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S U M M A R Y
In this study, we devised a new set of analytical foundation solutions to compute the internal
co-seismic displacement and strain changes caused by four independent point sources (strike-
slip, dip-slip, horizontal tensile and vertical tensile) inside a homogeneous spherical earth
model. Our model provides constraints on the deformation properties at depth and reveals
that the internal co-seismic deformation is larger than that on the surface. The deformation
near the source is convergent with our formulae. For the internal deformation at radial section
plane, the patterns of horizontal displacements uθ , uφ and strain changes err , eθθ , eφφ, eθφ

caused by strike-slip and tensile sources appear symmetric at the equidistance above and
below the source. Their amplitudes are not identical but with a small discrepancy actually.
Unlike these, the patterns of radial displacements ur for strike-slip and tensile sources exhibit
point symmetry with the equidistance from the source. Also, the corresponding amplitudes
are slightly different. The displacements uθ , uφ and strain changes err , eθθ , eφφ, eθφ caused
by dip-slip also show the same properties as ur of the strike-slip source. The magnitudes of
the displacements and strain changes depend on the source types. The curvature effect on the
near-field surface deformations is small, and it increases with the studied depth. However, for
the far-field deformation caused by the strike-slip source (ds = 20 km), the curvature effect
can be as large as 77 per cent when the epicentral distance approximates to 1778 km.

Key words: Seismic cycle; Numerical solutions; Planetary interiors; Computational seis-
mology; Theoretical seismology.

1 I N T RO D U C T I O N

Earthquakes can cause significant deformation at both the surface and internal layers. With the development of seismology, not only the
surface co-seismic deformation has been studied, but also the internal deformation inside an Earth attracts attention. Internal deformation is
related to the earthquake triggering mechanism. Especially for the seismic cycle, the accumulation and release of stress within the Earth can
affect or trigger aftershocks and later seismic events. Shan et al. (2009) conducted a surface deformation study of the Wenchuan earthquake
(Mw7.9) in order to calculate the stress changes and to predict the location of potential aftershocks. The high-precision geodetic observations
on the surface can validate the computing surface deformation. While it is difficult to observe the internal deformation directly, it is possible
to create internal deformation models based on dislocation theory.

The dislocation theory has evolved from a simple half-space model to a more realistic spherical model. Okada (1985) presented a set
of simple analytical formulae to calculate the surface co-seismic displacement and strain changes in the homogeneous elastic half-space
earth model, which is still widely used because of its mathematical simplicity. Okubo (1992) gave analytical formulae for calculating the
gravitational potential and gravitational change of the medium model in a half-space model. Later, many works have explored the potential
of the layered half-space model (Singh 1970; Jovanovich et al. 1974a,b; Matsu’ura et al. 1981; Ma & Kusznir 1992; Ma & Lee 2009; Barbot
& Fialko 2010a,b), which is more accurate than some of its predecessors. Wang et al. (2003, 2006) considered the radial structure of the
Earth, improved the dislocation theory of the half-space model and provided an effective scheme for calculating co-seismic and post-seismic
deformation caused by any point source or generalized finite fault source. Furthermore, the material anisotropy effect (Pan et al. 2014) has been
incorporated into dislocation theory. The dislocation theory has also been applied to more realistic spherical earth models (Ben-Menahem &
Singh 1968; Ben-Menahem et al. 1969, 1970). The spherically symmetric, non-rotating, perfectly elastic and isotropic (SNREI; Dahlen 1968)
earth model considers the curvature and stratification structures of the Earth. Sun & Okubo (1993) calculated the surface seismic deformation
based on the SNREI model. Many researchers (Piersanti et al. 1995, 1997; Sabadini et al. 1995; Pollitz 1996; Sabadini & Vermeersen
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1997; Soldati et al. 1998; Shen et al. 2019) calculated the surface deformation using another spherical model—normal model, which is an
uncompressible earth model. For the post-seismic relaxation computation, researchers (Pollitz et al. 2006; Tanaka et al. 2006, 2007) also
inclined to the spherically stratified, compressible and self-gravitating viscoelastic earth model. Moreover, the load deformation (Longman
1962, 1963; Farrell 1972; Pan 1989) and slip distribution inversions (Pollitz et al. 2011; Zhou et al. 2014, 2018) are based on dislocation
theory. Pan (2019) gives a review of the Green’s functions for layered sphere and layered half-space. While the above studies developed
robust surface deformation calculations, they do not address the internal deformation; very few studies do. Although Okada (1992) presented
a set of analytical formulae to calculate the internal co-seismic deformation, it is based on a half-space earth model. Casarotti et al. (2001)
developed the model of viscoelastic post-seismic deformation based on a normal model and discussed the effect of the stress transferred
on the fault interaction inside a spherical Earth. Takagi & Okubo (2017) presented a new method to compute the internal deformations by
introducing the asymptotic solutions of the radial functions to avoid the non-convergence near the dislocation, which is summed up by the
deform factors with spherical harmonic degree.

In our study, we investigate the internal deformation in a homogeneous spherical model (SNREI) by summing up the spherical harmonics
using a new set of analytical foundation solutions derived, which are different from Takagi & Okubo (2017) using the solutions of Love
(1911). Our straightforward approach does not involve non-convergence near the source. By exactly computing high harmonic degrees
avoiding any approximation error, we can determine the internal Green’s functions and draw conclusions about the internal deformation. This
is an important step towards the internal deformation research on the radial stratification spherical earth model, because the internal structure
also affects the co-seismic deformation (Fu & Sun 2007; Dong et al. 2021). Furthermore, it can enhance our understanding of the stress
status, mass redistribution and focal mechanism in the seismic cycle.

2 C O M P U T I N G M E T H O D S

2.1 Fundamental equations for internal co-seismic deformations in a homogeneous spherical Earth

Based on the homogeneous spherical earth model (SNREI), we calculate the internal co-seismic deformation caused by a point source (S).
We use the spherical coordinates (r, θ, φ), where r is the geocentric distance, and θ and φ are the co-latitude and longitude, respectively.
The co-seismic displacement (u) and stress (τ ) are excited by a unit point source ( f ) at a location (r0, θ0, φ0) that satisfies the equations of
equilibrium and stress–strain relation (Alterman et al. 1959; Takeuchi & Saito 1972):

∇ · τ + ρ f = 0, (1)

τ = λI∇ · u + μ
(∇u + (∇u)T

)
, (2)

where I is the unit tensor, superscript T stands for transpose, and μ and λ are the Lame constants of the Earth.
Generally, any function can be expressed as spherical harmonics on a unit sphere. The co-seismic displacement u(r, θ, φ) and stress

τ (r, θ, φ) can be expressed as

u(r, θ, φ) =
∑
n,m

[
y1(r )Rm

n (θ, φ) + y3(r )Sm
n (θ, φ) + yt

1(r )T m
n (θ, φ)

]
, (3)

τ · er (r, θ, φ) =
∑
n,m

[
y2(r )Rm

n (θ, φ) + y4(r )Sm
n (θ, φ) + yt

2(r )T m
n (θ, φ)

]
, (4)

where y1, y2, y3 and y4 are the factors of spheroidal deformation. y1 and y3 stand for the radial and horizontal components of displacements.
y2 and y4 stand for the radial and horizontal components of stresses. The superscript ‘t’ stands for the toroidal deformation.yt

1 and yt
2 are the

toroidal displacement and the stress, respectively. Rm
n (θ, φ), Sm

n (θ, φ) and T m
n (θ, φ) are vector spherical functions and can be expressed as

Rm
n (θ, φ) = er Y m

n (θ, φ),

Sm
n (θ, φ) =

[
eθ

∂

∂θ
+ eφ

1

sin θ

∂

∂φ

]
Y m

n (θ, φ),

T m
n (θ, φ) =

[
eθ

1

sin θ

∂

∂φ
− eφ

∂

∂θ

]
Y m

n (θ, φ), (5)

with

Y m
n (θ, φ) = Pm

n (cos θ )eimφ,

Y −|m|
n (θ, φ) = (−1)m P |m|

n (cos θ )e−i|m|φ,

m = 0, ±1, ±2, . . . , ±n, (6)

where Pm
n (cos θ ) are the associated Legendre’s functions. (er , eθ , eφ) are the base vectors in spherical coordinate for radial, co-latitude and

longitude directions, respectively.
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Figure 1. Sketch showing the source position (S) and internal spheres at hk (k = 1, 2, ..., n). R is the radius and O is the centre of the Earth.

Similarly, the point force f can be expressed as spherical harmonics:

ρ f = δ(r − r0)

r 2
0

∑
n,m

[
F2(r )Rm

n (θ, φ) + F4(r )Sm
n (θ, φ) + F t

2(r )T m
n (θ, φ)

]
, (7)

with

F2(r ) = 2n + 1

4π

(n − m)!

(n + m)!
Rm∗

n (θ0, φ0) · ν,

F4(r ) = 2n + 1

4πn(n + 1)

(n − m)!

(n + m)!
Sm∗

n (θ0, φ0) · ν,

Ft
2 (r ) = 2n + 1

4πn(n + 1)

(n − m)!

(n + m)!
T m∗

n (θ0, φ0) · ν, (8)

where ∗ stands for complex conjugate and v is a unit vector.
Substituting formulae (3), (4) and (7) into (1) and (2), and neglecting the gravity effect (g = 0), we obtain four ordinary spheroidal

differential equations (9) and two toroidal equations (10) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1

dr
= 1

β

{
y2 − λ

r
[2y1 − n(n + 1)y3]

}
dy2

dr
= 4

r

(
3κμ

rβ

)
y1 − 4μ

rβ
y2 − n (n + 1)

r

(
6μκ

rβ

)
y3 + n (n + 1)

r
y4 − F2

δ(r − r0)

r 2
0

dy3

dr
= 1

μ
y4 − 1

r
(y1 − y3)

dy4

dr
= −6μκ

r 2β
y1 − λ

rβ
y2 +

{
2μ

r 2β

[(
2n2 + 2n − 1

)
λ + 2

(
n2 + n − 1

)
μ

]}
y3

−3

r
y4 − F4

δ(r − r0)

r 2
0

(9)

⎧⎪⎪⎨
⎪⎪⎩

dyt
1

dr
= 1

r
yt

1 + 1

μ
yt

2

dyt
2

dr
= μ (n − 1) (n + 2)

r 2
yt

1 − 3

r
yt

2 − F t
2

δ(r − r0)

r 2
0

, (10)

where β = λ + 2μ and κ = λ + 2
3 μ.

Then, we derive the foundation solutions by eqs (9) and (10) and get four sets of spheroidal foundation solutions y ji (i, j = 1, 2, 3, 4)
and two sets of toroidal foundation solutions yt

j i (i, j = 1, 2).
In our study, we use the new foundation solutions to compute the internal displacement and stress at arbitrary depths h1, h2, . . . , hn

(Fig. 1), which is different from the surface deformation calculation by Dong et al. (2016).
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There are four sets of spheroidal solutions, two regular and two irregular, which depend on the normalized distance (r = r/R). The
formulae are presented as eq. (11):

⎛
⎜⎜⎜⎝

y11 (r ) y12 (r ) y13 (r ) y14 (r )
y21 (r ) y22 (r ) y23 (r ) y24 (r )
y31 (r ) y32 (r ) y33 (r ) y34 (r )
y41 (r ) y42 (r ) y43 (r ) y44 (r )

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(n + 1)r−n−2 −
[

(n + 1)λ + (n + 3)μ

(n − 2)λ + (n − 4)μ

]
nr−n nλ + (n − 2)μ

(n + 3)λ + (n + 5)μ
(n + 1)rn+1 nrn−1

2μ(n + 1)(n + 2)r−n−3 (n2 + 3n − 1)λ + n(n + 3)μ

(n − 2)λ + (n − 4)μ
2μnr−n−1 (n2 − n − 3)λ + (n2 − n − 2)μ

(n + 3)λ + (n + 5)μ
2μ(n + 1)rn 2μn(n − 1)rn−2

r−n−2 r−n rn+1 rn−1

−2μ(n + 2)r−n−3 − (n2 − 1)λ + (n2 − 2)μ

(n − 2)λ + (n − 4)μ
2μr−n−1 (n2 + 2n)λ + (n2 + 2n − 1)μ

(n + 3)λ + (n + 5)μ
2μrn 2μ(n − 1)rn−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(11)

where n is the spherical harmonic degree.
There are two sets of toroidal solutions, one regular and one irregular, as formula (12):

(
yt

11 (r ) yt
12 (r )

yt
21 (r ) yt

22 (r )

)
=

(
rn −r−(n+1)

μ(n − 1)rn−1 μ(n + 2)r−(n+2)

)
. (12)

We use the same path of integration as the one discussed in Wang et al. (2006), but based on the spherical earth model (Fig. 1), the
formula can be written as

y j (r )
∣∣
r=r+

s
− y j (r )

∣∣
r=r−

s
= s j , j = 1, 2, 3, 4, (13)

where s is seismic source function and j represents one of four independent sources (strike-slip, dip-slip, horizontal tensile and vertical tensile
sources), defined by Takeuchi & Saito (1972).

The boundary conditions take the following form:

y2(r )|r=R = y4(r )|r=R = 0. (14)

Then, by the four source functions and the path of integration as in Wang et al. (2006), we get the following equations for the spheroidal
solutions (15) and toroidal solutions (16). We can obtain the coefficients βi (i = 1, 2, ..., 6) and β t

i (i = 1, 2, 3) analytically:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y21 (R) y22 (R) y23 (R) y24 (R) 0 0
y41 (R) y42 (R) y43 (R) y44 (R) 0 0
y11

(
r+

s

)
y12

(
r+

s

)
y13

(
r+

s

)
y14

(
r+

s

) −y13

(
r−

s

) −y14

(
r−

s

)
y21

(
r+

s

)
y22

(
r+

s

)
y23

(
r+

s

)
y24

(
r+

s

) −y23

(
r−

s

) −y24

(
r−

s

)
y31

(
r+

s

)
y32

(
r+

s

)
y33

(
r+

s

)
y34

(
r+

s

) −y33

(
r−

s

) −y34

(
r−

s

)
y41

(
r+

s

)
y42

(
r+

s

)
y43

(
r+

s

)
y44

(
r+

s

) −y43

(
r−

s

) −y44

(
r−

s

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1

β2

β3

β4

β5

β6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

s12
1 (rs)

s12
2 (rs)

s12
3 (rs)

s12
4 (rs)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)

⎛
⎜⎝ yt

21 (R) yt
22 (R) 0

yt
11

(
r+

s

)
yt

12

(
r+

s

) −yt
11

(
r−

s

)
yt

21

(
r+

s

)
yt

22

(
r+

s

) −yt
21

(
r−

s

)
⎞
⎟⎠

⎛
⎜⎝β t

1

β t
2

β t
3

⎞
⎟⎠ =

⎛
⎜⎝ 0

s t,12
1 (rs)

s t,12
2 (rs)

⎞
⎟⎠ , (16)

where R is the radius of the Earth and rs = (R − ds)/R denotes the normalized radial distance of the source.
Using the regular foundation solutions and the constant values β of the spheroidal and toroidal parts, we can get the deformation factors

of displacement and strain changes:

y j (r ) =
4∑

i=1

βi y ji (r ), j = 1, 2, 3, 4. (17)

In order to derive expressions for the internal co-seismic deformation at an arbitrary layer (h) inside the Earth, we apply two conditions
to the regular solutions:

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1378/6119909 by guest on 19 April 2024



1382 J. Dong et al.

Table 1. Love numbers and Green’s functions caused by four independent point sources.

Love numbers:

hi j
n = yn,i j

1 (r ) · R2

li j
n = yn,i j

3 (r ) · R2 i j = 12, 32, 22, 33

lt,n,i j
n = yt,n,i j

1 (r ) · R2

κ = λ
λ+2μ

ij = 12—Strike-Slip, ij = 32—Dip-Slip, ij = 22—Horizontal tensile, and ij = 33—Vertical tensile
GF Strike-slip Dip-slip Horizontal tensile Vertical tensile

ur 2
∞∑

n=2
h12

n2 P2
n (cos θ) sin 2φ −2

∞∑
n=1

h32
n1 P1

n (cos θ ) sin φ
∞∑

n=0
h22

n0 Pn (cos θ)
∞∑

n=0
h33

n0 Pn (cos θ )

uθ 2
∞∑

n=2
[
l12
n2

∂ P2
n (cos θ)
∂θ

+2lt,12
n2

P2
n (cos θ )
sin θ

] sin 2φ −2
∞∑

n=1
[
l32
n1

∂ P1
n (cos θ )
∂θ

−lt,32
n1

P1
n (cos θ )
sin θ

] sin φ
∞∑

n=0
l22
n0

∂ Pn (cos θ )
∂θ

∞∑
n=0

l33
n0

∂ Pn (cos θ )
∂θ

uφ 2
∞∑

n=2
[
2l12

n2
P2

n (cos θ )
sin θ

+lt,12
n2

∂ P2
n (cos θ )
∂θ

] cos 2φ −2
∞∑

n=1
[
l32
n1

P1
n (cosθ )
sin θ

+lt,32
n1

∂ P1
n (cos θ )
∂θ

] cos φ 0 0

err 2κ
∞∑

n=2
(
2h12

n2

−n(n + 1)l12
n2

)P2
n (cos θ ) sin 2φ 2κ

∞∑
n=1

(
2h32

n1

−n(n + 1)l32
n1

)P1
n (cos θ ) sin φ κ

∞∑
n=0

[
−h22

n0

+n(n + 1)l22
n0

]Pn (cos θ ) κ
∞∑

n=0
[
−h33

n0

+n(n + 1)l33
n0

]Pn (cos θ)

eθθ 2
∞∑

n=2
[

−l12
n2

d2 P2
n (cos θ )

dθ2 −h12
n2 P2

n (cos θ)

−2lt,12
n2 (

1
sin θ

dP2
n (cos θ )

dθ

− cos θ

sin2θ
P2

n (cos θ)
)

] sin 2φ 2
∞∑

n=1
[

−l32
n1

d2 P1
n (cos θ )

dθ2 −h32
n1 P1

n (cos θ)

−lt,32
n1 (

1
sin θ

dP1
n (cos θ )

dθ

− cos θ

sin2θ
P1

n (cos θ )
)

] sin φ
∞∑

n=0
[l

22
n0

d2 Pn (cos θ )

dθ2

+h22
n0 Pn (cos θ )

]
∞∑

n=0
[l

33
n0

d2 Pn (cos θ )

dθ2

+h33
n0 Pn (cos θ)

]

eφφ 2
∞∑

n=2
{

l12
n2

sin θ
( 4P2

n (cos θ )
sin θ

− cos θ
dP2

n (cos θ )
dθ

)
−h12

n2 P2
n (cos θ)

+2
lt,12
n2
sin θ

( dP2
n (cos θ )

dθ
− cot θ P2

n (cos θ))

} sin 2φ 2
∞∑

n=1
{

l32
n1

sin θ
( P1

n (cos θ )
sin θ

− cos θ
dP1

n (cos θ )
dθ

)
−h32

n1 P1
n (cos θ)

+ lt,32
n1
sin θ

( dP1
n (cos θ )

dθ
− cot θ P1

n (cos θ ))

} sin φ
∞∑

n=0
[
cot θl22

n0
dPn (cos θ )

dθ

+h22
n0 Pn (cos θ )

]
∞∑

n=0
[
cot θl33

n0
dPn (cos θ )

dθ

+h33
n0 Pn (cos θ)

]

eθφ 2
∞∑

n=2
{

4l12
n2

sin θ
(− dP2

n (cos θ )
dθ

+ cot θ P2
n (cos θ))

+lt,12
n2 (

cot θ dP2
n (cos θ )

dθ
− 4P2

n (cos θ )

sin2θ

− d2 P2
n (cos θ )

dθ2

)
} cos 2φ 2

∞∑
n=1

{

2l32
n1

sin θ
(− dP1

n (cos θ )
dθ

+ cot θ P1
n (cos θ))

+l t,32
n1 (

cot θ dP1
n (cos θ )

dθ
− P1

n (cos θ )

sin2θ

− d2 P1
n (cos θ )

dθ2

)
} cos φ 0 0

(1) When h < ds, the internal surface is located between the surface and the seismic source. The y-variables take the following form:

(
y1

y3

)
=

(
y11 (r ) y12 (r ) y13 (r ) y14 (r )
y31 (r ) y32 (r ) y33 (r ) y34 (r )

) ⎛
⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎠

yt
1 =

(
yt

11 (r ) yt
12 (r )

) (
β t

1

β t
2

)
(18)

(2) When h > ds, the internal surface is located between the seismic source and the centre of the Earth. The y-variables take the following
form:(

y1

y3

)
=

(
y13 (r ) y14 (r )
y33 (r ) y34 (r )

) (
β5

β6

)

yt
1 = yt

11(r )β t
3. (19)

By these y-variables at different depth, we can get the Love numbers and Green’s functions (GF) for displacement and strain changes
(Table 1) inside the Earth.

With the new set of internal Love number formulae, we can get the internal Green’s functions for displacement (ur , uθ , uφ) and strain
(err , eθθ , eφφ, eθφ) changes generated by four independent sources in a homogeneous spherical Earth. Usually, a finite fault model can be
divided into many subfaults. When the subfaults are small enough, they can be approximated as point sources (Beresnev & Atkinson 1997,
1998) and summed up the individual contributions to get the total deformation of the finite fault. That is to say, any finite fault can be combined
with the four independent point sources by its strike angle, dip angle, rake angle, etc. Then, these Green’s functions can be applied to arbitrary
point sources and finite fault models. Though our approach is based on a homogeneous spherical model, it represents a step forward for the
application of dislocation theory to this internal deformation puzzle in multiple reference frames and Earth scenarios.

Based on eqs (18) and (19) and Table 1, we can calculate the internal deformation inside the Earth at an arbitrary depth with the exception
of the source point, which, according to our parametrization, is a discontinuous point. These calculations will provide insight into the internal
deformation of a complex, layered earth model.

2.2 Harmonic degree effect on numerical convergence

Due to the complexity and computing time of spherical dislocation theory, Sun et al. (2009) applied a constraint of nmax = 10 · R/ds to
expedite the computing process while maintaining the desired level of precision. We apply the same truncation procedure, but our approach
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Figure 2. Comparison of Green’s functions at 19.5 km with different calculated spherical harmonic degrees (n) caused by a strike-slip point source (ds = 20 km,
UdS/R2 = 1).

also allows us to quickly calculate n values that are larger than nmax:

n > nmax = 10 R

|ds − hn| . (20)

The degree n should be truncated to at least nmax to avoid the non-convergence. For hn = 19.5 km and ds = 20.0 km, we need to calculate
at least nmax = 127 420, which exceeded the number of available calculated degrees in the surface deformation calculation of Sun et al.
(2009). For the homogeneous spherical earth model, Takagi & Okubo (2017) used the foundation solutions of Love (1911) and introduced
the asymptotic solutions to solve the non-convergence problem near the source. For the half-space earth model, Okada (1992) presented the
analytical solutions for the internal deformation calculation. Our formulae resolve any convergence issue in the spherical earth model without
requiring additional numerical techniques.

In order to validate the stabilization of the Green’s functions with the spherical harmonic degree, we calculate the internal horizontal
displacement at a distance of 19.5 km from a strike-slip source with a depth of 20 km. In this case, nmax = 127 420. Theoretically, it is
non-convergent when n is truncated less than nmax. In Fig. 2, we can see that the results are non-convergent for n = 10 000. When n = 50 000,
though the results are convergent, the real values are inaccurate. While the results of n = 80 000 are close to those of n = 127 420, the values
are still not accurate. Conversely, the results for n = 127 420 and n = 150 000 are identical and converging; when n ≥ nmax, all calculations
are accurate. In addition, our foundation solutions are analytical, we do not need to consider the computing time for the high degrees.

3 C O M P U T I N G R E S U LT S

3.1 Internal co-seismic deformation caused by point sources

Using the aforementioned model, we calculated the internal displacement (Fig. 3) and strain changes (Fig. 4) caused by the four independent
point sources (ds = 20 km). The point sources are normalized by a factor of UdS/R2 = 1. In order to characterize the deformation at different
depths, we divide our inner deformation results into two parts: those above (h = 0 km, h = 2 km, h = 12 km) and below (h = 28 km,
h = 40 km) the source. The surface deformation occurs at h = 0 km. Layers h = 12 km and h = 28 km are equidistant from the source, which
has a depth of 20 km.

From Fig. 3, the displacements inside the Earth are larger than those on the surface (h = 0 km). The amplitudes of displacements at
layer h = 12 km are more than twice as large as the surface. For the deformation at equidistant layers from the source, such as h = 12 km and
h = 28 km, the displacements are not identical though sometimes their signs are the same. For the strike-slip, horizontal tensile and vertical
tensile sources, the sign of the radial displacement (ur ) changes depending on whether the deformation is above or below the source; however,
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Figure 3. Internal displacement (ur , uθ , uφ ) caused by four point sources (ds = 20 km, UdS/R2 = 1) at different depths (0, 2, 12, 28 and 40 km) in the Earth.

the sign for the horizontal displacements (uθ , uφ) stays the same regardless of the depth. This trend is reversed for the dip-slip source, which
has similarly signed radial displacements and oppositely signed horizontal displacements.

The strain magnitudes fall off rapidly with increased distance from the source. While the sign of the strain appears to be independent
of the study location for the strike-slip, horizontal tensile and vertical tensile sources, the sign of the strain magnitude for the dip-slip source
appears to depend on the study location. Remarkably, the amplitudes of the deformation at the two layers that are equidistant from the source
(h = 12 km and h = 28 km) are not identical; there are minor differences between the two.

As shown in Figs 3 and 4, the internal deformation is much larger than that expressed at the surface. The magnitude of the deformation
is highest close to the source, and decreases with increased distance from the source.

3.2 Co-seismic strain changes at an internal sphere

In order to study the internal deformation properties at an internal sphere, we placed the point sources at the north pole (Sun & Okubo 1993)
and analysed the deformation that occurred within the h = 40 km layer in a quadrant pattern.

For the strike-slip source, components err and eφφ rise in quadrants 1 and 3 and sink down in quadrants 2 and 4; the reverse is true for
components eθθ and eθφ(Fig. 5). For the dip-slip source, the strain component err sinks down when the latitude is positive, but rises when
the latitude is negative; the reverse is true for components eθθ , eφφ, eθφ (Fig. 6). For the horizontal and vertical tensile sources, the strain
properties are the same in all four quadrants (Figs 7 and 8). The strain component eθφ for the tensile sources is equal to zero.
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Figure 4. Internal strain (err , eθθ , eφφ, eθφ ) changes caused by four point sources (ds = 20 km, UdS/R2 = 1) at different depths (0, 2, 12, 28 and 40 km) in
the Earth.

3.3 Internal co-seismic deformations at radial section plane

In Fig. 9, we compare our internal deformation depth dependency results for a spherical model (specifically, the radial section plane) with
those of the half-space model shown in Okada (1992). We calculated the internal displacement and strain changes caused by four independent
sources from h = 0 km to h = 60 km. Because the source is defined as a discontinuity in the SNREI Earth, we do not present the results
in the immediate vicinity of the point source. The results in Fig. 9 were calculated at an epicentral angular distance of θ = 0.1◦. For the
displacements uθ , uφ and strain changes err , eθθ , eφφ, eθφ caused by strike-slip and tensile sources, the deformations are similar both above
and below the source, even if the magnitude of the deformation varies slightly at layers equidistant from the source. Conversely, the strike-slip
and tensile source displacements ur and the dip-slip displacements uθ , uφ and strain changes err , eθθ , eφφ, eθφ appear to have point symmetry.

The magnitudes of the strain components decay more rapidly than those of the displacement components with increased distance from
the source. This phenomenon depends on the definition of strain. An internal deformation model should be based on a spherical Earth in
order to account for the curvature effect. The effect of the layered structures on deformation is larger than the curvature (Pollitz 1996; Sun &
Okubo 2002; Melini et al. 2008; Dong et al. 2014). Dong et al. (2014) found that the effect of the curvature on the displacements is ≤5 per
cent. In order to fully account for the curvature and layered structure effects in our understanding of internal deformation, we wll apply our
calculations to a more complex layered spherical earth model next.
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Figure 5. Strain changes (err , eθθ , eφφ, eθφ ) in a quadrant pattern at h = 40 km caused by a strike-slip source (ds = 20 km, UdS/R2 = 1) located at the north
pole.

Figure 6. Similar to Fig. 5, but for dip-slip source.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1378/6119909 by guest on 19 April 2024



Internal co-seismic displacement and strain changes 1387

Figure 7. Similar to Fig. 5, but for horizontal tensile source.

Figure 8. Similar to Fig. 5, but for vertical tensile source.

4 I N T E R NA L D E F O R M AT I O N S I N S P H E R I C A L A N D H A L F - S PA C E M O D E L S

Many studies that invoke the work of Okada (1985, 1992) operate under the assumption that the curvature effect is negligible. However, as
shown in Fig. 10, our results indicate that the curvature of the Earth is non-trivial when it comes to internal co-seismic deformation, especially
for far-field deformation.
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Figure 9. Radial section plane of internal displacement (ur , uθ , uφ) and strain (err , eθθ , eφφ, eθφ ) changes caused by four point sources (ds = 20 km,
UdS/R2 = 1). The green part represents the area between the surface (h = 0 km) and the seismic source (h = 20 km). The red part represents the area between
the seismic source (h = 20 km) and a lower layer (h = 40 km).

In Fig. 10, we compare the internal radial displacement (ur ) values for a strike-slip source (ds = 20 km) for our spherical model and a
half-space model. For both models, the point sources are normalized by a factor of UdS/R2 = 1. The relation between distance from the source
(l) and epicentral angle (θ ) is l ≈ 20000 · θ/180. Our results include both near-field (lθ=0.1◦ ≈ 11.1 km) and far-field (lθ=16◦ ≈ 1778 km)
displacements to show the curvature effect (Fig. 10). Because the values at shallow depth (0–60 km) and deep depth (1000–3000 km) have a
great difference by seven orders of magnitude in near-field area, we plot the internal displacements with three subfigures in Figs 10(a)–(c). At
shallow depths, the curvature effect is small and the curves almost overlap each other (Fig. 10a). The effects increase with depth, which can
reach 30 per cent at h = 1000 km. For the far-field deformation at lθ=16◦ ≈ 1778 km, the internal displacements decay slowly with distance
from the source (Fig. 10d). The maximum internal displacement value is five times larger than the surface deformation in the spherical
model, whereas the maximum internal displacement is only twice that observed at the surface in the half-space model. The curvature effect is
obviously large at every depth; on the surface, it can be as high as 77 per cent. It is important to study the internal deformation of a spherical
earth model because it provides us with insight into how seemingly negligible effects, such as the curvature, affect internal deformation both
in the near-field and in the far-field.

5 C O N C LU S I O N S

In this study, we present a new set of analytical foundation solutions that allow us to calculate the internal displacement (ur , uθ , uφ) and strain
(err , eθθ , eφφ, eθφ) changes caused by four independent sources (strike-slip, dip-slip, horizontal tensile and vertical tensile) in a homogeneous
spherical model. Although the formulae include the spherical harmonic degree, they are analytical and they can be calculated up to any degree
directly without employing any additional numerical techniques.

From our calculation, we can see that the internal deformations are larger than those apparent at the surface. The signs of radial
displacements (ur ) caused by the strike-slip and tensile sources are dependent upon the layer location with respect to the source, while the
signs of the Green’s function components (uθ , uφ, err , eθθ , eφφ, eθφ) appear to be the same throughout our model; this trend is reversed for
the dip-slip source.

Looking at internal deformation at a sphere at h = 40 km, the deformation pattern for a strike-slip source consisted of components of
err and eφφ rising in quadrants 1 and 3 and sinking down in quadrants 2 and 4, while the components of eθθ and eθφ behave in the opposite
fashion. For the dip-slip source, the strain component err sinks down when the latitude is positive, but rises when the latitude is negative;
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Figure 10. Radial section plane showing internal radial displacement (ur ) at θ = 0.1◦ (a–c) and θ = 16◦ (d) caused by a strike-slip source (ds = 20 km,
UdS/R2 = 1) in a spherical model and a half-space model.

the opposite is true for components eθθ , eφφ, eθφ . For the tensile sources, the properties are the same in all four quadrants, and the strain
component eθφ for tensile sources is equal to zero.

The internal deformation components uθ , uφ, err , eθθ , eφφ, eθφ caused by strike-slip and tensile sources at a radial section plane (θ = 0.1◦)
appear symmetric at an equal distance above and below the source, but the amplitudes of the deformation are slightly different. The strike-slip
and tensile source radial displacements ur and the dip-slip displacements uθ , uφand strain changes err , eθθ , eφφ, eθφ all seem to exhibit point
symmetry, but also have slightly different deformation amplitudes.

As shown by the difference between the internal radial displacements for the spherical and half-space models, it is not accurate to neglect
the curvature effect of the Earth. In the near-field, the curvature effect at shallow depths is small, but it increases with depth. At h = 1000 km,
the curvature effect is as high as 30 per cent at lθ=0.1◦ ≈ 11.1 km. In the far-field, the curvature effect is large at every depth. Especially for
that on the surface, it can reach 77 per cent at lθ=16◦ ≈ 1778 km.

The study of internal deformation can improve the dislocation theory. Moreover, it is important for the study of accumulation and
distribution of stress. Comparing with the transferred stress in a global viscoelastic model (Casarotti et al. 2001), we can further discuss the
focal mechanism in the seismic cycle. Our future work will involve applying these calculations to a radially stratified spherical earth model
and making our code, which calculates the internal deformation of point sources and involves a generalized finite fault model, available for
public use.

A C K N OW L E D G E M E N T S

We thank the two referees for thoughtful reviews and comments that helped to improve the manuscript. This study was supported financially by
the National Natural Science Foundation of China (Nos. 41604067, 41974093, 41331066 and 41774088), the Basic Research Fund of Chinese
Academy of Surveying and Mapping (No. AR 1906), the special project of high-resolution Earth observation system (42-Y20A09-9001-17/18)
and the Key Research Program of Frontier Sciences Chinese Academy of Sciences (QYZDY-SSW-SYS003).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1378/6119909 by guest on 19 April 2024



1390 J. Dong et al.

DATA AVA I L A B I L I T Y

All the data of displacement and strain changes caused by four independent point sources are calculated by our formulae and Okada’s (1992).
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