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S U M M A R Y
Centroid moment tensor (CMT) parameters can be estimated from seismic waveforms. Since
these data indirectly observe the deformation process, CMTs are inferred as solutions to inverse
problems which are generally underdetermined and require significant assumptions, including
assumptions about data noise. Broadly speaking, we consider noise to include both theory and
measurement errors, where theory errors are due to assumptions in the inverse problem and
measurement errors are caused by the measurement process. While data errors are routinely
included in parameter estimation for full CMTs, less attention has been paid to theory errors
related to velocity-model uncertainties and how these affect the resulting moment-tensor (MT)
uncertainties. Therefore, rigorous uncertainty quantification for CMTs may require theory-
error estimation which becomes a problem of specifying noise models. Various noise models
have been proposed, and these rely on several assumptions. All approaches quantify theory
errors by estimating the covariance matrix of data residuals. However, this estimation can be
based on explicit modelling, empirical estimation and/or ignore or include covariances. We
quantitatively compare several approaches by presenting parameter and uncertainty estimates
in nonlinear full CMT estimation for several simulated data sets and regional field data of
the Ml 4.4, 2015 June 13 Fox Creek, Canada, event. While our main focus is at regional
distances, the tested approaches are general and implemented for arbitrary source model
choice. These include known or unknown centroid locations, full MTs, deviatoric MTs and
double-couple MTs. We demonstrate that velocity-model uncertainties can profoundly affect
parameter estimation and that their inclusion leads to more realistic parameter uncertainty
quantification. However, not all approaches perform equally well. Including theory errors
by estimating non-stationary (non-Toeplitz) error covariance matrices via iterative schemes
during Monte Carlo sampling performs best and is computationally most efficient. In general,
including velocity-model uncertainties is most important in cases where velocity structure is
poorly known.

Key words: Inverse theory; Probability distributions; Waveform inversion; Earthquake
source observations; Seismic noise.

1 I N T RO D U C T I O N

Earthquakes are routinely monitored by broadband seismic net-
works. Initial source analysis is often based on solving a weighted
time-domain least-squares inverse problem to obtain seismic mo-
ment tensors (MTs) that assume a point source with fixed location,
fixed source-time-function (STF) and simple velocity structure (e.g.
Sipkin 1982; Koch 1991; Tocheport et al. 2007). These simplifying

assumptions can result in erroneous estimates of the parameters
of the MT (e.g. Šı́lenỳ et al. 1992; Kravanja et al. 1999). Thus,
a more comprehensive approach is to determine the location, the
STF and the MT parameters simultaneously (e.g. Kravanja et al.
1999; Ekström 2006; Sigloch & Nolet 2006; Wéber 2006; Ekström
et al. 2012; Stähler & Sigloch 2014, 2016). In addition, these
source parameters should be quantified not only in terms of their
optimal parameter values, but also in terms of their uncertainties.

1412
C© The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved. For
permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1412/6119912 by guest on 19 April 2024

http://orcid.org/0000-0002-3826-0663
http://orcid.org/0000-0002-9580-310X
mailto:hvasbath@uni-potsdam.de
mailto:journals.permissions@oup.com


Bayesian noise models for theory errors 1413

Uncertainty quantification can be accomplished by formulating the
problem via Bayes’ Theorem (e.g. Tarantola 2005; Wéber 2006;
Dȩbski 2008; Stähler & Sigloch 2014; Vackář et al. 2017).

The physical processes of earthquake deformation have signif-
icant nonlinearities in source parameters (Cesca et al. 2016), es-
pecially for the origin in space and time, which causes numeri-
cal challenges in determining source location and mechanism. In
addition, seismic data are contaminated by various noise sources
of natural (e.g. meteorological and oceanic) and human origins
(Bonnefoy-Claudet et al. 2006). The estimation of noise character-
istics is important to obtain appropriate weights for the data in the
parameter inference. A simple approach is to estimate the pre-event
noise variance and to derive a diagonal weight matrix (e.g. Duputel
et al. 2012). In addition, the covariances between seismogram com-
ponents can be estimated and these can account for the directionality
of seismic noise (Tarantola 2005; Vackář et al. 2017). Accounting
for such dependence in noise and its rigorous quantification leads
to better estimation of the MT parameters and their uncertainties.

For inverse problems, it has been shown that both data errors
and and errors due to assumptions in the model formulation af-
fect parameter uncertainty, theory errors in the following (Tarantola
& Valette 1982). In source parameter estimation, significant as-
sumptions are made about the Earth structure (e.g. Tarantola &
Valette 1982; Duputel et al. 2014) and the parametrization of the
deformation source (e.g. Dettmer et al. 2014; Pugh et al. 2016).
For example, theory error can be due to a pre-defined earthquake
hypocentre location, but this location is inconsistent with the cen-
troid location (Duputel et al. 2012; Ragon et al. 2018). Another
example is assuming the STF to be of particular shape (e.g. triangu-
lar) that is not sufficiently general to describe the moment release of
the source (Stähler & Sigloch 2014). Yet another important source
of theory error is the Earth structure (Minson et al. 2013). While
actual structure is 3-D, anisotropic and heterogeneous, it is often ap-
proximated by isotropic, horizontally stratified half-spaces. Errors
due to these assumptions have mostly been ignored in source stud-
ies (e.g. Hofstetter et al. 2003; Baer et al. 2008; Fukuda & Johnson
2008; Bathke et al. 2013). In addition, trade-offs between source
parametrization and Earth structure can cause poor assumptions
about structure to be compensated by biased estimates of source
parameters (e.g. Valentine & Woodhouse 2010).

Recent research incorporated uncertainties in the assumed Earth
structure into distributed slip-estimates of extended sources through
a prediction covariance matrix. For instance, Yagi & Fukahata
(2011) included a Gaussian noise term for teleseismic Green’s
functions (GFs) and iteratively estimated a prediction covariance
matrix in an optimization scheme employing Akaike’s Bayesian
information criterion (ABIC). Similarly, Minson et al. (2013) esti-
mated a scale factor for an identity matrix that treats the variance
in GFs to account for uncertainty in the subsurface structure in
Bayesian inference. With linear perturbations of the original GFs,
a prediction covariance matrix including off-diagonal terms can be
formulated (Duputel et al. 2014). This approach includes physical
constraints to improve the robustness of finite-fault inversion (Yagi
& Fukahata 2008, 2011; Minson et al. 2013; Duputel et al. 2014).
Incorporating a prediction covariance matrix to resolve distributed
kinematic rupture parameters for data computed from a synthetic
dynamic rupture model, Razafindrakoto & Mai (2014) reported loss
in resolution on the kinematic rupture parameters through Bayesian
inference. However, they investigated only the variance effect in
the prediction covariance matrix. In MT estimation, the MT com-
ponents can be more robustly inferred by including the centroid
uncertainty (Duputel et al. 2012). Hallo & Gallovic (2016) showed

that including uncertainties in Earth structure in Bayesian linear MT
estimation yields more reliable estimates and uncertainties. These
developments mostly focused on improving the robustness of linear
inversion under the premise that the source geometry and location
was known a priori. However, it remains unclear if improvements
can be achieved when including non-linear parameters (e. g. source
location) in the inference.

In this study, we compare various approaches to estimate covari-
ance matrices with respect to uncertainties in Earth velocity models
and we show how to include these in Bayesian inference. For sim-
plicity, we approximate the STF as a delta function, which is a valid
assumption if the source duration is shorter than the shortest peri-
ods in the waveforms (Aki & Richards 2002). In synthetic tests, we
demonstrate the influence of various parametrizations of the covari-
ance matrix on parameter estimates of full centroid moment tensors
(CMTs), deviatoric (DV) CMTs and double-couple (DC) CMTs.
We apply the approach to regional seismic data for the 2015 June
13, Fox Creek (Canada) event.

2 M E T H O D S

This section provides background information on source parameter
estimation with Bayesian inference. In particular, we consider how
uncertainties in Earth structure (i.e. layer depths and velocities) are
propagated to source parameter uncertainties by estimating theory
errors in terms of noise covariance matrices.

2.1 Bayesian inference

Bayes’ (1763) theorem has been widely applied to study earth-
quake sources (e.g. Tarantola & Valette 1982; Wéber 2006; Monelli
& Mai 2008; Fukuda & Johnson 2008; Duputel et al. 2012; Monelli
et al. 2009; Minson et al. 2013; Dettmer et al. 2014; Razafind-
rakoto & Mai 2014; Vackář et al. 2017; Dutta et al. 2018). Recently,
we introduced a flexible software (BEAT—Bayesian Earthquake
Analysis Tool) for source estimations in layered elastic half-spaces
with Bayesian inference (Vasyura-Bathke et al. 2019, 2020). Us-
ing this software, we estimate parameters m of nonlinear CMT
parametrizations (see Appendix A) from seismic data dobs, that is,
seismic displacement waveforms.

Assuming Gaussian-distributed noise on the data, a likelihood
function is straightforward to formulate. However, since data
noise cannot generally be determined independently, residual er-
rors r(m) = dobs − d(m) serve as a proxy. The posterior probability
density (PPD) for residual errors of K data sets is given by (Tarantola
& Valette 1982)

p(m|dobs) ∝ p(m)
K∏

k=1

1

(2π )N/2|Ck |1/2
exp

[
−1

2
[dobs

k

−dk(m)]T C−1
k [dobs

k − dk(m)]
]
,

where dk(m) are predicted seismic data at seismic station k with
N samples that depend on the MT parameters m. This formulation
assumes that for a seismic station k the noise at different components
is independent. The covariance matrices Ck represent the noise
statistics, and play an important role in the parameter estimation as
well as in the uncertainty quantification.

2.2 Residual error covariance matrix

The residual covariance matrices include variances and covariances
of the data residuals rk . Under the assumption that noise between
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Table 1. Noise parametrizations used in this study. The data covariance matrix Cd
k , can be estimated from waveform data at a station k before the arrival time

of the event of interest.

Noise parametrization
Covariance matrix

components Colour coding References

variance Cd
k = σ 2I Light yellow

exponential Cd
k,i j = σ 2 exp −|�t i j |/t0 Light blue Duputel et al. (2012)

variance cov Cd
k + Ct

k Dark yellow Tarantola & Valette (1982); Yagi & Fukahata (2011); Duputel
et al. (2014)

exponential cov Cd
k,i j + Ct

k Dark blue Tarantola & Valette (1982); Yagi & Fukahata (2011); Duputel
et al. (2014)

non-Toeplitz Ck Red Dettmer et al. (2007)

(a) (c)

(b) (d) (e)

Figure 1. Covariance matrixes C with different noise parametrizations (Table 1). The parametrizations in (a) and (c) comprise only Cd
k while (b), (d) and (e)

also include Ct
k , thus the ranges of covariance matrix values vary significantly. These covariance matrices are computed in a frequency band of 0.01–0.1 Hz at

a sampling rate of 1 Hz for a station at 167◦ azimuth and 350 km epicentral distance.

stations is not correlated, one matrix is required for each station.
We study five approaches of formulating parametrizations for the
noise covariance matrix (Fig. 2). The variance approach estimates
the noise standard deviation as a hierarchical noise model (Malin-
verno & Briggs 2004) and ignores covariances. Another hierarchical
model is realized with a simple function describing off-diagonal
components (exponential parametrization). More sophisticated
approaches model theory errors explicitly (variance cov and expo-
nential cov parametrizations). Finally, the non-Toeplitz approach is
empirical and non-parametric. In the following we use the terms:
variance, exponential, variance cov, exponential cov and non-
Toeplitz to distinguish between the different covariance parametriza-
tions described below and listed in Table 1.

The total noise covariance matrix Ck at station k is the sum of the
data covariance matrix Cd

k that quantifies measurement errors and
the model prediction covariance matrix Ct

k , caused by physical and
mathematical approximations in the forward model (theory errors),

Ck = Cd
k + Ct

k . (2)

Many MT studies ignore off-diagnonal terms in Cd
k and the com-

ponent Ct
k (e.g. Ekström 2006; Ekström et al. 2012; Cesca et al.

2017; Vackář et al. 2017). Consequently, only measurement errors
are considered and assumed to be from a stationary, uncorrelated
random Gaussian process (Fig. 1a, variance). This assumption
is often unjustified when noise is serially correlated and/or non-
stationary. For long-period data, it can be useful to estimate diagonal
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(a)

(c)

(b)

Figure 2. Steps to calculate the model prediction covariance; (a) velocity model profiles: (b) synthetic waveforms (vertical component) for the reference source
simulated for each realization of the Earth structures and (c) covariance matrix Ct

k of seismic traces from (b) following eq. (3).

(Toeplitz) covariance matrices (Fig. 1b, exponential) with exponen-
tial decay depending on the shortest period t0 of the data (Duputel
et al. 2012, see table 1). For Cd

k variances, σ 2 can be estimated
from the recorded signal, filtered to the frequency band used in the
inference, prior to the first arriving wave of the seismic event of
interest at any given station. However, it must be ensured that there
is no source of seismic signal other than background noise present
in the estimation data; otherwise biases occur.

2.2.1 Explicit modelling of theory errors

Theory errors can result in source parameter uncertainties that are
substantially larger than those due to measurement errors (Taran-
tola & Valette 1982). Here, we compare various approaches to ac-
counting for velocity structure errors in the noise covariance matrix
Ck . First, we consider a previously proposed strategy (Tarantola &
Valette 1982; Yagi & Fukahata 2011; Duputel et al. 2014) to include
theory error due to Earth-structure assumptions via the model pre-
diction covariance matrix Ct

k . We assume a horizontally stratified,
elastic, isotropic half-space with uncertainties in the velocity-depth
profile. One approach to estimate Ct

k in this case is to perturb the
GFs that relate changes in velocity profile linearly to the displace-
ments at the Earth’s surface (Du et al. 1994; Duputel et al. 2014).
Therefore, we calculate the GFs for various velocity models, where
layer velocities and depths are varied in the crust by Gaussian per-
turbations with 10 per cent standard deviation around the reference
model (Mooney 1989) to generate an ensemble of Earth structures.
From this ensemble, Ne sets of elementary GFs are computed and
efficiently stored (Heimann et al. 2019). Each set of GFs is stored as
a grid that covers all potential combinations of depths and distances
in a source–receiver volume. If the source–receiver configuration
falls between grid points during the sampling, GFs are linearly
interpolated (Heimann et al. 2019).

Table 2. Synthetic tests setup cases.

Setup case Velocity structures

Reference Estimation

1. Small theory error Blue Dark grey
2. Large theory error Red Dark grey

Let i and j be indices for the rows and columns of the covariance

matrix. Then, term d̄k,i = 1
Ne

Ne∑
n=1

dn
k,i (m) is the sample mean over

Ne predicted data vectors at station k (a similar term is defined for
j) and the covariance matrix Ct

k is (Duputel et al. 2012)

Ct
k,i j (m) = 1

Ne

Ne∑
n=1

(dn
k,i (m) − d̄k,i )(d

n
k, j (m) − d̄k, j ). (3)

This matrix is computed with respect to source parameters m while
predicted data dn

k are computed for each realization of Earth struc-
ture n (sets of GFs) and for each seismic station k. This covariance
matrix Ct

k can be included in the likelihood function for inference
following eqs (1) and (2). Such formulation implies computing the
synthetic seismic waveforms for each variation in the Earth structure
(Fig. 2). As it is prohibitively expensive to calculate a realization
of Ct

k for each iteration of a Monte Carlo (MC) algorithm, we as-
sume that Ct

k changes less rapidly than the source parameters m in
the sampling algorithm and we update it only periodically (Duputel
et al. 2014). This approach accounts for errors in subsurface struc-
ture in addition to data errors in the estimation of source parameters
and their uncertainties. Fig. 1 (c, variance cov and d, exponen-
tial cov) demonstrates that theory errors due to Earth structure
result in non-stationary covariance matrices with time-dependent
error statistics. The computation of Ct

k is expensive and depends on
the assumed variability of the Earth structure. If this variability is
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Table 3. Target source parameters of the DC MT.

Synthetic tests

Moment tensor

Location East-shift (km) 10.0
North-shift (km) 20.0

Depth (km) 8.0
Strength Magnitude 4.8
Timing Centroid time (s) −2.7
Mechanism mnn 0.846 Strike (deg) 150.0

mee −0.759 Dip (deg) 75.0
mdd −0.087 Rake (deg) −10.0
mne 0.513
mnd 0.146
med −0.257

poorly known, the approach may result in over- or underestimated
parameter uncertainties.

2.2.2 Non-Toeplitz covariance matrix

A fast and non-parametric, alternative approach is to estimate
non-stationary/non-Toeplitz covariance matrices Ck (Fig. 1e, non-
Toeplitz, Dettmer et al. 2007). These naturally include both data and
theory errors as they are based on data residuals. Note that theory
errors in this case are not limited to the explicitly modelled errors
in layer velocities and layer depths (Section 2.2.1), but can also
represent other sources of theory, for example, anisotropy, errors
in centroid location. An initial estimate m̃ of the model parameters
m is required to calculate data residuals r(m̃) = dobs − d(m̃) with
number of samples N. Such m̃ can be either obtained from prior
information or from solving eq. (1) under the assumption of uncor-
related data errors. Standard deviations for the data residuals are
estimated by a running average with a window of length M

σi =
√√√√ 1

M

i+M/2∑
l=i−M/2

rl (m̃)2. (4)

The vector σ containing the σ i is used to standardize the data
residuals n(m̃) = r(m̃)/σ , where division is element by element.
The biased estimate of the autocovariance function of the scaled
residuals is used to estimate correlation

ci = 1

N

N−i−1∑
j=0

(ni+ j (m̃) − n̄(m̃))(n j (m̃) − n̄(m̃)), (5)

where i and j are data indices, and n̄ is the mean of n. The ci are
used to fill the ith diagonal of a square matrix (N × N), yielding an
unscaled covariance matrix C̃. The non-Toeplitz covariance matrix
estimate is obtained by scaling according to

Ci j = C̃i jσiσ j . (6)

3 S I M U L AT I O N R E S U LT S

3.1 Simulated data

To demonstrate the effect of the covariance matrix parametriza-
tion and the influence of velocity-model uncertainties in earthquake
source-parameter estimations, we present two simulated test cases.
We generate two sets of simulated seismic displacement waveforms
based on two different Earth structures (Table 2 and Fig. 2a, blue
and red lines) for a DC MT source (Table 3). We refer to these Earth

structures as reference structures in the following. For each test case,
we estimate the source parameters of a full CMT using the simu-
lated data with the five different covariance matrix parametrizations
(Table 1, Section 2.2).

In these test cases, we simulate theory errors due to unknown
Earth structure by assuming a different Earth structure for source
estimation than that of the reference model. We refer to this modified
structure as the estimation structure. If no local Earth model is
available in the study region, one would typically use a global model
for the estimation. Here, we employ the AK135 velocity model
(Kennett et al. 1995) for greater depth (> 50 km) in combination
with CRUST2 (Bassin et al. 2000) for shallow depth (< 50 km) as
the estimation structure for each test case (Fig. 2a). In case 1, the
reference structure has the same number of layers as the estimation
structure, but layer velocities and depths differ <10 per cent (Table 2
and Fig. 2a). In case 2, the reference structure (Hofstetter et al. 2003)
differs significantly from the estimation structure with a different
number of layers, and different layer velocities and depth values
(Fig. 2a).

Reference synthetic kinematic displacements for both cases are
computed with frequencies up to 2 Hz for 10 seismic stations at
regional (up to 1000 km) epicentral distances (Table 3 and Fig. 3).
We added uncorrelated, Gaussian-distributed noise with a variance
of 5 per cent of the maximum waveform amplitude for each station.
Data were filtered between 0.01 and 0.1 Hz, and rotated to radial
(R), transverse (T) and vertical (Z) directions. MT parameters and
the centroid location were estimated from the T and Z waveforms
containing body and surface waves. For each test case, we estimated
marginal distributions of source parameters while only changing the
noise parametrization (Fig. 1 and Table 1), to demonstrate the influ-
ence of Ck on the results. Following the procedure in Section 2.2,
the estimation structure was randomly perturbed 20 times to esti-
mate Ct

k during sampling. The GFs are sampled at 1 Hz with 1 km
grid spacing for depths from 0 to 15 km and distances from 0 to
1000 km using QSEIS (Wang 1999). The PPDs are estimated nu-
merically with a sequential Monte Carlo (SMC) sampler (Moral
et al. 2006; Vasyura-Bathke et al. 2020, appendix B).

3.2 Results

For case 1 (small theory errors), estimation results are summarized
in Fig. 4 in terms of posterior marginal probability densities. A
notable observation is that when only applying Cd

k (i.e. ignoring
theory error), the ranges of values obtained by the estimation do
not include true parameter values. This result shows a significant
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Figure 3. Stations (red triangles) used in the synthetic test that simulates an MT optimization at regional distances. Station locations are randomly chosen
around the reference event marked by the yellow star. The black box in the inset marks the outline of the station map.

limitation of applying only measurement errors in the estimation.
In particular, the exponential noise parametrization performs poorly
and only the centroid location shows reasonable estimates. The vari-
ance parametrization performs better, but marginals of the location
parameters exhibit significant bias, while some MT components are
resolved (e.g. mee, mne).

Including the Ct
k term leads to increased uncertainty, but more im-

portantly, both noise parametrization types (variance cov and expo-
nential cov) resolve all MT parameters (Fig. 4). However, centroid
marginals are significantly wider than those observed for other noise
parametrizations. In addition, the true value of north-shift is not re-
covered when using variance cov. The non-Toeplitz parametrization
resolves all parameters, although in some instances, true parame-
ter values are in the tail of the marginals (e.g. north-shift, mnd,
med). Notably, centroid time is only recovered by the non-Toeplitz
parametrization.

The results for case 2 (large theory errors) are summarized in
Fig. 5. Here, it is clear that only using Cd

k causes significant errors
where true parameter values are rarely recovered (variance and
exponential results in Fig. 5). The marginals exhibit even stronger
biases with respect to the true values. While the location parameters
(east-shift, north-shift and depth) are recovered by the exponential
parametrization in case 1, depth is biased. The MT components are
not recovered in either case.

Including Ct
k substantially widens marginals (exponential cov

and variance cov results in Fig. 5). Only some of the marginals in-
clude the true value for these parametrizations (e.g. mnn, mee), while
other marginals are biased and the true values are not recovered.
In contrast, the non-Toeplitz parametrization recovers true values
appropriately and with low uncertainty for most parameters. The
centroid time is poorly recovered for all parametrizations, but mag-
nitude is well recovered with most parametrizations, except for the
variance, which underestimates.

3.3 Residual analysis

To increase confidence in the results, we analyse the statistics of the
data residuals. Since we assume Gaussian-distributed residuals with
some covariance matrix eq. (1), both Gaussianity and randomness
of standardized residuals should be tested. Standardized residuals
are obtained by scaling raw residuals with their covariance matrix.
That is to say, r̂k = L−1

k rk , where Lk is the lower triangle of the
Cholesky decomposition of the total covariance matrix, Ck = LkLT

k .
If the covariance matrix that was applied in the estimation agrees
well with the actual correlations, the standardized residuals are
uncorrelated Gaussian distributed with unit variance. That is to
say, standardized residuals should be from an uncorrelated random
process, which can be assessed by considering their autocorrelations
and histograms. Ideally, the autocorrelation functions should exhibit
a sharp central peak with no or small sidelobes. Histrograms should
agree closely with a Gaussian probability density function (PDF)
with unit variance (Dettmer et al. 2007).

Histograms of standardized residuals for cases 1 and 2 (Fig. 6,
station-individual histograms Figs S1–S5, Supporting Information)
show that for the parametrizations of variance and exponential the
assumption of Gaussianity of residuals is not met in the estima-
tion. These distributions are more heavy-tailed and peaked than
Gaussian distributions. Including, Ct

k vastly improves this issue and
the standardized residuals are more Gaussian. In particular, peak
height is reduced (i.e. reduced overfitting of data). However, the
distributions exhibit extensive tails with large standard deviations.
The variance cov performed better than the exponential cov in this
case, while the non-Toeplitz parametrization shows standardized
residuals with satisfactory Gaussianity.

The station-individual autocorrelations show that parametriza-
tions variance and exponential have long-wavelength sidelobes
(Figs S6 and S8, Supporting Information). This means that resid-
uals contain significant residual correlations that the covariance
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1418 H. Vasyura-Bathke et al.

Figure 4. Case 1 with small theory error: posterior marginal distributions for full CMT parameters. The black vertical lines mark the true input parameters.
The different colours present results for different noise parametrizations (see the legend and Table 2). Even small theory errors may lead to biased marginals
when ignored.

model in the estimation could not capture. Including Ct
k reduces

the residual correlation for both parametrizations (Figs S7 and S9,
Supporting Information). The non-Toeplitz covariance accounts for
most correlations and standardized residuals appear close to random
white noise (Fig. S10, Supporting Information). This result suggests
that non-Toeplitz covariance matrices produce results that are most

consistent with the assumptions made in the estimation and, from
the tested parametrizations they can best address problems with
significant theory error .

The results when non-Toeplitz covariance matrices have been
applied in the estimation and can best address problems with sig-
nificant theory error.
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Bayesian noise models for theory errors 1419

Figure 5. Case 2 with large theory error, otherwise same as Fig. 4. Only the non-Toeplitz parametrization produces robust results overall. Modelling approaches
suffer from the requirement to specify velocity uncertainties a priori.

3.4 Moment tensor decompositions

To evaluate the focal-mechanism representation of the sampled MT
components, MTs can be decomposed into isotropic and DV source
components (Jost & Herrmann 1989). The DV component can be
split further into the compensated linear vector dipole (CLVD) and

DC components. We applied this MT decomposition to the results of
both cases for each noise parametrization. In general, the different
percentages of the decomposed source components vary between
different noise parametrizations.

For case 1, the differences are noticeable, for example, variance
and exponential show isotropic components between ∼5 and ∼10
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1420 H. Vasyura-Bathke et al.

(a)

(b)

Figure 6. Standardized residuals for the different noise parametrizations for (a) small theory error and (b) large theory error. The black line marks the analytic
normal distribution with zero mean and standard deviation of one. All histograms are normalized to unit area.

per cent, respectively. Significant CLVD components of up to ∼20
and ∼25 per cent were estimated by using the exponential and expo-
nential cov noise parametrizations, respectively (Fig. 7a). For case
2, exponential and exponential cov show notable isotropic compo-
nents, while the CLVD component of the variance cov, exponential
and exponential cov noise parametrizations is significant (Fig. 7b).

Since the target source was a pure DC MT, it is obvious that theory
errors cause erroneous CLVD and isotropic MT components if the
noise parametrization of the covariance matrix is inappropriate. In
this regard, the non-Toeplitz noise parametrization outperformed
all the other parametrizations with overall the smallest errors in

estimating isotropic and CLVD components for both cases. It is
worth noting that the variance noise parametrization is the second
best.

3.5 Deviatoric and double-couple moment tensors

Sometimes, MT are estimated under the assumption of a DV or a DC
model for earthquakes. Such assumptions remove the possibility of
estimating isotropic or CLVD components that may be considered
unphysical for earthquakes. Consequently, the estimation may be
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(a)

(b)

Figure 7. MT decompositions for (a) case 1 with small theory error and for (b) case 2 with large theory error. Each row shows the decomposition for a different
noise parametrization following the colour-coding in Table 1 and Fig. 6. The sizes of the focal mechanisms are scaled with respect to maximum a-posterior
(MAP) magnitudes. The numbers below each focal mechanism depict the percentage of scalar seismic moment.

more successful as long as this assumption is consistent with the
actual rupture mechanism.

For the DV case with small theory error, it is noteworthy that
most parametrizations, except for exponential, estimated the MT

components well, and most, except for variance, recovered the
source location (Fig. S11, Supporting Information). The centroid
time was not recovered by any of the parametrizations. However,
most parametrizations, except for exponential, resolved magnitude,
but in the tail of the distributions.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1412/6119912 by guest on 19 April 2024



1422 H. Vasyura-Bathke et al.

Figure 8. Posterior marginals for DC CMT results with large theory errors, otherwise same as Fig. 4. The non-Toeplitz parametrization performed best,
followed byvariance.

For DV with large theory errors, non-Toeplitz was the only
parametrization that could recover source location and MT
components. Including Ct

k permitted recovery of source location,
but variance and exponential poorly estimated MT components

and centroid (Fig. S12, Supporting Information). In this case,
centroid time and magnitude were similar to the small-error case.
Decomposing the DV MT for the exponential parametrization
showed a large CLVD component for cases 1 and 2. The CLVD
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Figure 9. Stations (red triangles) used in the full MT estimation at regional distances for the 2015 June 13 Fox Creek event (yellow star at 54.102◦ N and
116.95◦ W). The black box in the inset marks the outline of the station map.

component was less when including Ct
k (Supplemental Fig. S13).

Supplemental Fig. S14 and Table 3 present results for assuming a
DC model. For case 1, variance and exponential parametrizations
do not recover true values (Fig. S14, Supporting Information). With
Ct

k , true parameters are resolved, but location and time parameters
are not estimated well. While parameters are not fully recovered
by the exponential parametrization, there is a vast improvement
when including Ct

k (e.g. rake, time, depth and magnitude). Only the
non-Toeplitz parametrization resolved the true source mechanism,
magnitude and centroid location well. The true centroid time
was recovered only by the exponential cov parametrization, but it
resolved several other parameters poorly.

For large theory errors the source mechanism and location could
only be recovered by the non-Toeplitz parametrization (Fig. 8). In-
cluding Ct

k did not help to reliably recover the true parameter values.
Only the source magnitude was recovered by most parametrizations,
except for the variance parametrization.

Our results show that under the assumption of a DC MT, source
parameters can be biased if correlated, non-stationary data errors are
ignored in the noise parametrization of the covariance matrix. Sim-
ilar to the results for the full MT, for small theory errors, including
Ct

k improved source parameter estimates. For large theory errors,
only the non-Toeplitz parametrization resolved the true source pa-
rameters successfully.

4 A P P L I C AT I O N T O F OX C R E E K
E A RT H Q UA K E

In this section, we apply the various approaches to theory-error
estimation to a regional earthquake. Regional seismic data are con-
sidered for the Ml = 4.4 earthquake occurring on 2015 June 13
near Fox Creek, Alberta, Canada (Wang et al. 2016, Fig. 9). The
event is related to hydraulic fracturing operations in this area, which
was previously seismically relatively inactive (Schultz et al. 2015).
Thus, the possibility of sizable non DC source components due to

fluid effects could be expected, and hence it is justified to do a full
MT estimation.

We use data from stations at epicentral distances of up to 300 km,
based on the location from the NEIC catalogue (54.102◦ N and
116.95◦ W). We convert the data to displacement waveforms, down-
sample them to 1.0 Hz and rotate them to R, T and Z components. We
then estimate parameters (location, MT components and centroid
time) of a full MT using body waves (bandpass filtered to 0.08–
0.3 Hz on the Z component) and surface waves (bandpass filtered
to 0.04–0.1Hz on the T component) for each noise parametrization
(Table 2). With such station configuration and filter settings, we
try to resemble the setup of Wang et al. (2016) for comparison,
although data of some stations are not publicly available.

To test our method, we use two reference subsurface structures,
a regional structure (Wang et al. 2016) and the global AK135 Earth
structure (Kennett et al. 1995) (Fig. S15, Supporting Information).
Following our procedure from Section 2.2, we vary these reference
structures 20 times each with standard deviations of 15 per cent
and 35 per cent for velocity and layer depth values for the regional
structure and 15 per cent and 10 per cent for the global structure
(Fig. S15, Supporting Information). The GFs are computed with
QSEIS (Wang 1999) with 1 Hz sampling on a grid with 200 and
1000-m spacing for depths from 0 to 8 km and distances from 0 to
400 km, respectively.

4.1 Results

For the regional subsurface structure, estimation results are summa-
rized in Fig. 10 in terms of marginal probability densities. It is most
striking that variance, exponential and non-Toeplitz parametriza-
tion show similar results across all parameters. This observation
implies that it is not necessary to account for non-stationary cor-
related noise and that the theory error is small. Including Ct

k into
estimation significantly widens the marginals and results in shifts of
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Figure 10. Posterior marginals for the 2015 Fox Creek event inverted assuming a regional velocity model. The location estimates are relative to the reference
location (NEIC, 54.102◦ N and 116.95◦W). Colours same as Fig. 4. The solution of Wang et al. (2016) are also shown (grey lines). Here, overestimation of
theory errors leads to parameter biases for the modelling approaches.
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Figure 11. Same as Fig. 10, but GFs were computed for global velocity model. Results show the advantage of including theory errors when the velocity
structure is poorly known a priori.

the marginals (e.g. magnitude, depth, mne). By artificially introduc-
ing theory error through Ct

k , the variance cov and exponential cov
marginals resemble uncertainty, which in reality may not be signif-
icant, and correspondingly we likely overestimated the errors in the
regional structure (Fig. S15a, Supporting Information). In this case,

the results become worse since the subsurface structure appears to
be well known.

For the global subsurface structure, estimation results of variance
and exponential parametrizations show higher magnitude estimates,
earlier centroid times as well as shallower source depth (Fig. 11).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/1412/6119912 by guest on 19 April 2024



1426 H. Vasyura-Bathke et al.

Figure 12. Waveform fits for the full MT solution with variance noise parametrization using the regional subsurface structure. The filtered displacement
waveform data (dark grey solid line) for body (vertical Z-component 0.08–0.3Hz) or surface wave arrivals (transverse T-component 0.04–0.1Hz) and appropriate
predictions (red solid line) are shown. The brown shading is for 100 randomly selected waveforms from the posterior predictive distribution. The residual
waveforms are shown below each waveform as red lines with filled polygons. Waveform are normalized with respect to the component (Z and T). Traces are
annotated with station name, component, epicentral distance and azimuth obtained for the maximum a posteriori centroid. The arrival time with respect to the
centroid time, and the duration of each window are shown in the lower left and right, respectively. The orange histogram in the top right of each panel shows
the weighted VR for the posterior predictive distribution.

Results become more consistent including Ct
k and variance cov

and exponential cov marginals mostly contain the non-Toeplitz
marginals. The exponential cov and variance cov parametrizations
lose the source depth resolution. This indicates that the global struc-
ture contains significant theory error for data of the study area and
accounting for it through Ct

k better characterizes uncertainties.
We note that published solutions (e.g. Wang et al. 2016) are close

to the marginals for variance, exponential and non-Toeplitz when
employing the regional velocity model. The wider (more uncertain)
marginals for variance cov and exponential cov also include the
published solutions when employing a global velocity model. How-
ever, published solutions fix centroid location after an initial grid
search. Therefore, trade-offs between location and MT components
are not investigated.

The fit to the transverse data (surface waves) is better (weighted
variance reduction, VR, of 75–99.5 per cent) than for Z components
(body and surface waves, −400 per cent to 40 per cent). The differ-
ence is likely due to the lower frequency content for transverse data
(Fig. 12). Including Ct

k predominantly leads to larger variations
in amplitude of predicted waveforms for the higher frequency Z

components (Fig. S16, Supporting Information). Note that Ct
k re-

sults depend on reasonable assumptions for velocity uncertainty.
Expectedly, data fits are better with regional velocity models, rather
than global models (Fig. S17, Supporting Information).

Particularly interesting is how noise parametrizations affect VRs
at stations with high noise. Accounting for correlated noise results
in significantly higher weighted VRs compared to when ignoring
correlations (Figs S16–S24, Supporting Information). For example,
TD.TD010.Z has a weighted VR of −160 to −10 per cent for vari-
ance compared to 20–40 per cent for non-Toeplitz (Figs S17 and
S24, Supporting Information).

To better visualize and interpret MT PPDs, we apply MT de-
composition (also see Section 3.4) (Fig. 13). Notably, poor noise
parametrization choices lead to erroneous, large isotropic compo-
nents (e.g. variance cov and exponential cov for the regional model,
and variance and exponential for the global model). This inherent
compensation of theory errors by biasing source parameters is well
known and caused by the fundamental trade-offs between source
parametrization and Earth structure (e.g. Valentine & Woodhouse
2010; Hejrani & Tkalčić 2020).
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(a)

(b)

Figure 13. Same as Fig. 7, but for the 2015 Fox Creek event: MT decompositions for results from the various noise parametrizations for (a) regional Earth
structure and (b) global Earth structure.

Based on sensitivity analysis, Wang et al. (2016) report a CLVD
component of ∼23 ± 17 per cent which is lower and more uncer-
tain than our estimates obtained with the regional velocity model.
With the global velocity model, the CLVD component is poorly
constrained. We infer a nearly vertically dipping fault, striking N-S

or E-W. In this case, the CLVD component may be due to fault
complexity where the rupture is not occurring on a single planar
fault but may include multiple segments that are offset in the vertical
plane. Such complex faulting can occur in the presence of basement
flower structures (Eaton et al. 2018).
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5 C O N C LU S I O N S

We investigated the influence of noise parametrization on estimates
of CMTs in the presence of theory errors due to a mismatch between
the Earth and a velocity model employed for GF computation. In
particular, we compare five approaches to noise covariance estima-
tion to account for these theory errors. For the comparison, Bayesian
inference was applied to estimate CMT solutions and noise parame-
ters for synthetic and field seismic data at regional distances. Several
of these approaches were previously applied to MT inversion but are
considered here for the nonlinear case with unknown centroids. In
addition, we adopt the non-parametric iterative approach of estimat-
ing non-Toeplitz matrices from another field and demonstrate that
it has significant advantages in situations of practical importance.

We demonstrated results for regional simulations with distances
< 1000 km and for a field example with distances < 300 km. The
GFs from the synthetic test with 8 km source depth are mostly
sensitive to mid- and lower crust. Thus, if the centroid was lo-
cated shallower, a wider bandpass filter to higher frequencies above
0.1 Hz would be required to resolve the source parameters (Hejrani
& Tkalčić 2020). However, the BEAT software (Vasyura-Bathke
et al. 2019, 2020) employs a general Bayesian framework for un-
certainty quantification with extensive choices for noise models
and has been successfully applied to data with arbitrary frequency
content, centroid location, station distances and source parametriza-
tions. Users are free to change BEAT or apply as is for local, regional
and global data using DC, DV, or full CMTs, rectangular faults and
multisegment finite faults.

The five approaches we studied either ignore covariances or in-
clude them in the inverse problem. The variance approach ignores
covariances and estimates the noise standard deviation as part of the
inversion, that is, a hierarchical noise model (Malinverno & Briggs
2004). The approaches with covariances include: (1) a hierarchi-
cal model with a simple function to describe off-diagonal terms
(exponential parametrization), (2) explicit modelling approaches
(variance cov and exponential cov parametrizations) and (3) an em-
pirical non-parametric approach (non-Toeplitz).

The hierarchical models were mostly inadequate to address the-
ory errors. The explicit modelling approaches compute Ct

k to in-
clude the effects of theory errors. The computation is expensive,
although more efficient computation may be possible (Hallo &
Gallovic 2016). In addition, the computation requires specifica-
tion of velocity-model uncertainties which are generally assumed,
since no such knowledge is independently available. Including Ct

k

improved results significantly over the simple hierarchical models.
However, the dependence on specifying adequate velocity-model
uncertainties is a significant disadvantage and led to some erro-
neous results. Also the inferred uncertainties depend mostly on the
specified velocity-model uncertainty and are therefore subjective
(Fox Creek). Note that both velocity and layer-depth errors need to
be chosen which can pose a non-trivial task. In particular, if the true
velocity model is not included in the variations specified a priori,
this approach leads to poor parameter estimates (case 2).

The non-Toeplitz parametrization performed best overall. The
formulation is non-parametric and therefore fast to compute during
sampling. Importantly, it intrinsically accounts theory and measure-
ment errors and does not differentiate between theory-error sources,
by including but not limited to errors due to Earth-structure mis-
match and centroid-location mismatch. Even when significant the-
ory error exists (case 2), the covariance estimation procedure based
on data residuals produced robust parameter and uncertainty esti-
mates. A disadvantage is the iterative nature and that it may require

the initial assumption of uncorrelated noise of unknown standard
deviation. In conclusion, our results suggest that applying the non-
Toeplitz covariance matrix parametrization provides a reliable and,
straightforward approach to account for correlated errors due to
theory error in source parameter estimation.
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Vackář, J., Burjánek, J., Gallovič, F., Zahradńik, J. & Clinton, J., 2017.
Bayesian ISOLA: new tool for automated centroid moment tensor inver-
sion, Geophys. J. Int., 210(2), 693–705.

Valentine, A.P. & Woodhouse, J.H., 2010. Reducing errors in seismic to-
mography: combined inversion for sources and structure, Geophys. J.
Int., 109(2), 259–274.

Vasyura-Bathke, H., et al., 2019. BEAT—Bayesian Earthquake Analysis
Tool, GFZ Data Services, v.1.0,.

Vasyura-Bathke, H., et al., 2020. The Bayesian Earthquake Analysis Tool,
Seismol. Res. Lett., 91(2A), 1003–1018.

Wang, R., 1999. A simple orthonormalization method for stable and efficient
computation of Green’s functions, Bull. seism. Soc. Am., 89(3), 733–741.

Wang, R., Gu, Y.J., Schultz, R., Kim, A. & Atkinson, G., 2016. Source
analysis of a potential hydraulic-fracturing-induced earthquake near Fox
Creek, Alberta, Geophys. Res. Lett., 43(2), 564–573.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Variance parametrization: histograms of raw-residuals
(light grey), standardized residuals (coloured), analytical Gaussian
of zero mean and 1σ standard deviation (black).
Figure S2. Variance cov parametrization: details are described in
Fig. S1.
Figure S3. Exponential parametrization: details are described in
Fig. S1.
Figure S4. Exponential cov parametrization: details are described
in Fig. S1.
Figure S5. non-Toeplitz parametrization: details are described in
Fig. S1.
Figure S6. Variance parametrization: autocorrelations of raw resid-
uals(black), random white noise (light grey) and standardized resid-
uals (coloured) of each component and station (shown in the upper
left of each subplot).
Figure S7. Variance cov parametrization: details are described in
Fig. S6.
Figure S8. Exponential parametrization: details are described in
Fig. S6.
Figure S9. Exponential cov parametrization: details are described
in Fig. S6.
Figure S10. non-Toeplitz parametrization: details are described in
Fig. S6.
Figure S11. DV MT with small theory error: histograms of the
posterior marginal distributions for the parameters of a DV MT.
The different colours of the histograms mark the results for different
noise parametrizations (see the legend, Table 2). The black vertical
lines mark the true input parameters.
Figure S12. DV MT with large theory error, see caption of Fig. S11
for details.
Figure S13. MT (DV) decompositions for (a) case 1 with small the-
ory error and for (b) case 2 with large theory error. Each row shows
the decomposition for a different noise parametrization following
the colour-coding in Table 1 and Fig. 6 in the main manuscript.
The sizes of the focal mechanisms are scaled with respect to MAP
magnitudes.
Figure S14. Posterior marginals for DC CMT results with small
theory errors. The different colours of the histograms mark the re-
sults for different noise parametrizations (see the legend). The black
vertical lines mark the true input parameters. The rake marginal for
the exponential case is omitted, as it is far off the displayed interval
(155◦–160◦).
Figure S15. Earth structures (dark grey) (a) regional Wang et al.
(2016) and (b) global ak135 Kennett et al. (1995) and their variations
(light grey) that have been used in the full MT estimation of the Fox
Creek event.
Figure S16. Waveform fits for the full MT solution with vari-
ance cov noise parametrization using the regional subsurface struc-
ture. The filtered displacement waveform data (dark grey solid line)
for body (vertical Z-component 0.08–0.3Hz) or surface wave ar-
rivals (transverse T-component 0.04–0.1Hz) and the filtered syn-
thetic displacement waveforms (red solid line) are shown together,
with the brown shading indicating 100 random draws of the filtered
synthetic displacements from the PPD. The residual waveforms are

shown below each waveform as filled red-line polygons. Each wave-
form is normalized to its respective component group (Z and T).
Each trace box is annotated with the station name and component,
as well as the distance and azimuth from the maximum a-posterior
solution of the MT location. The arrival time with respect to the
centroid time and the duration of each window are shown in the
lower left and right, respectively. The orange histogram in the top
right to each trace box shows the ensemble of weighted VR for the
PPD.
Figure S17. Waveform fits for the full MT solution with variance
noise parametrization using the global subsurface structure. A de-
tailed description of plotted features is given in Fig. S16.
Figure S18. Waveform fits for the full MT solution with vari-
ance cov noise parametrization using the global subsurface struc-
ture. A detailed description of plotted features is given in Fig. S16.
Figure S19. Waveform fits for the full MT solution with exponential
noise parametrization using the regional subsurface structure. A
detailed description of plotted features is given in Fig. S16.
Figure S20. Waveform fits for the full MT solution with exponen-
tial noise parametrization using the global subsurface structure. A
detailed description of plotted features is given in Fig. S16.
Figure S21. Waveform fits for the full MT solution with exponen-
tial cov noise parametrization using the regional subsurface struc-
ture. A detailed description of plotted features is given in Fig. S16.
Figure S22. Waveform fits for the full MT solution with exponen-
tial cov noise parametrization using the global subsurface structure.
A detailed description of plotted features is given in Fig. S16.
Figure S23. Waveform fits for the full MT solution with non-
Toeplitz noise parametrization using the regional subsurface struc-
ture. A detailed description of plotted features is given in Fig. S16.
Figure S24. Waveform fits for the full MT solution with non-
Toeplitz noise parametrization using the global subsurface structure.
A detailed description of plotted features is given in Fig. S16.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : S O U RC E
PA R A M E T R I Z AT I O N S

The MT parametrizations in this manuscript include unknown cen-
troid locations (east-shift, north-shift and depth), centroid time,
source duration and the MT specific parametrizations described
here. The MT components are used as weights for the GF to com-
pute synthetic seismograms (see eq. 8 in Heimann et al. 2019).

A1 Full moment tensor

A seismic source can be represented by a point source if its seismic
moment is sufficiently small so that spatial extent of the source is
small compared to the distance where it has been recorded. Such
representations are symmetric 3 × 3 tensors MT, with components
mxx, myy, mzz, mxy, mxz, myz (e.g. Aki & Richards 2002). Here, x, y
and z are coordinates with various conventions possible. The scalar
moment of the full MT is (Silver & Jordan 1982; Stähler & Sigloch
2014)

M0 = 1√
2

√
m2

xx + m2
yy + m2

zz + 2(m2
xy + m2

xz + m2
yz). (A1)
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To sample numerically stable values for scalar moment, we sam-
ple moment magnitude M = 1.5∗log 10(M0∗107) − 10.7 (Hanks &
Kanamori 1979). Note, that we use SI units, that is, Nm and the
formulation is valid for dyne–cm, thus the conversion factor of 107

is needed. Here, we adopt the coordinate system of North, East and
down ({n, e, d}) (Aki & Richards 2002).

M0 = 1√
2

√
m2

nn + m2
ee + m2

dd + 2(m2
ne + m2

nd + m2
ed )

M0 = 10.01.5∗(M+10.7) ∗ 1.0−7

mnn, mee, mdd ∼ U (
√−2.,

√
2.)

mne, mnd , med ∼ U (−1., 1.),

(A2)

where mij, with i, j ∈ {n, e, d}, are the MT components with uniform
prior probabilities.

A2 Deviatoric moment tensor

For the parametrization of a DV MT Mdev, we sample the solution
space according to the formulation in Appendix A1, but we subtract
the isotropic part of the MT Miso prior to forward modelling (Jost
& Herrmann 1989).

Mtrace = mnn + mee + mdd

3

Miso =
⎡
⎣Mtrace 0 0

0 Mtrace 0
0 0 Mtrace

⎤
⎦

Mdev = M0 · (MT − Miso).

(A3)

A3 Double-couple source

A DC source can be described by the dip, strike and rake angles of
the fault. For slip on a buried horizontal plane in only the x-direction,
the MT is (Aki & Richards 2002):

M̂dc =
⎡
⎣ 0 0 −1

0 0 0
−1 0 0

⎤
⎦. (A4)

This plane can be rotated by the dip (α), strike (β) and rake (γ )
angles around the x-, y- and z-axes, respectively. We use the Euler
angle rotation formulation (Goldstein et al. 2001) to calculate a
rotation matrix R. The MT expression for a pure DC source is
obtained by

Mdc = M0 R(α, β,−γ )T M̂dc R(α, β, −γ ). (A5)

A P P E N D I X B : S A M P L I N G A L G O R I T H M

Using an MC method allows drawing samples from a posterior PDF
(eq. 1); once enough samples are drawn the resulting distribution

is a valid approximation of the PPD. To sample the PPD, we use
an SMC sampler (Moral et al. 2006; Ching & Chen 2007), simi-
lar to Minson et al. (2013). Here, we outline the main features of
the algorithm, however, for more details we refer the reader to the
original references. Obtaining samples from a posterior PDF that
has a complex topology (high-dimensional, multimodal, flat, etc.) is
difficult and inefficient. Therefore, sampling is done starting from
the prior PDF via several intermediate PDFs that change following
a self-adjusting cooling parameter starting at zero (similar to Simu-
lated Annealing, Sambridge & Mosegaard 2002; Moral et al. 2006;
Minson et al. 2013):

f (m|dobs, βl ) ∝ p(dobs|m)βl p(m)
l = 0, 1, ..., L

0 = β0 < β1 < ... < βL = 1
(B1)

Each intermediate PDF f (m|dobs, βl ) is sampled in parallel by a
pre-defined number of MC chains. Each chain samples the solution
space with a pre-defined number of steps, where step size and di-
rections are determined according to a proposal distribution. When
sampling of all chains for the intermediate PDF is completed the
algorithm enters a transitional stage:

(i) The likelihood of each Markov Chain end-point is used to
form an intermediate likelihood distribution.

(ii) This likelihood distribution (at β l) is compared to the previ-
ous intermediate likelihood distribution (at β l − 1) by evaluating the
coefficient of variation (COV). If they differ significantly (COV >1)
the cooling parameter β l is incremented only by a small amount.
On the other hand, if the distributions are similar (COV <1) the
tempering parameter β l is increasing faster.

(iii) The proposal distribution is updated based on the distribution
of model parameters in the MC chain end-points.

(iv) Optional: update Ck in each transitional stage using the mean
of each model parameter distribution (Dettmer et al. 2007; Minson
et al. 2013; Duputel et al. 2014, see eq. 3).

(v) The ensemble of Markov chain end-points at β l − 1 is resam-
pled according to the intermediate likelihoods. Hence, the next stage
of Markov Chains at β l are seeded on the end-points of the previ-
ous chains, which had the highest likelihoods; unlikely chains are
discarded.

Finally, if the cooling parameter satisfies β l ≥ 1, the posterior
distribution is reached f (m|dobs, βL = 1) ∝ p(m|dobs) and one last
sampling of all MC chains with the defined number of steps is
executed; then the algorithm stops. For the proposal distribution we
use a multivariate Gaussian distribution similarly to Minson et al.
(2013).
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