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S U M M A R Y
Insights into the spreading evolution of the Knipovich Ridge and development of the Fram
Strait are revealed from a recent aeromagnetic survey. As an ultraslow spreading ridge in an
oblique system located between the Svalbard–Barents Sea and the Northeast Greenland rifted
margins, the dynamics of the Knipovich Ridge opening has long been debated. Its 90◦ bend
with the Mohns Ridge, rare in plate tectonics, affects the evolution of the Fram Strait and
motivates the study of crustal deformation with this distinctive configuration. We identified
magnetic isochrons on either side of the present-day Knipovich Ridge. These magnetic obser-
vations considerably reduce the mapped extent of the oceanic domain and question the present
understanding of the conjugate rifted margins. Our analysis reveals a failed spreading system
before a major spreading reorganization of the Fram Strait gateway around magnetic chron C6
(circa 20 Ma).

Key words: Arctic region; Magnetic anomalies: modelling and interpretation; Mid-ocean
ridge processes.

I N T RO D U C T I O N

The Fram Strait is a key region for the understanding of the rift-
to-drift evolution between the Northeast Greenland and Svalbard–
Barents Sea rifted margins. Linking the Atlantic and Arctic spread-
ing systems, the Knipovich Ridge (KnR) initiated following the
complete cessation of the Mid-Labrador Ridge spreading in the
Early Oligocene (33.7 Ma, C13; Engen et al. 2008; Oakey &
Chalmers 2012; Hosseinpour et al. 2013; Suckro et al. 2013) and
the diachronous initiation of the Reykjanes, Ægir and Mohns ridges
in the Early Eocene (54 Ma, C24r; Talwani & Eldholm 1977; Gaina
et al. 2009; Gernigon et al. 2019). For decades, the structure and
evolution of the Fram Strait have been debated due to the scarce data
availability in this remote area. In this study, the Fram Strait evo-
lution is interpreted from new state-of-the-art aeromagnetic data,
acquired by the Geological Survey of Norway. We revise models
for the spreading evolution of the KnR, clearly identify a ridge
jump explaining the asymmetric magnetic signature of the ridge
and question the present understanding of the Boreas Basin.

Classified as an ultraslow oblique spreading system (with spread-
ing rates of less than 20 mm yr−1), KnR comprises the Arctic
Mid-Ocean Ridge system delimited by the Mohns Ridge (MR;
∼73◦50′N) and the Molloy Transform Zone (MTZ; ∼78◦30′N)
between the Greenland Sea and the Barents Sea realms (Fig. 1).
It is surrounded by the Vestbakken Volcanic Province (VVP) and
the Hornsund Fault Complex Zone (HFZ) to the east, and by the

Boreas and East Greenland basins to the west. At present day, the
KnR trend changes from NNW–SSE in the south to N–S in the
north, with a 130 km wide escarpment and thick piles of sedi-
mentary rocks along the Svalbard margin (Engen et al. 2008). The
Fram Strait development initiated after a Late Cretaceous-Eocene
rifting event between the Barents Sea and Northeast Greenland. It
forms a complex system of conjugate shear margins characterized
by distinct crustal, structural and magmatic properties (Faleide et al.
2008). During the Palaeocene–Eocene, the oblique rifted margins
underwent a brief period of compression leading to the Eurekan–
Spitsbergen fold and thrust belts (Piepjohn et al. 2016). Northwards,
KnR is linked through the MTZ to the Gakkel Ridge (GaR; Gle-
bovsky et al. 2006). The Hovgaard Ridge and the East Greenland
Ridge, along the Greenland Fracture Zone (GFZ), may include con-
tinental fragments preserved within the oceanic domain (Nemčok
et al. 2016).

In the Norwegian–Greenland Sea, the breakup occurred around
53.9–57.1 Ma (C24r) and propagated progressively to the south
towards the juvenile volcanic margins during the Early Eocene
(Gernigon et al. 2019). After the extinction of the Mid-Labrador
Ridge (Labrador Sea) around 33 Ma (C13), the azimuth of the rel-
ative motion between Norway and Greenland underwent a counter-
clockwise rotation from NNW–SSE to WNW–ESE (31–28 Ma,
C12-10; Gaina et al. 2009). From this reorganization, the ultra-
slow spreading Ægir Ridge became extinct around C10, subse-
quently causing the development of the Kolbeinsey Ridge (KoR) and
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Figure 1. Survey area and aeromagnetic data. (a) Location of the Knipovich Ridge with respect to the North Atlantic realms with SRTM topographic data
(Becker et al. 2009). (b) The new aeromagnetic data revealed the timing of the breakup (C6) and magmatic events on the eastern side of the ridge. Profiles
A and B are in purple. MoR: Molloy Ridge; MTZ: Molloy Transform Zone; HR: Hovgaard Ridge; BB: Boreas Basin; HFZ: Hornsund Fracture Zone; KnR:
Knipovich Ridge; GFZ: Greenland Fracture Zone; GB: Greenland Basin; JMMC: Jan Mayen Microplate Complex; VVP: Vestbakken Volcanic Province; MR:
Mohns Ridge; SFZ: Senja Fracture Zone. New oceanic fracture zones are displayed with grey lines, new COB demarcation is in dashed blue line and volcanic
areas are delimited by the dashed red lines. The abandoned ridge is highlighted in grey shading.

leading to the formation of the Jan Mayen Microplate Complex at
∼24 Ma (C7-6; Blischke et al. 2017). To the north, the GaR was
initiated at 58–59 Ma (C26n-25r) followed by a spreading rate de-
crease from C13 (Schreider et al. 2019). A 250-km long section
of the GaR, north of Svalbard, ending in the Fram Strait, opened
much later between C8 and C5 (Glebovsky et al. 2006). Similarly,
the Molloy Ridge spreading was initiated in the Early Miocene
(20 Ma; Srivastava & Tapscott 1986). Earlier studies set the KnR
opening at C13 (∼33 Ma; Talwani & Eldholm 1977), between C23
and C13 (Faleide et al. 2008) or between C24 and C13 (Nemčok
et al. 2016). Our new interpretation of the magnetic isochrons sig-
nificantly changes the time of the KnR spreading initiation and
consequently the location of the continent–ocean boundary (COB)
compared to previous studies.

DATA

Aeromagnetic survey

The aeromagnetic data were acquired in the summers of 2016 and
2018 during a period of moderate to low diurnal magnetic activ-
ity (Novatem 2018; Dumais et al. 2020). Located at high latitude,
the survey area is particularly sensitive to diurnal noise. Magnetic
base station recordings from five locations provided by the Tromsø

Geophysical Observatory and the Technical University of Denmark
were used, ensuring high confidence of the data set. Flown at the low
altitude of 120 m, with flight lines oriented at 121–301◦ from N and
with a 5500 m line spacing, the data were corrected for the 12th IGRF
Field (Thébault et al. 2015) and standard levelling using the adjust-
ment of the line intersections (Whitham & Niblett 1961; Reford &
Sumner 1964; Nabighian et al. 2005) was applied. The lines were
designed perpendicular to the ridge axis and the expected spreading
anomalies, optimizing the identification of magnetic isochrons. The
compilation was completed with existing data from the surrounding
areas: GaR, Boreas Basin, Barents Sea and Svalbard (Jokat et al.
2008; Olesen et al. 2010; Jokat et al. 2016).

M E T H O D S

Spreading rate model

ModMag (Mendel et al. 2005) was used to map the spreading on
profiles A and B (Fig. 2), chosen for their complete signature of
the spreading. Profile A was tested for an upper crust of a con-
stant 1 km thickness (Johansen et al. 2019), representative of the
basalt layer 2A (Fig. 2a), allowing a good agreement between the
modelled and observed anomalies. Since the magnetic signature is
continuous from MR to KnR at the bend, initial identification of the
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Figure 2. Spreading models (profiles A and B, as identified in Fig. 1) for an upper crust of 1 km. The spreading is faster towards west on profile B while
slightly faster towards east on profile A. The presence of an abandoned ridge at C5E-C5C (18 Ma) explains the strong asymmetry of profile B.

magnetic isochrons were derived from the MR interpretation (Vogt
et al. 1986; Engen et al. 2008) to model Profile A consistently.
All parameters were adjusted by iteration to fit the observed data.
To ensure a data fit with the model and account for the burial of
the source layer, a sediment thickness was estimated from Engen
et al. (2006).

Plate reconstruction

The plate reconstruction was carried out with GPlates 2.2 (Müller
et al. 2018), allowing the visualization and the manipulation
of the plate-tectonic reconstruction using available refined plate
boundaries and isochron layers (Matthews et al. 2016; Gernigon
et al. 2019). The new magnetic isochrons were defined with
the magnetic gridded data and their respective age were iden-
tified from the spreading rate model results along profiles A
and B. Geometries were edited in accordance with the magnetic
interpretation.

R E S U LT S

Oceanic domain of the Fram Strait

The new aeromagnetic data reflect the complexity of the Fram Strait
development and the oblique character of the KnR. Spatial analy-
sis of patterns in the frequency content of the data reveals the
crustal affinities and demarks various crustal domains (Fig. 1). Ar-
eas displaying high-frequency striped magnetic anomalies delineate
the oceanic domain, characterized by magnetized basalt and mag-
netic isochrons correlated to the chronostratigraphic chart of Ogg

(2012). Magnetic isochron C6 is assigned to the first unambigu-
ous striped anomaly. C5A, C5 and C1 are also assigned as they
extend continuously from the MR to the KnR. Modelling of the
high-frequency magnetic isochrons with 1 km upper crustal thick-
ness replicates the magnetic signature with high confidence and
gives new insights in the spreading history. The data set captures
previously unresolved magnetic isochrons, for example, C2A, facil-
itating a more detailed and better constrained plate reconstruction.
These also characterize the oceanic domain, where C6 demarks
the first unambiguous magnetic isochron and revises the location
of the expected COB landwards of C6. Unlike its adjacent ridges,
MR and GaR, the KnR magnetic signature suggests the presence
of several asymmetrical discontinuous spreading segments (Fig. 1).
Not previously observed on bathymetric data, new oceanic trans-
fer faults between these segments are delineated, running paral-
lel to the GFZ and the MTZ but perpendicular to the spreading
anomalies.

Rifted margin, transitional domain and continental
fragments

Outside the oceanic domain, the magnetic signature mainly con-
tains intermediate-to-long wavelength anomalies without evidence
of any magnetic isochrons, which is characteristic of continental
or transitional crustal domains. Intermediate-size round anomalies
(20–50 km diameter) found in the VVP and along the HFZ most
likely express the volcanism of the Svalbard margin. On the Green-
land margins, intermediate-frequency magnetic anomalies are ob-
served along the GFZ, MTZ and the Hovgaard Ridge (Fig. 1). The
new location of the COB extends the continental domain towards the
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Hovgaard and East Greenland Ridges. It also envelopes the Boreas
Basin which mainly shows characteristics of a continental domain.
These continental fragments appear strongly linked to the continent
without indications of strong discontinuities.

Spreading rates and instability: evidence of a failed
spreading system

With the magnetic data, the oceanic fracture zones are clearly delin-
eated, highlighting the segmented nature of the spreading system.
Furthermore, some of these segments exhibit evidence for strong
asymmetrical spreading, while others show small amplitudes and
poor magnetization (Fig. 1b), which underlines the complexity and
heterogeneity of this ultraslow spreading system in a sheared set-
ting. The bathymetric data indicate that the strike of the KnR varies
from 347◦, at the junction with MR, to 002◦, at the MTZ junction
(Curewitz et al. 2010). On the magnetic data, the direction of the
visible spreading anomalies is 300◦ (Fig. 1). Given the orientation of
plate motion and the large rotation in the ridge-crest strike through
the study area, the obliquity varies from ∼45◦, at MR, to ∼30◦, at
MTZ. The thick sedimentary cover of the Barents Sea fan (Engen
et al. 2006) on the eastern flank of KnR means that the magnetic
sources in the crust are further away from the magnetic measure-
ments. This causes the presence of wider anomalies compared to
their conjugate. According to the model, the extent of the spread-
ing anomalies remains slightly asymmetric, implying the spreading
evolution with moderately faster rates towards east at the bend con-
necting MR and KnR (Fig. 2). Between profile A and B, the spread-
ing rates decrease east of KnR, while they appear to keep similar
rates on the west side (Fig. 2b). Thus, around N76◦, the asymme-
try reverses, and the western oceanic domain becomes apparently
larger.

Consequently, the segment between N76◦ and N78◦ reveals a
pronounced asymmetry with a broader extent of the oceanic do-
main west of the present-day KnR (Fig. 2). The new magnetic data
indicate the presence of an atypical and failed spreading system,
immediately west of the current ridge and east of the continental
Boreas Basin, explaining the evident asymmetry of the spread-
ing. The abandoned ridge model is favoured over a model with
one single highly asymmetric system. The latter model would re-
quire much faster spreading towards the west, an unequal num-
ber of magnetic isochrons on either side of the ridge and very
different spreading rates from north to south. While sedimentary
cover prevails the direct observation of a ridge-typical bathymet-
ric depression, both, top basement interpretation from seismic data
(Hermann & Jokat 2013) and the new magnetic data underline
the high potential for the existence of an abandoned rift valley.
Thus, the failed spreading system with a ridge jump hypothesis
was tested along profile B located in the most asymmetric seg-
ment of the KnR. The final model presents slower spreading rates
particularly towards the east and confirms the presence of an atyp-
ical oceanic domain initiated at C6. In addition, it suggests a ridge
jump between C5E and C5C, required to explain this asymmetry
(Figs 1 and 2).

Reconstruction of the Fram Strait

In our reconstruction of the Fram Strait (Figs 1–3), the spread-
ing initiated at C6 (20 Ma). Around 18 Ma (C5E-C5C), the sec-
tion between N77◦ and N78◦ was abandoned and migrated to
the east where the spreading continued, forming today’s KnR

(Fig. 4). Within this new section, the spreading becomes faster
towards the Boreas Basin. Between N75◦ and N76◦, the striped
anomalies disappear ridgewards of C5 (10 Ma), implying rela-
tively weak magnetization of the crust, which needs further in-
vestigation. The segment linking the MTZ shows a magnetic
isochron corresponding to C1, with no further striped anoma-
lies parallel to it, suggesting an opening more recent than C2A.
Seafloor spreading anomalies allow us to delineate discrete corri-
dors with contrasting histories of spreading rate variation and asym-
metry, caused by ridge abandonment and migration episodes. The
edges of these corridors appear to be marked by oceanic fracture
zones.

D I S C U S S I O N

Our results demark the much-debated COB in the North Atlantic
and Arctic Oceans and in the Fram Strait in particular (Breivik
et al. 1999; Voss & Jokat 2007; Faleide et al. 2008; Gernigon et al.
2019), and confirm the opening of the KnR initiated at 20 Ma
(C6) where the first unambiguous magnetic anomaly appears. The
KnR lies oblique to the MR and developed after the opening of
the Norwegian–Greenland Sea and the Eurasian Basin which had
already initiated in the Early Eocene (Brozena et al. 2003) and after
the complete extinction of the Mid-Labrador Ridge at C13 (Gaina
et al. 2009; Oakey & Chalmers 2012; Hosseinpour et al. 2013;
Suckro et al. 2013). This coincides with the opening of the Molloy
Ridge (20 Ma; Trulsvik et al. 2011) and KoR (C7-6; Blischke et al.
2017), and the GaR penetrating in the Fram Strait (C8-5; Glebovsky
et al. 2006).

East of KnR, the new COB is closer to the ridge by up to 150 km
compared to the previous interpretations (Breivik et al. 1999). The
oceanic crust, enclosed by magnetic isochrons C6, is relatively thin,
up to 5 km (Johansen et al. 2019), and characterized by rema-
nently magnetized basalts. The crustal sections between magnetic
isochrons C6 and the rifted margins, on either side of the KnR,
are representative of a stretched continental crust due to the ap-
parent absence of striped magnetic anomalies associated with an
authentic oceanic crust. The presence of rounded, intermediate-size
magnetic anomalies suggests the occurrence of intrusive magmatic
bodies in this area. Therefore, we postulate the presence of an ex-
humed and intruded lower continental crust before the development
of an oceanic accretion in the Fram Strait (Fig. 4). Along the West
Barents Sea margin, magmatic intrusions were likely emplaced in
two phases in the VVP, estimated at 35 Ma from seismic obser-
vations (Faleide et al. 2008) and 5 Ma from borehole age dating
(Mørk & Duncan 1993). On either side of the ridge, the basement
shares affinities despite magmatism being mostly constrained to the
West Barents shear margin. Magmatism may have occurred before
and after the KnR initiation (Fig. 1). Recent studies have shown
the possibility for intruded lower continental crust to flow later-
ally before the establishment of steady-state oceanic crust (Foulger
et al. 2019; Guan et al. 2019; Bécel et al. 2020; Yuan et al. 2020).
The intermediate-to-long wavelength magnetic anomalies observed
continent-ward of C6 may represent a similar intruded lower crust
instead of an oceanic crust. This interpretation challenges previ-
ous interpretations of the nature and lateral extent of the conjugate
margins. Further investigation is required to fully understand the
tectonic processes by acquiring additional seismic data covering
the different crustal domains, revisiting the existing seismic in-
terpretation of the area, and developing a thermal model of the
mantle.
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Figure 3. Reconstruction of the opening of the KnR. The ridge in the Boreas Basin is abandoned at 18 Ma and jumped eastwards towards Svalbard (GaR:
Gakkel Ridge; KnR: Knipovich Ridge; MR: Mohns Ridge). Oceanic fracture zones, lineaments and magnetic isochrons are shown in blue. The plate boundary
and magnetic isochron layers displayed along the KnR have been extracted from the new data set. The topography, plate boundary and magnetic isochron layers
outside the KnR uses previous studies (Amante & Eakins 2009; Matthews et al. 2016; Gernigon et al. 2019).
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Figure 4. Schematic of the opening of the KnR. At 78◦N, the ridge in the Boreas Basin is abandoned and jumped eastwards to become present-day Knipovich
Ridge. At 74◦N, the ridge has continuously opened since breakup around 20 Ma. UC: Upper crust; LC: Lower crust.

C O N C LU S I O N

Our aeromagnetic data shed light on the development and crustal
deformation to the rare configuration of two ultraslow spreading
segments of the NE Atlantic spreading system intersecting at a 90◦

angle:

(1) Despite this 90◦ bend between the MR and the KnR, the
opening at the southern section of the KnR is continuous from the
Monhs Ridge, underlining the eminent transtensional plate motion
in the high Arctic.

(2) Our study sets the KnR opening at 20 Ma and suggests the
presence of numerous oceanic fracture zones and a broad continent–
ocean transition interpreted as exhumed lower continental material.

(3) The presence of a failed oceanic basin east of the Boreas
Basin with a thin crust explains the peculiar strong asymmetry of
the spreading system. Consequently, a ridge jump is inferred in the
Fram Strait around 18 Ma.

(4) The KnR opening occurred shortly after of the Kolbeinsey
Ridge opening and Gakkel Ridge prolongation. It may indicate
a common link of mid-Atlantic ridge segments allowing a syn-
chronous initiation of breakup at several locations of the North
Atlantic–Arctic realm.
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