the size of the temperature profiles through lin-
ear coarsening. Finally, since the lateral temperature variations are
typically largest at the base of the lithosphere, this can also intro-
duce a higher uncertainty and an ultimately larger prediction error.
However, the exact cause of this radial distribution of error remains
subject to future investigations for now.

For millions of epochs on a data set of this size on a Tesla V100
GPU, it can take days to train with an early-stopping criterion of

train while MSEvalidation(epoch)

≤ MSEvalidation(epoch − 0.05 epoch).
(2)

Here, one epoch is when a stochastic gradient descent algorithm
(Adam in our case) has trained over all the mini-batches once, that
is one iteration over the entire training set. The early-stopping cri-
terion terminates training when the validation loss starts increasing
beyond a certain threshold. Here, the day(s)-long training time is
because regression is typically more demanding than classification,
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Figure 5. Results from training an NN with 90, 60 and 30 neurons dis-
tributed across 3 hidden layers. (a) A few randomly selected temperature
profiles from the test set (blue solid lines) and the corresponding prediction
by the NN (red dashed lines) T (r, t) = G(x, w∗) as well as the absolute error
in the predictions (grey solid line, top axis). The test set comprises of tem-
perature profiles from any simulation at any time. (b) Average absolute error
for the prediction of the temperature at each point along the radius for all
temperature profiles in the test set (top axis in grey) and radial distribution
of the average relative error (bottom axis).

especially when fitting ∼270 000 data points up to a near optimal
prediction accuracy. Furthermore, the long training time is not a
particular concern in this study since the network only needs to be
trained once. However, in case one wanted to train several networks,
further optimization tricks, for example thermometer coding (e.g.
Yunho Jeon & Chong-Ho Choi 1999; Montavon et al. 2013), could
be used to speed up training.

After training is completed, any point in the temperature profiles
of the test set is predicted with an average error of 0.2604 per cent.
Comparing this to the average prediction error of 0.2609 per cent
on the training set indicates that there are no obvious under- or
overfitting problems. However, a comprehensive analysis of fitting
for NN is non-trivial (e.g. Jin et al. 2019; Bottou & Bousquet 2008)
and beyond the scope of this paper.

4.3 Predicting evolution using trained neural networks

In this subsection, we evaluate the temperature profiles produced by
the trained surrogate G(x, w∗) over the course of the entire thermal
evolution from 0 to 4.5 Gyr. In order to see how well the trained NN
performs, we created a fourth batch of 20 GAIA simulations with
which we compare the NN predictions. This new small batch was
created to demonstrate that the predictions from the NN capture the
expected geophysical trends well. This requires manually setting
input parameters so that only one parameter is varied for each sub-
batch of 45 simulations while others remain fixed. This cannot be
achieved by randomly drawing from a joint uniform distribution of
five parameters. In other words, these particular combinations do
not exist in the data set. All the values of input parameters for the
20 GAIA simulations are listed in Table 1. In Fig. 6, we compare
the NN predictions with 19 of the 20 GAIA simulations; simulation
8 with a high activation energy crashed and could not be used in
this comparison.

The network is able to accurately capture the trends and match
the GAIA simulations well. For different ηref, for example, one
observes the expected trends from Fig. 6. A lower viscosity leads to
a cooler overall profile because of more vigorous convection. The
initial temperature, on the other hand, seems to have little impact on
the final temperature profiles demonstrating the ‘thermostat effect’.

However, the predictions are not perfect and there are various
possible reasons for the small mismatches. For example, errors in
the predictions of the temperature profiles can increase for cases
having both a high Rayleigh number and a high activation energy
for which the data are somewhat scarce. In fact, availability of data
for training purposes is important to the accuracy of predictions
from G(x, w∗). As a test, we trained different subsets of the entire
data set (i.e. using a different number of simulations) and calculated
the average relative error on the fourth GAIA set. For consistency,
we maintain the same split of data for training/validating/testing
(80 per cent/10 per cent/10 per cent) as well as hyperparameters like
the size of the NN, the stopping criterion and the L2 regularization
parameter. The average relative error in predicting any point in the
end temperature profiles for different sizes of data set of the fourth
GAIA set from Table 1 is shown in Fig. 7.

Fig. 7 shows that the error in predictions drops dramatically up to
a data set with 1000 simulations. After that point only asymptotic
improvements are seen—in other words, there is less and less to be
gained from more simulations.

4.4 A further test for correlation between the training and
the test set

In Fig. 7, we plotted the impact of number of simulations on the
prediction accuracy. One ‘simulation’ on the x-axis corresponds
to one sample from the five input parameters. Then for each sim-
ulation the number of available time-steps may vary. To be able
to perform such a study, one ideally needs to maintain the same
training-validation-test split of samples. Since the number of time-
steps available per simulation can vary because of how we chose to
store them and depending on how far along a simulation got, the
only way to ensure that the resulting number of training-validation-
test samples remains a uniform percentage of the total size of the
data set is to first randomly shuffle all the available time-steps for
all the filtered simulations and then take desired percentages out of
it (e.g. 80 per cent, 10 per cent, and 10 per cent). In other words, if
one splits the simulations by the desired percentages first and then
takes the available time steps, there is no guarantee that the resulting

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/222/3/1656/5836720 by guest on 25 April 2024



1662 S. Agarwal et al.

Table 1. Values of input parameters to 20 GAIA simulations used for comparing evolution.
These simulations are completely independent of the training-test-validation sets. Simulation
8 crashed and was discarded.

Simulation number ηref (Pa s) E (J mol−1) V (m3 mol−1) � Tini (K)

1 1019 2 × 105 6 × 10−6 20 1700
2 1020 2 × 105 6 × 10−6 20 1700
3 1021 2 × 105 6 × 10−6 20 1700
4 1022 2 × 105 6 × 10−6 20 1700
5 1020 1 × 105 6 × 10−6 20 1700
2 1020 2 × 105 6 × 10−6 20 1700
6 1020 3 × 105 6 × 10−6 20 1700
7 1020 4 × 105 6 × 10−6 20 1700
8 1020 5 × 105 6 × 10−6 20 1700
9 1020 2 × 105 4 × 10−6 20 1700
10 1020 2 × 105 5 × 10−6 20 1700
2 1020 2 × 105 6 × 10−6 20 1700
11 1020 2 × 105 8 × 10−6 20 1700
12 1020 2 × 105 10 × 10−6 20 1700
13 1020 2 × 105 6 × 10−6 1 1700
14 1020 2 × 105 6 × 10−6 10 1700
2 1020 2 × 105 6 × 10−6 20 1700
15 1020 2 × 105 6 × 10−6 30 1700
16 1020 2 × 105 6 × 10−6 40 1700
17 1020 2 × 105 6 × 10−6 20 1600
18 1020 2 × 105 6 × 10−6 20 1650
2 1020 2 × 105 6 × 10−6 20 1700
19 1020 2 × 105 6 × 10−6 20 1750
20 1020 2 × 105 6 × 10−6 20 1800

sets will have the desired percentages, thereby making comparison
such as that presented in Fig. 7 less meaningful.

However, shuffling all the time-steps from all the filtered simu-
lations and then dividing them into train-validation-test sets means
that it is possible that the test set can have some of the same simula-
tions as the training set, only at different time-steps. In other words,
the question arises if our surrogate G(x, w∗) might simply be in-
terpolating in time for other parameters (such as ηref) that might
already be present in the training set.

To address this question, it is worth revisiting the 19 GAIA sim-
ulations that we ran independently and whose entire evolutions we
assessed in Fig. 6. Since these are completely independent of the
9453 simulations from which we drew our training-validation-test
sets, the accuracy on the new 19 simulations is a good indicator that
G(x, w∗) is doing more than just interpolating in time.

As a further check to ensure that the selection of the parameters
for the 19 simulations was not simply a matter of good fortune, we
took an NN from Fig. 7 that was trained with only 3000 simulations
(maintaining the 80/10/10 split to this relatively small set) and used
it to evaluate the remaining ∼6000 simulations which were not part
of the training-validation-test distribution. The results are plotted
in Fig. 8. In Fig. 8(a), we plot some randomly selected tempera-
ture profiles in blue solid and the corresponding NN predictions in
dashed red, as well as the radial distribution of the absolute error
in grey (indicated on top x-axis). Furthermore, in Fig. 8(b), at each
radial location, we plot the average absolute error and the average
relative error across all the profiles—the results show similar trends
to Fig. 5(b), albeit the average values of errors are higher owing to
the fewer simulations available to train the network with. Finally, in
Fig. 8(b), we plot the mean relative error in predicting any point in
the temperature profile at different times. The mean relative error
increases slightly with time because at later times there are fewer
time-steps available meaning fewer data points to train the network
with. Overall, any point in the temperature profiles at any time from

any of the 6000 simulations is predicted with an average error of
0.33 per cent.

4.5 Rapid evaluation of the parameter space using a
trained surrogate

After establishing that the trained surrogate G(x,w∗) reliably pre-
dicts the temperature profiles T(r, t) for different parameters, we
demonstrate that it can be used to evaluate the parameter space.
Several quantities can be calculated from the temperature profile
that can be then related—directly or indirectly—to specific observ-
ables.

In this subsection, we plot as an example two such quantities: the
CMB temperature (Tcmb) and the upper mantle temperature beneath
the stagnant lid (Tlid). The former can be used to assess the thermal
state of the core with implications for its mode of solidification
(e.g. Breuer et al. 2015) and for the tidal response of the planet (e.g.
Plesa et al. 2018; Khan et al. 2018). The latter can be compared
with inferences based on petrological studies predicting the source
conditions at which Martian meteorites formed (e.g. Filiberto &
Dasgupta 2015).

In Fig. 9, we plot the present-day values of Tlid on upper right and
Tcmb on lower left for the five parameters: ηref, E, V, �, Tini, always
varying two at a time. In each plot where the two variables (say ηref,
E) are varied, the others (in this case V, �, Tini) are kept constant.
Unless varied, the parameters remain fixed at these values: ηref =
1020 Pa s, � = 20, Tini = 1700 K, E = 2 × 105 J mol−1 andV = 6
× 10−6 m3 mol−1.

For both quantities in Fig. 9, it is evident that ηref and � have
the strongest effect, followed by E and then V. As expected, Tini has
almost no correlation with the observables due to the thermostat
effect, also observed in Fig. 6(o). Furthermore, it is seen that lower
values of reference viscosity lead to lower Tlid and Tcmb. A lower
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Figure 6. Comparison of evolution results from the trained surrogate G(x, w∗) (dashed lines) and GAIA simulations (solid lines). (a), (d), (g), (j) and (m)
Evolution of the CMB temperature and (b), (e), (h), (k) and (n) mean mantle temperature, as well as (c), (f), (i), (l) and (o) the final temperature profiles for
simulations from Table 1. (a)–(c) Simulations (1,2,3,4), (d)–(f) simulations (5,2,6,7), (j)–(l) simulations (9,10,2,11,12), (g)–(i) simulations (13,14,2,15,16) and
(m)–(o) simulations (17,18,2,19,20).
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Figure 7. Average relative error in the prediction of any point of temperature
profiles in the GAIA simulations indicated in Table 1 as a function of the
total number of simulations available for training, testing and validating an
NN.

Figure 8. (a) A few randomly selected temperature profiles from the 6000
unseen GAIA simulations at any time (blue solid lines) and the correspond-
ing prediction by the NN (red dashed lines) T (r, t) = G(x, w∗) as well as the
absolute error in the predictions (grey solid line, top axis). (b) The average
absolute error for the prediction of the temperature at each point along the
radius for all temperature profiles in the test set (top axis in grey) and radial
distribution of the average relative error (bottom axis). (c) The temporal
distribution of the mean relative error in predicting a temperature profile.

reference viscosity means that the mantle convects more vigorously,
thus, cooling more efficiently. Similarly, a higher enrichment fac-
tor � signifies a mantle more depleted in heat sources and thus
ultimately cooler.

With the aid of such plots, one can also study the correlation be-
tween different parameters. For example, for this model of a Mars-
like planet, for the core to cool, one would need a combination of a
low-reference viscosity and a high activation energy. A higher acti-
vation energy, or in other words, a higher temperature dependence
of viscosity leads to more vigorous convection and a more efficient
cooling. Furthermore, such plots can provide a better insight into
how parameters impact the thermal evolution with respect to other
parameters. For example, from the contour plot of Tlid plotted for
ηref and �, one sees that ηref is more decisive in determining the lid
temperature.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We trained an NN on ∼10 000 mantle convection simulations and
developed a forward surrogate model capable of capturing the ther-
mal evolution of Mars. The NN we provide on Github 1 has been
trained with 80 per cent of the full data set and is capable of instanta-
neously calculating the entire evolution of 1-D temperature profiles
over 4.5 Gyr. Upon comparing the predictions of this trained surro-
gate with an unseen batch of GAIA simulations, we concluded that
the network captures the trends accurately and matches the GAIA
simulations well with an average accuracy of 99.7 per cent.

We present this study as a proof of concept showing that high-
dimensional regression algorithms like NNs can help us study non-
trivial mantle convection problems involving multiple parameters
and physical processes. There are several advantages to this ap-
proach. First, we can bypass the need for devising complicated
scaling laws that may need dedicated fine tuning to match the out-
comes of numerical simulations (e.g. Thiriet et al. 2019), while at
the same time capturing physical processes, like temperature- and
pressure-dependent thermodynamic and transport properties, which
are normally not easily incorporated into scaling laws. Second, our
network is able to predict the entire 1-D temperature profile in-
cluding the shapes and locations of phase transitions in contrast to
parametrized models that typically operate under the assumption of
a theoretical adiabatic temperature profile. Third, by training directly
in time, we can also circumvent constructing evolution models with
energy balance equations. Our NN implicitly learns the relations
between the initial values of parameters and their evolution with
time. Fourth, trained surrogates like the one we provide on Github
can be easily downloaded and used to conduct parameter studies
any number of times, without having to repeatedly perform the sim-
ulations on a supercomputer. The plot in Fig. 9 is a good example
of that—it took a few seconds for the trained NN to produce the
present-day temperature profiles from which Tcmb and Tlid were cal-
culated. For calculating at 50 different values of each parameter,
each plot of two parameters would then require 2500 simulations.
One would then need ∼25 000 simulations to go through all combi-
nations of parameters. Furthermore, one could use the same trained
NN to extend plots like Fig. 9 to 3-D (or higher dimensional) com-
binations by varying three parameters in each plot, instead of just
two. This would come at the fraction of a cost using trained NNs.
Using full convection simulations in this case would become in-
tractable even on a supercomputer due to the exponential scaling of

1https://github.com/agsiddhant/ForwardSurrogate Mars 1D
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Figure 9. Upper right: present-day values of the upper mantle temperature (Tlid). Lower left: present-day values of the CMB temperature (Tcmb). Unless varied,
the parameters remain fixed at these values: ηref = 1020 Pa s, � = 20, Tini = 1700 K, E = 2 × 105J mol−1 and V = 6 × 10−6 m3 mol−1.
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required simulations (1.25 million) with number of parameters to
be varied. Fifth, this can be an efficient way for different research
groups to share and compare their results. Researchers could, for
example, exchange such trained forward surrogates (which are a few
kB large) and compare their models by checking the temperature
profiles predicted for any arbitrary combinations of parameters.

The results of this work are a first step towards high-dimensional
surrogate modelling in mantle convection. Several challenges re-
main open. For example, in training on and predicting only 1-D
temperature profiles, some information is lost. One could address
this issue by considering instead the entire 2-D temperature field.
There has been some progress in the broader fluid dynamics com-
munity on high-dimensional ML from small data sets. Two different
approaches can be adopted to tackle this challenge. One is based on
a class of physics-informed algorithms, where the partial differential
equations are embedded in the loss function ‘softly’ using AD which
has a regularizing effect on the optimization (e.g. Raissi et al. 2019,
2020). The other approach combines advanced ML techniques like
convolutional NNs and recurrent NNs to learn in space and time,
respectively. Mohan et al. (2019), for example, demonstrated the
effectiveness of these techniques in capturing the dynamics of 3D
turbulent flows. In this paper, we saw that approximately 1000 sim-
ulations are sufficient for training a 1-D forward surrogate for that
can model the evolution of a planet for five unknown parameters
in time. This minimum number of simulations required to train a
higher dimensional surrogate, for example in 2-D, is likely to be
higher.

Furthermore, the predictions of this trained surrogate are re-
stricted to the ranges of the parameters over which the NN was
trained. A good extrapolation beyond these ranges is not to be ex-
pected. In that sense, one must also keep in mind that the NN
trained on this data set is limited to the physics included in the
convection simulations which were used as training data. Hence,
another potential avenue of research would be the inclusion of ad-
ditional parameters, such as the radius of the core, thickness of the
mantle and number and type of phase transitions. That would allow
the investigation of different physical models for the same planet
as well as for bodies of different sizes, both in the solar system
(Mercury, Venus and the Moon) and around other stars (the class of
super-Earths).

The field of high-dimensional surrogate modelling in the mantle
convection community might just be getting started, but we believe
it has great potential to improve our understanding of how the
terrestrial planets evolve.
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A P P E N D I X A : N E U R A L N E T W O R K S

We can arrive at the MSE cost function as follows. The problem of
finding a mapping from inputs x to outputs y of a simulation can be
mathematically formulated as the conditional probability p( y|x):

p(x, y) = p( y|x)p(x), (A1)

where, p(x, y) is the joint probability density and p(x) is the
marginal probability density of the inputs. To arrive at the MSE
formulation of the cost function, we assume that the target data has
the following distribution with standard deviation σ :

p( y|x) = 1

(2π )c/2σ c
exp

{
− 1

2σ 2

c∑
k=1

[Gk(x) − yk]2

}
, (A2)

where c is the total number of components of y. The mean Gk can be
modelled by an NN as Gk(x, w), where w are weights of the network
that can be optimized. By minimizing the negative log-likelihood

− ln L = − ln
n∏

q=1

p( yq |xq )p(xq ) (A3)

on the n training examples {xq , yq}n
q=1, one obtains the optimal

parameters w∗ = argminw(− ln L) for theGk(x, w). By substituting
eq. (A2) into eq. (A3), one can rewrite the negative log-likelihood
as

− ln L = n c ln σ + n c

2
ln(2π) + 1

2σ 2

n∑
q=1

c∑
k=1

[
Gk (xq ,w) − yq

k

]2
. (A4)

Since terms independent of the networks’ weights w are irrelevant
constants, we can therefore optimize the MSE cost function E :

E = 1

2n

n∑
q=1

c∑
k=1

[
Gk(xq ,w) − yq

k

]2
. (A5)

The error function including L2-regularization reads as follows:

E = 1

2n

n∑
q=1

c∑
k=1

[
Gk(xq ,w) − yq

k

]2 + γ

2n

n∑
j=1

l∑
k=1

w2
k, j , (A6)
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where γ is the regulariztion parameter and can be treated as another
hyperparameter.

A P P E N D I X B : S I M U L AT I O N S S E T U P

As for the Boussinesq approximation, the EBA assumes the den-
sity to be constant everywhere except in the buoyancy term of the
momentum equation but considers additionally the thermal effects
of viscous dissipation and adiabatic compression/decompression.
Over the relatively small pressure range of the Martian mantle where
the increase of density upon compression is limited, the EBA is a
reasonable approximation. In fact, for Mars, the reference dissi-
pation number is only ∼0.13 (see eq. B7 below). For such small
value, the differences in global quantities (such as surface heat flux,
mean temperature and velocity) between EBA and fully compress-
ible formulations amount few percent or less (King et al. 2010).
Under the EBA, the non-dimensional equations of conservation of
mass, linear momentum and thermal energy (primed quantities are
all non-dimensional) read:

∇′ · u′ = 0, (B1)

− ∇′ p′ + ∇′ ·
[
η′

(
∇′u′ + (∇′u′)T

)]

+
(

Ra α′ T ′ −
3∑

l=1

Rbl Γl

)
er = 0, (B2)

DT ′

Dt ′ − ∇′ · (
k ′∇′T ′) − Di α′ (T ′ + T ′

0

)
u′

r − Di

Ra
Φ ′

−
3∑

l=1

Di
Rbl

Ra

DΓl

Dt
γl

(
T ′ + T ′

0

) − RaQ

Ra
= 0, (B3)

where u′ is the velocity vector, p
′

the dynamic pressure, η
′

the vis-
cosity, Ra the thermal Rayleigh number, α

′
the thermal expansivity,

T
′

the temperature, Rbl the Rayleigh number associated with the
lth phase transition, Γl the corresponding phase function and er

the unit vector in the radial direction. In eq. (B3), t
′

is the time,
k

′
the thermal conductivity, Di the dissipation number, T ′

0 the sur-
face temperature, u′

r the radial component of the velocity, Φ ′ the
viscous dissipation and RaQ the Rayleigh number for internal heat-
ing. The non-dimensional numbers appearing in eqs (B1)–(B3) are
defined as follows (all quantities on the right-hand side now being
dimensional):

Ra = ρ2
mcpmαref g�T D3

ηref kref
, (B4)

Rbl = ρmcpm�ρl gD3

ηref kref
, (B5)

RaQ = ρ3
mcpmαref gH0 D5

ηref k2
ref

, (B6)

and

Di = αref gD

cpm

, (B7)

where ρm is the density, cpm the heat capacity, αref the reference
thermal expansivity, g the gravitational acceleration, �T the initial
temperature drop across the mantle, D = Rp − Rc the mantle thick-
ness (being Rp and Rc the planet and core radius, respectively), ηref

the reference viscosity, kref the reference thermal conductivity, �ρ l

the density contrast across the lth phase transition and H0 the initial
rate of mantle heat production due to radiogenic elements. In eqs
(B1)–(B3), the dimensional variables are scaled as follows to arrive

at the corresponding non-dimensional quantities (on the left-hand
side):

u′ = u
ρmcp D

kref
, (B8)

p′ = p
ρmcp D2

ηref kref
, (B9)

t ′ = t
kref

ρmcp D2
, (B10)

T ′ = T − T0

�T
. (B11)

We use a temperature- and depth-dependent viscosity calculated
according to the Arrhenius law for diffusion creep, whose dimen-
sional form reads

η (T, z) = ηref exp

(
E + zV

T + T0
− E + zref V

Tref + T0

)
, (B12)

where z is the depth, E the activation energy, V the activation volume
and Tref and zref the temperature and depth, respectively, at which
the reference viscosity ηref is attained. The thermal expansivity and
conductivity are also temperature- and pressure-dependent and are
calculated according to the parametrizations of Tosi et al. (2013) as
follows:

α(T, P) = (
a0 + a1T + a2T −2

)
exp(−a3 P), (B13)

k(T, P) = (c0 + c1 P)

(
300

T

)c2

, (B14)

where P is hydrostatic pressure in GPa, and ai and ci are numerical
coefficients fitted to forsterite data.

As in Plesa et al. (2015), we assume that a crust of fixed thickness
dcr formed early (Nimmo & Tanaka 2005) and thereby adjust the
bulk abundance of all heat-producing elements C0 in the mantle
to a new bulk composition Cdepleted according to a given crustal
enrichment factor � as:

Cdepleted = MmC0

Mcr (� − 1) + Mm
. (B15)

The mass of the mantle Mm and of the crust Mcr are

Mm = ρm
4

3
π

(
R3

cr − R3
c

)
, (B16)

and

Mcr = ρcr
4

3
π

(
R3

p − R3
cr

)
, (B17)

where Rcr = Rp − dcr is the radius of the base of the crust. For sim-
plicity, the depleted bulk composition is used uniformly throughout
the silicate mantle (including the crust).

We account for additional depletion associated with partial melt-
ing following the approach of Padovan et al. (2017). The amount
of melt extracted at any given time during the evolution is obtained
starting from the equation for super-solidus energy Es:

Es = cp (Ti − Tsol) , (B18)

where Ti is the local temperature of the ith cell and Tsol is the local
solidus temperature. Eq. (B18) is equated to the energy required
to melt a fraction ϕi of the volume of the cell and to increase the
temperature of the remaining unmolten fraction (1 − ϕi) by �Tu:

Es = Lmϕi + cp�Tu (1 − ϕi ) . (B19)

where Lm is the latent heat of melting. Indicating with �Tliq-sol the
local difference between the liquidus and solidus temperature, and
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Table A1. Values of fixed parameters shared by all simulations.

Parameter Physical meaning Value Unit

�Tt = 0 Initial temperature difference between core and surfacea 2000 K
T0 Surface temperaturea 250 K
ρc Core densitya 7000 kg m−3

ρm Mantle densitya 3500 kg m−3

cpc Core specific heat capacitya 850 J kg−1 K−1

cpm Mantle specific heat capacitya 1200 J kg−1 K−1

kref Reference thermal conductivitya 4 W m−1 K−1

αref Reference thermal expansivitya 2.5 × 10−5 K−1

Rc Outer radius of the corea 1700 km
Rp Planetary radiusa 3400 km
dcr Thickness of the crust 64.3 km
zref Reference depth for viscosity 232 km
Tref Reference temperature for viscosity 1600 K
z0
αβ Reference depth for α to β spinela 1020 km

z0
βγ Reference depth for β to γ spinela 1360 km

�ρ0
αβ Density difference for α to β spinela 250 kg m−3

�ρ0
βγ Density difference for β to γ spinela 150 kg m−3

γ αβ Clapeyron slope for α to β spinela 3 × 106 Pa
γ βγ Clapeyron slope for β to γ spinela 5.1 × 106 Pa
Tαβ Reference temperature for α to β spinela 1820 K
Tβγ Reference temperature for β to γ spinela 1900 K
dl Width of phase transitions 20 km
UC0 Bulk abundance of uraniumb 16 × 10−9 kg kg−1

ThC0 Bulk abundance of thoriumb 56 × 10−9 kg kg−1

KC0 Bulk abundance of potassiumb 305 × 10−6 kg kg−1

a Plesa et al. (2015). bWänke et al. (1988).

using the linear relation �Tu = ϕi�Tliq-sol, eq. (B19) can be solved
for ϕi.

To account for the depletion of heat-producing elements with
melt extraction, we modify the internal heating Rayleigh number as
follows:

RaQt = RaQt−1 (1 − �ϕt ) , (B20)

where, ϕt is the sum of melt produced in all cells at time-step t.
For the solidus and liquidus, we use the parametrization of

Herzberg et al. (2000) and Zhang & Herzberg (1994), respectively:

Tsol = e0 + e1 P + e2 P2 + e3 P3 + e4 P4, (B21)

Tliq = f0 + f1 P + f2 P2 + f3 P3 + f4 P4, (B22)

where Tsol and Tliq are the dimensional solidus and liquidus tem-
peratures, respectively, e0, . . . , e4 and f0, . . . , f4 are numerical
coefficients and P is the hydrostatic pressure in GPa.

We complete our model by including two phase transitions in
the olivine system, α to β-spinel and β to γ -spinel, using the stan-
dard approach of Christensen & Yuen (1985). Given the Clapeyron
slope γ l, and the reference transition depth and temperature z0

l and
T 0

l , we calculate the temperature-dependent depth of the lth phase
boundaries zl(T) as:

zl (T ) = z0
l + γl (T − T 0

l ). (B23)

This expression, along with the phase transition width dl, gives the
phase-transition function used in eqs (B2) and (B3):

Γl = 1

2

(
1 + tanh

(
z − zl (T )

dl

))
. (B24)

We solve the equations described in this section using our finite-
volume code GAIA (Hüttig et al. 2013). The computational domain
is a 2-D quarter-cylindrical grid with a resolution of 200 layers with
263 cells in each layer. Following Van Keken (2001), the radius
of the core of the cylinder (Rcyl

c ) is rescaled so that the following
conditions are met:(

Rc

Rp

)2

= Rcyl
c

Rcyl
p

Rcyl
p + Rcyl

c = 1,

(B25)

where, Rp, Rc and Rcyl
p are respectively, the radii of spherical planet,

spherical core and cylindrical planet.
The initial temperature field is prescribed by a 1-D profile with a

potential temperature given by the parameter Tini and supplemented
by two 300-km-thick boundary layers. A small random perturba-
tion is superposed on the temperature field to initiate convection.
Isothermal boundary conditions are imposed at the surface (T0 =
250 K) and at the core whose temperature Tc is calculated with the
equation:

cpcρcVc
dTc

dt
= −qc Ac, (B26)

where cpc is the specific heat-capacity of the core, Vc the volume of
the core, qc the average heat flux at the CMB and Ac the outer area
of the core.

Insulating boundary conditions are applied to the sidewalls. The
surface, CMB and sidewalls are impermeable and free-slip. Values
of all the parameters used in the simulations, are listed in Tables A1
and A2.
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Table A2. Coefficients used for thermal expansivity (eq. B13), thermal conductivity (eq. B14), solidus (eq.
B21) and liquidus (eq. B22).

Parameter Physical meaning Value Unit

a0 Coefficient of thermal expansivitya 3.15 × 10−5 K−1

a1 Coefficient of thermal expansivitya 1.02 × 10−8 K−2

a2 Coefficient of thermal expansivitya −0.76 K
a3 Coefficient of thermal expansivitya 3.63 × 10−2 GPa−1

c0 Coefficient of thermal conductivitya 2.47 Wm−1 K−1

c1 Coefficient of thermal conductivitya 0.33 Wm−1 K−1 GPa−1

c2 Coefficient of thermal conductivitya 0.48
e0 Coefficient for solidus parametrizationb 1400 K
e1 Coefficient for solidus parametrizationb 149.5 K Pa−1

e2 Coefficient for solidus parametrizationb −9.4 K Pa−2

e3 Coefficient for solidus parametrizationb 0.313 K Pa−3

e4 Coefficient for solidus parametrizationb −0.0039 K Pa−4

f0 Coefficient for liquidus parametrizationc 1977 K
f1 Coefficient for liquidus parametrizationc 64.1 K Pa−1

f2 Coefficient for liquidus parametrizationc −3.92 K Pa−2

f3 Coefficient for liquidus parametrizationc 0.141 K Pa−3

f4 Coefficient for liquidus parametrizationc −0.0015 K Pa−4

a Tosi et al. (2013). bZhang & Herzberg (1994). cHerzberg et al. (2000).
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