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S U M M A R Y
Elastic full waveform inversion (EFWI) can, theoretically, give high-resolution estimates of the
subsurface. However, in practice, the resolution and illumination of EFWI are limited by the
bandwidth and aperture of seismic data. The often-present wells in developed fields as well as
some exploratory regions can provide complementary information of the target area. We, thus,
introduce a regularization technique, which combines the surface seismic and well log data,
to help improve the resolution of EFWI. We use deep neural networks to learn the statistical
relations between some selected features of the inverted model and the facies interpreted from
well logs. The selected features are the means and variances of the inverted velocities defined
within Gaussian windows. Using multiple fully connected layers, we train our neural networks
to identify the relation between the means and variances at the well location and those from the
inverted model. The network is used to map the means and variances extracted from the well to
the whole model domain. We then perform another EFWI in which we fit the predicted data to
the observed ones as well as fit the model over a Gaussian window to the predicted means and
variances. The tests on synthetic and real seismic data demonstrate that the proposed method
can effectively improve the resolution and illumination of deep-buried reservoirs, which often
encounter poor illumination from seismic data.
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I N T RO D U C T I O N

Reservoir characterization plays an essential role in exploration and
development, specially in evaluating the potential for hydrocarbon
reservoirs and positioning the drilling well (Eidsvik et al. 2004;
Gao 2011). The principal objective of reservoir characterization is
representing a reservoir quantitatively using integrated data from a
variety of sources and disciplines (Fanchi 2002). Amplitude versus
offset (AVO) analysis is a well-known seismic inversion technique
for prediction of reservoir properties from seismic data (Buland &
Omre 2003; Veeken & Rauch-Davies 2006). Although these AVO
techniques have generally served us well over the years, they rely
on the quality of the migrated image, which in turn depends on
the estimated velocity model. Full waveform inversion (FWI) has
shown its high potential in describing the subsurface properties with
high resolution by using the full wavefield and fitting the observed
data directly (Bamberger et al. 1982; Lailly 1983; Tarantola 1984;
Gauthier et al. 1986; Pratt et al. 1998; Virieux & Operto 2009;
Routh et al. 2017; Zhang & Alkhalifah 2019b; Li et al. 2020).

∗Now at: Department of Geosciences, Princeton University, NJ 08540, USA

Elastic full waveform inversion (EFWI) aims to estimate the elas-
tic properties with reasonably high resolution in hope of providing
information useful for reservoir characterization (Vigh et al. 2014;
Naeini et al. 2016). One of the critical challenges for EFWI is
the cycle-skipping issue arising from the lack of low frequencies
and an inaccurate starting model, which prompted many proposed
solutions (Bunks et al. 1995; van Leeuwen & Herrmann 2013;
Alkhalifah 2014; Wu et al. 2014; Warner & Guasch 2016; Li et al.
2018, 2019; Ovcharenko et al. 2019; Zhang & Alkhalifah 2019a;
Song et al. 2020). Here, we focus on high-resolution delineation
of the subsurface elastic properties. Seismic data often admit in-
complete subsurface information with limited model wavenumber
information due to limitations associated with surface seismic data
in terms of the signal-to-noise ratio (SNR), frequency band, aperture
and coverage (Sirgue & Pratt 2004; Alkhalifah 2016). Furthermore,
model building solely from surface seismic data is severely ill-posed
when multiple parameters are required to describe the subsurface.
Such inherent limitations of seismic data can be mitigated by inte-
grating data from other geophysical surveys and disciplines. Using
the Bayesian framework, we can complement seismic data with
geologic information and rock-physics knowledge as we estimate
the velocity, thus improving the consistency of the inverted model
with the underlying geologic and lithologic assumptions (Curtis &
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Lomax 2001; Zunino et al. 2015; Li et al. 2016; Zhang et al. 2018;
Aragao & Sava 2020). Borehole data, which includes well logs,
check shots, and vertical seismic profiles, show promising com-
plementary information to seismic data to reduce the ill-posedness
of the inverse problem (Asnaashari et al. 2013; Wang et al. 2013;
Zhang & Alkhalifah 2019b). Some successfully implemented AVO
techniques also include both seismic and well data to obtain geolog-
ically plausible models, where well data serve as the constraints of
the inverse problem (Bosch et al. 2009, 2010; Grana 2016; Zabihi
Naeini & Exley 2017).

High-resolution well logs can compensate for the lack of illumi-
nation provided by seismic data where the well is used as a model-
space regularizer for waveform inversion (Asnaashari et al. 2013; Li
et al. 2021). Well logs provide reliable and detailed information of
the subsurface, but only sample very limited areas. The key problem
is how to link the high-resolution well information to the subsur-
face model estimated from EFWI. Asnaashari et al. (2013) built an
a priori model by interpolating the well velocities and gradually
decreasing the weight of the prior model during inversion. Zhang
et al. (2018) employed Bayesian theory to invert for a facies map by
maximizing the posterior probability using the L2-norm inversion
result and the predetermined facies information from well data. In
a similar way, Singh et al. (2018) constrain the inversion workflow
using the prior model derived from the facies distribution and the
available well logs. Aragao & Sava (2020) developed an elastic FWI
algorithm constrained by petrophysical information extracted from
well logs to guide the inversion toward realistic lithology. Zhang &
Alkhalifah (2019b) improve the incorporation of facies information
using deep neural networks (DNNs).

Machine learning (ML) techniques have been applied to solve
problems in geophysics for decades (Dowla et al. 1990; Dysart &
Pulli 1990; Dai & MacBeth 1995). Considering the recent advances
in high-performance computing and the availability of powerful nu-
merical algorithms, the applications of ML is on a steep rise in
recent years (Bergen et al. 2019). Deep learning (DL; LeCun et al.
2015), as a branch of ML, demonstrated great potential in tackling
a broad range of tasks, that include feature representations (Qian
et al. 2018), classification of seismic events and facies (Kortström
et al. 2016; Zhao et al. 2017) and more. Deep learning is capa-
ble of predicting the subsurface model directly from the seismic
data as well (Richardson 2018; Araya-Polo et al. 2019; Kazei et al.
2019; Yang & Ma 2019). The combination of well data and seis-
mic information for estimating subsurface properties has motivated
the development of the following DL-based techniques. Das et al.
(2019) augmented the data set based on the well logs and provided
a statistically similar labelled training data set for a convolutional
neural network (CNN) to infer seismic impedance. The impedance
was predicted by a fully convolutional residual network (FCRN)
trained by the data set generated from a synthetic model and fur-
ther optimized by transfer learning with well information (Wu et al.
2020). Zhang & Alkhalifah (2019b; 2020) employed DNNs to build
the proper statistical connection that converts seismic estimates to
facies interpreted from well logs. They use vp , vs and their ratio as
discriminant features of facies extracted from well logs. However,
the neural network predictions tend to capture averaged model pa-
rameters within layers, and the high-resolution components of well
velocities were hard to preserve because of the averaged proper-
ties within facies. To retain the high-resolution information of well
logs, we include the mean and variance of vp and vs , computed in
a Gaussian window, as the discriminant features. The derived high-
resolution prior model is added to EFWI as a regularization term
(Li et al. 2020).

In this paper, we combine seismic data and well logs in an EFWI
scheme regularized by an a priori model using deep learning to
boost the illumination and resolution of the subsurface properties.
We start by conducting a conventional EFWI to obtain the inverted
P- and S-wave velocities. Then, we design and train a DNN to learn
the statistical relations between the inverted model and the facies
interpreted from well logs featured by the mean and variance of
velocities. The mean and variance of velocities for the whole model
can be predicted using the trained network. Finally, we perform
EFWI regularized by the prior model, which is recovered from
the mean and variance field. The synthetic data from an Otway
model and a 2-D ocean-bottom-cable (OBC) field data are used to
demonstrate the effectiveness of the proposed method.

T H E O RY

Regularized elastic FWI

FWI attempts to retrieve the subsurface model properties by min-
imizing the residuals between the simulated and observed seismo-
grams using an iterative local-optimization scheme. In our EFWI,
we invert for the P- and S-wave velocities simultaneously and keep
the density fixed, under the isotropic assumption. The optimization
problem over the often enormous solution space using band-limited
seismic data admits strong nonlinearity and non-uniqueness. These
limitations can be alleviated by utilizing regularization techniques,
which render a solution that also satisfies some prior characteriza-
tions. The objective function for a regularized EFWI can be defined
as

J (m) = JD(m) + β R(m), (1)

where JD(m) is the data misfit term, R(m) is the regularization
term and β is a weighting parameter balancing the contributions
from these two terms. JD(m) is often given by the L2 norm of the
data residuals:

JD(m) = ‖Wd (d(m) − do)‖2
2 , (2)

where d(m) denotes the predicted data determined by the model m
using the elastic wave equation, do is the observed seismic data and
Wd is a diagonal weighting matrix for the seismic data, which can
be related to the data reliability information.

To preserve the sharp geological interfaces, a total variation (TV;
Lin & Huang 2014) regularization is often used, and it is given by

RTV(m) = ‖m‖TV =
√

m2
x + m2

z , (3)

where mx and mz represent the components of the model gradient. If
reliable model information in the target zone is available, this prior
information can constrain the inversion process by penalizing the
model deviations from the prior. The corresponding regularization
term is then defined to measure the misfit between the updated and
prior models:

Rprior(m) = ∥∥Wm

(
m − mprior

)∥∥2

2
, (4)

where Wm is a diagonal weighting matrix for the prior model, mprior

refers to the prior model, which can incorporate, for example, well
information. In our case, mprior is recovered from the mean and
variance fields, which are predicted by a DNN.

The model is updated iteratively to minimize the objective func-
tion using the following formula:

mk+1 = mk + αkH−1gk, (5)
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Figure 1. The architecture of the deep neural network (DNN). The DNN
consists of input and output layers, with fully connected hidden layers in
between. The input features for the input layer include the means and vari-
ances of vp and vs , defined in a Gaussian window, i.e. (μp, μs , σp, σs ). The
output layer holds the probabilities (p1,··· , pi,··· , pn f ) of being categorized
into each of the facies.

where the subscript (k) refers to the iteration number in FWI, αk

is the step length, gk is the gradient of the objective function with
respect to the model parameters and H−1 is the approximate inverse
Hessian matrix estimated here using the L-BFGS algorithm (Byrd
et al. 1995). The gradient of the objective function, which involves
a prior model regularization term, is given by

g = ∂ J (m)

∂m
= ∂

(
JD(m) + β Rprior(m)

)
∂m

,

=
(

∂d(m)

∂m

)T

WT
d Wd (d(m) − do)

+βWT
mWm

(
m − mprior

)
. (6)

The regularization parameter β balances the contributions from
the data and the prior knowledge. To guarantee the comparability
of these two terms, β is evaluated using the following formula:

β=γ
‖Wd (d(m) − do)‖2

2∥∥Wm

(
m − mprior

)∥∥2
, (7)

where γ is a dimensionless weighting factor and it can be adjusted to
comply with the reliability of the prior information. Our numerical
tests indicate that a value between 0.3 and 0.6 is acceptable, leaning
towards the higher value (0.6) if we have a relatively well-predicted
prior model and the quality of the seismic data is poor.

DNN-assisted a priori model building

The classic EFWI application only retrieves limited model infor-
mation from the band-limited seismic data. Well logs contain much
higher resolution information, but they often represent a very lim-
ited spatial area. These wells can be utilized as a priori information
to enhance the model resolution from surface seismic data. The
often complicated relation (upscaling) between surface seismic in-
verted models and the well information can be formed by training
a DNN. An a priori model can be derived by a neural network that
maps the inverted model to the interpreted facies from wells.

A DNN is given by optimized mathematical manipulations to
convert inputs to specific output, and it is capable of representing
complex nonlinear relationships (Schmidhuber 2015). The neural
network consists of input and output layers, with fully connected
hidden layers in between. The architecture we are using is shown
in Fig. 1. The data flows from the input layer, through the hidden

Figure 2. The inversion workflow for the proposed inversion method. The
inputs for the workflow are shown in the blue boxes; the numbers in the red
boxes correspond to the step numbers outlined at the end of the theory part.

layers, and to the output layer in a feedforward fashion. For a vector
of inputs a0, a general forward-propagation equation is described
as al = gl (Wlal−1 + bl ) , where Wl and bl refer to the weighting
matrix and the bias vector for the lth layer, respectively. The acti-
vation function gl is used to induce nonlinearity in the formulation.
Here, we employ rectified linear unit (Relu) and softmax activa-
tion function for the hidden layers and the output layer, respectively
(Nair & Hinton 2010). The softmax function admits a probability
distribution of the classes of facies. For the training process, we first
initialize the weights and biases randomly and then update them us-
ing the Adam optimizer, with the loss function given by the sparse
cross entropy (Kingma & Ba 2014). The number of hidden layers
and neurons of each layer is adjusted according to the size of the
training data set. Details of the DNN used in each example will be
shared in the examples sections.

Training a DNN requires inverting for a large number of param-
eters (weights and biases) that defines the network, which in turn
requires a large training data set and techniques to prevent over-
fitting (Bergen et al. 2019). To expand the training data set, the
estimated velocities close to the well locations can serve as training
data considering the often lateral continuity of many features around
the well, especially at the surface seismic scale. Besides, we apply
a synthetic minority over-sampling technique (SMOTE) to enlarge
the training data sets and reduce the imbalance of different facies
(Chawla et al. 2002). We also employ a random dropout of 30 per
cent to avoid overfitting (Srivastava et al. 2014).

To prepare the training data set for supervised learning, we la-
bel the selected training samples from the inverted model using
the corresponding facies interpreted from well logs. The samples
from well logs with a similar statistical distribution, defined in a
Gaussian window, are interpreted as a single facies. We specifically
calculate the mean (μ) and variance (σ ) to represent the statistical
distribution. In this case, the variance captures the high-resolution
features of the well, while the mean provides the average value.
The DNNs-based classification of facies is implemented by dis-
criminating the selected features of the facies. We use means and
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Figure 3. (a and b) The true vp and vs model for the Otway example, and the white dashed lines show the well locations. (c and d) The initial vp and vs model.
(e and f) The conventional EFWI result using 2–15 Hz frequency band after 80 iterations: (e) vp and (f) vs . (g and h) The regularized EFWI result using the
proposed method: (g) vp and (h) vs .

variances of vp and vs , defined in a Gaussian window, as the dis-
criminant or input features, i.e. (μp, μs, σp, σs). Interpreted facies
from the well logs are used as the labels in the training. Once this
training is finished, the DNN establishes a mathematical connection
between the features of inverted model and various facies classes.
We can apply the network to the whole inversion region to predict
the facies (given by the means and variances from the well) distri-
bution for every model point. The output for every point is a single
vector p = (p1,··· , pi,··· , pn f ) , in which each element represents a
probability that this model point is categorized as facies i , and this
probability was provided by the softmax activation function applied
to obtain the output layer. Thus, we predict the mean and variance

for each point as the expected value instead of the specific value
with highest probability. The predicted mean and variance fields
using a weighted average are smoother than those using the highest
probability, which conforms to our expectation because the mean
and variance are defined in a Gaussian window. Given the probabil-
ity distribution, we can compute the expected value by a weighted
average over facies representing the predicted features (means and
variances) as follows:

(
μ̄p, μ̄s, σ̄p, σ̄s

)=
∑

n f ace

pi

(
μp

i , μi
s, σ

i
p, σ

i
s

)
, (8)
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Figure 4. Comparison of vp and vs vertical profiles at distance of (a and b) 1 km, (c and d) 1.5 km and (e and f) 2 km. These profiles are not used as training
wells. Red line: the true model, green line: the conventional EFWI result shown in Figs 3(e) and (f) using 2–15 Hz, blue line: the regularized EFWI result in
Figs 3(g) and (h) using the proposed method with 2–15 Hz.

Figure 5. The history of the training and test accuracies in the training
process with the total of 6000 epochs. A total of 92.16 per cent training loss
is achieved, while the test accuracy stays at approximately 74.57 per cent.

where pi and (μp
i , μi

s, σ
i

p, σ
i
s) are the predicted probability and

the feature vector for facies i, respectively.
With the predicted mean and variance fields, the high-resolution

prior model can be recovered by solving the following optimization

problem:

mprior = arg min
m

1

‖μ̄‖2
2

∥∥∥∥∥∥
∫

−ws ,ws

m (x, z + τ )

× gau (τ ) dτ − μ̄ (x, z)‖2
2

+ λ
1

‖σ̄‖2
2

∥∥∥∥∥∥
∫

−ws ,ws

(m (x, z + τ ) − μ̄ (x, z))2

× gau (τ ) dτ − σ̄ (x, z)‖2
2 . (9)

where, gau(τ ) is a normalized Gaussian smoothing operator with a
width ws . The width ws and the weighting factor λ are set as 10
and 0.001 in the examples, respectively. The prior model is inverted
iteratively using a gradient-based inversion algorithm. Lastly, we
implement the regularized EFWI by incorporating the prior model
into the inversion scheme.

As a summary, the proposed inversion algorithm is given by the
following the workflow, also summarized in Fig. 2:
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Figure 6. The predicted variance fields for (a) vp and (b) vs . (c and d) The comparison of the variance for vp and vs at x = 1.2 km (red line: the true variance,
green line: the variance computed from the conventional EFWI result in Figs 3(e) and (f), blue line: the predicted variance by using DNNs). (e and f) The
recovered prior model from the predicted mean and variance fields: vp and vs .

(1) Using the seismic data and an initial model, we conduct a
conventional EFWI to invert for the subsurface elastic properties (P-
wave and S-wave velocities) by minimizing the data misfit defined
by eq. (2).

(2) Given the well logs as input, we interpret facies from well
logs (check shots or sonic) by identifying the velocity means and
variances within Gaussian windows.

(3) We then prepare the training data set for optimizing the
parameters of our DNN: We compute mean and variance of
the inverted velocities generated from step 1 as input features
(μp, μs, σp, σs), and label the selected training samples from
the seismic estimations near the wells using the interpreted
facies.

(4) We train the DNN and apply the trained DNN to the whole
inverted velocity model from step 1 to predict the probability dis-
tribution of facies, featured by the means and variances of the well
velocities, and then compute the predicted means and variances
using eq. (8). This step corresponds to the DNN-based facies clas-
sification in Fig. 2.

(5) Given the predicted means and variances, we recover the prior
model by solving eq. (9).

(6) We perform another EFWI (regularized EFWI in Fig. 2) by
using the objective function of eq. (1) including the regularization
term of eq. (4), in which we fit the predicted data to the observed
ones as well as fit the model to the prior model.

N U M E R I C A L E X A M P L E S

We use a synthetic example representing a slice of the realistic
Otway model (Glubokovskikh et al. 2016) and a 2-D line from
the Volve OBC field data (Szydlik et al. 2007) to demonstrate
the performance of the proposed inversion scheme in elastic me-
dia. We invert for P- and S-wave velocities simultaneously and
keep density fixed to 2000 kg m−3 during the elastic inversion.
In these two examples, we use a staggered-grid finite-difference
scheme with 10th-order accuracy in space and second-order ac-
curacy in time to simulate the elastic wave propagation (Virieux
1986). The perfectly matched layer (PML) technique is employed
on all sides of the model to absorb the boundary reflections
(Zhang & Shen 2010).
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Figure 7. The EFWI results with TV regularization using a frequency band of 2–40 Hz starting from DNNs-aided EFWI result shown in Figs 3(g) and (h), (a)
vp and (b) vs , and that starting from the conventional EFWI result shown in Figs 3(e) and (f), (c) vp and (d) vs . The true (e) vp and (f) vs model.

Otway synthetic example

We first apply the proposed method on a slice of the Otway model
(Figs 3a and b). The synthetic model is generated for the CO2CRC
Otway project, Australia. Distributions of its elastic properties were
obtained from geostatistical interpolation between wells, and thus,
the complexity of the synthetic model resembles a realistic subsur-
face model of the Otway site (Glubokovskikh et al. 2016). The size
of the model used here is 2.4 km laterally, and 1.12 km in depth,
with a grid interval of 5 m in both directions. 80 shots and 480
receivers are located evenly on the surface of the model to excite
and record the two-component elastic wavefield, respectively. We
use a Ricker wavelet with a 20 Hz peak frequency as the source
wavelet. The recorded elastic data are generated by solving the 2-
D elastic wave equation with a finite-difference scheme. We use
the same modelling scheme and the same parameter settings in the
simulations for elastic wave propagation in the EFWI. The initial
model for the inversion is a smoothed version of the true model us-
ing a Gaussian smoothing window of 100 m width (Figs 3c and d).
The initial model is not far from the true one, but does not include
detailed structures. Thus, our objective is to test the performance
of the proposed inversion algorithm in enhancing high-resolution
components.

We first use the 2–15 Hz frequency band to implement conven-
tional EFWI, and the inversion results after 80 iterations are shown
in Figs 3(e) and (f). We can see that the spatial resolution is con-
sistent with what we would expect from FWI for the band used,
as the thin layers are hardly captured. The high-resolution model
information is expected to be boosted by merging well logs with the
seismic data in the proposed regularized EFWI. Three vertical pro-
files of the true model at 0.3, 1.2 and 1.7 km represent the well log
information in this example. Their corresponding means and vari-
ances are computed in a 10-point (50 m) width Gaussian window.
We interpret 20 facies from the three wells by manually grouping
the means and variances. The means and variances of the inverted
velocities (Figs 3e and f) at the well locations are computed with the
same Gaussian window, and those provide the discriminate features
for training the DNN. The pre-identified facies from the well logs
are used as the labels in the training data set.

The neural network contains six hidden layers, having 256, 256,
128, 128, 64, 64 neurons, from left, input side, to right, output
side. We apply SMOTE to augment the data set generated from the
three vertical profiles at 0.3, 1.2 and 1.7 km to provide the required
training and testing data sets, with a ratio of 8:2. We set the batch
size and total training epochs to 128 and 6000, respectively, for
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Figure 8. Comparison of vp and vs vertical profiles at distance of (a and b) 1 km, (c and d) 1.5 km and (e and f) 2 km. These profiles are not used as training
wells. Red line: the true model, green line: the EFWI result with TV regularization shown in Figs 7(c) and (d) using 2–40 Hz starting from the conventional
EFWI result, blue line: the EFWI result with TV regularization shown in Figs 7(a) and (b) using 2–40 Hz starting from the regularized EFWI result.

Figure 9. Evolution of the data misfit (JD(m)) for the EFWI implementation
using the 2–40 Hz frequency band starting from the conventional EFWI
result in Figs 3(e) and (f) (blue line) and the regularized EFWI result in
Figs 3(g) and (h) (red line). The number of iterations is 100.

optimizing the network parameters. Once the training process is
finished, the network provides a statistical relationship between the
inverted velocities (Figs 3e and f) and the interpreted facies labels.
The history of the training and test accuracies are shown in Fig. 5;

these two accuracy curves converge to 92.16 and 74.57 per cent,
respectively.

We then apply the trained network to the inverted model area to
predict the mean and variance fields by a weighted average over
facies. Actually, the conventional EFWI result delineates the means
well because of a reasonably good starting model. Here, we show
the predicted variance fields in Figs 6(a) and (b), which are crucial
for recovering the high-resolution components. Figs 6(c) and (d)
show the comparison of the variances at x = 1.2 km. We can see
that the predicted variances using DNN are much closer to the true
ones, while the variances computed from the conventional EFWI
result are underestimated because of the limited frequency band.
Figs 6(e) and (f) show the prior model recovered from the mean and
variance fields, and they contain sufficient high-resolution model
information thanks to the well-based-predicted variance field by
using the neural network. Taking the balancing factor γ (eq. 7) as
0.5, the regularized EFWI result (Figs 3g and h) using the prior
model contains enhanced details and higher-resolution components
than the original FWI result. We then compare the regularized EFWI
result (Figs 3g and h), the conventional EFWI result (Figs 3e and f)
and the true model in more detail by showing their vertical profiles
at distances of 1, 1.5 and 2 km in Fig. 4. Obviously, the regularized
EFWI enriches the high-resolution information by incorporating
the prior model into the inversion.
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1330 Y. Li, T. Alkhalifah and Z. Zhang

Figure 10. Volve OBC data set. (a) PP and (b) PS shot gathers for the source located at x = 6.175 km for the frequency band of 2–10 Hz.

Figure 11. The well velocities after a slight calibration, (a) P-wave and (b) S-wave velocities. The well path is not vertical, starting from distance of
about 8.0 km on the top to distance of 7.0 km on the bottom. The velocities between 1.6 and 3.4 km are obtained from sonic logs. The velocities at
depth < 1.6 km and > 3.4 km are not available therefore they are generated by interpolation.

However, the seismic data matching does not necessarily improve
because the regularization renders a steady introduction of the prior
model information into the inversion to compete with the contri-
bution of seismic data. Besides, the 2–15 Hz frequency band data
are not that sensitive to the newly injected high-wavenumber com-
ponents. In order to test whether the incorporated high-resolution
components can be retained in the subsequent inversion and im-
prove its data matching, we further implement EFWI with a TV
regularization (Lin & Huang 2014) using higher frequencies of 2–
40 Hz starting from the regularized EFWI result (Figs 3g and h) and
the conventional EFWI result (Figs 3e and f), and their inversion
results are shown in Figs 7(a) and (b), and (c) and (d), respectively.
The inverted velocities shown in Figs 7(a) and (b) still delineate
more details than that shown in Figs 7(c) and (d). For a detailed
comparison, we also share the vertical profiles at locations 1, 1.5
and 2 km and include the true model for reference (Fig. 8). We can
see that the inversion result using the prior model regularization is
closer to the true model. The evolution of the data misfits during the
EFWI implementations using the 2–40 Hz frequency band, shown
in Fig. 9, indicates that the proposed method even improves the data
matching.

Volve field example

We further verify the feasibility of the proposed method on a 2-D
line of the OBC field data from Volve field in the Norwegian Cen-
tral North Sea. The OBC seismic data include both primary (PP)
and converted shear-wave (PS) data. Besides, there are available
sonic log and check shot data for this oil field (Szydlik et al. 2007).
Therefore, this field data set is a good candidate to test our method.

The model domain is 12.3 km laterally and 4.5 km in depth, and the
grid interval is 10 m. A chalk layer is located in the inversion area
which is characterized by a small dome-shaped structure (Szydlik
et al. 2007). The 2-D line contains 240 receivers with 25 m inter-
val, located at the water bottom. 121 shot gathers are used in the
inversion, with a distance of 100 m between the shots, at a depth
of 6 m. We were provided the pre-processed PP and PS data. The
pre-processing of the PP and the PS data includes standard wavelet
processing, noise and multiple attenuation techniques (Szydlik et al.
2007). Fig. 10 shows the shot gathers with a frequency band of 2–
10 Hz for a source at location 6.175 km. Most of the direct and
post-critical arrivals are muted, while the reflections are clear in the
shot gathers with a maximum offset of about 5 km (Li et al. 2019).
A slight calibration for the provided well log is required, because the
well path is not vertical (Oh & Alkhalifah 2018). Fig. 11 shows the
well velocities; the velocities between 1.6 and 3.4 km are obtained
from sonic logs.

Figs 12(a) and (b) show the provided tomography-based velocity
models. We smoothed the tomography model to serve as the starting
model for EFWI (Figs 12c and d). The target reservoir at 3.0 km
depth is obviously smeared. We use the frequency band 2–10 Hz
in the inversion workflow. We first conduct the conventional EFWI
by matching the seismic data, and the resulting model is shown in
Figs 12(e) and (f). The reservoir with low velocities is delineated,
but with limited resolution. We then interpret 10 facies from the
provided well log and prepare the training data set to train the DNN.
If we only use the estimated velocities at the well location to generate
the training data set without data augmentation, the training process
using such a data set hardly generalizes the accurate mathematical
relationship between the input features and the interpreted facies.
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Figure 12. (a and b) The tomography vp and vs model for the Volve field data example, and the white dashed lines show the vertical profiles used for training.
(c and d) The initial vp and vs model. (e and f) The conventional EFWI result: (e) vp and (f) vs . (g and h) The regularized EFWI result using the proposed
method: (g) vp and (h) vs .

Therefore, three vertical profiles at 4.5, 6.0 and 7.5 km are used in
the training process. The nearby well log and check-shot profiles
are used to label facies for the training data set.

The designed DNN has 4 hidden layers with 64 neurons in each of
them. We set the batch size and total training epochs as 128 and 6000
for optimizing the network parameters. The training and testing
accuracies converge to 93.03 and 76.24 per cent, respectively. We
then apply the prediction to the whole inverted model. The predicted
means and variances of P-wave and S-wave velocities are shown in
Figs 13(a) and (b), and (c) and (d), respectively. Then, the prior

model (Figs 13e and f) is recovered by matching the means and
variances. Using the derived prior model, we conduct a regularized
EFWI (Figs 12g and h) with the balancing factor γ = 0.3. The
resolution is improved and the velocity model reveals more details
of the reservoir. We also compare the vertical profiles of inverted
velocities near the well with those from sonic logs as shown in
Fig. 14. Although this vertical profile is not used for training, it is
close to the vertical profile at x = 7.5 km that was used for training.
Overall, the proposed method can improve the matching between
the inverted and well velocities.
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Figure 13. The predicted mean fields for (a) vp and (b) vs , the predicted variance fields for (c) vp and (d) vs , and the recovered prior model from the predicted
mean and variance fields: (e) vp and (f) vs .

Figure 14. Comparison of (a) vp and (b) vs vertical profiles at the well location. Red line: the well velocity, green line: the conventional EFWI result in
Figs 12(e) and (f), blue line: the regularized EFWI result in Figs 12(g) and (h) using the proposed method.

D I S C U S S I O N

Seismic data and well logs provide crucial information from differ-
ent perspectives in estimating the subsurface properties. Well logs
directly measure the detailed properties of the subsurface, but with
limited area range, while seismic data provide much larger cover-
age, but at a much lower resolution. To combine their merits, we

incorporate well information into seismic waveform inversion using
a DL-assisted regularization to enrich the model with more high-
wavenumber components extracted from the well. Mathematically,
the regularization parameter β, that balances the contributions from
seismic data and prior knowledge, can be estimated automatically
using the generalized cross-validation (GCV) and L-curve methods
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(Hansen & OLeary 1993; Haber & Oldenburg 2000; Farquharson
& Oldenburg 2004). Here, we select the parameter β by trial and
error to incorporate the prior structures into the resulting model,
while allowing a reasonably increase in the data misfits. The hy-
perparameter tuning is an important but challenging part for any
DL application. We try potential sets of hyperparameters, which
include the number of hidden layers and number of neurons in each
layer, the learning rate, the activation function, and select the hy-
perparameter set that makes the training and testing accuracies, as
much as possible, equally higher. For the DL part, the training step
is the most time-consuming. The training in our examples required
20 minutes using a single GPU card. The additional computational
cost arising from the regularization term is small.

The DNN method aims to learn the medium properties of the tar-
get zone from the training data set. The performance of the DNN is
influenced by the quality of the training data set, which includes the
inverted velocities near the wells and the labelled facies interpreted
from the wells. A reasonable initially inverted model is necessary
for predicting the prior information in the inversion zone, because
they provide the DNN with input features. The most important re-
quired feature of the initially inverted model is its consistency over
the model space. The edges of the model will often include illumi-
nation artefacts that are absent in the training of the DNN and that
might induce errors in the prediction of the facies. More generally,
if the well locations do not sample some subsurface features present
in the model space, it might fail to deliver a satisfying prediction for
the subsurface features uncovered by the wells. For complex sub-
surface media with strong heterogeneity, more wells are required to
retrieve enough facies information. In addition, knowledge of the
subsurface medium from other sources, such as geology, geostatis-
tics, and so on, are expected to improve the facies interpretation.
Moreover, these potential limitations mainly affect the preparation
of the a priori model and in this case we may have to reduce the
regularization weighting to allow for more data fitting.

We should also note that the synthetic example in this study are
performed with noise-free seismic data and well logs. If the seis-
mic data are contaminated with noise, the quality of the inversion
result using solely the seismic data will be heavily affected by the
noise. An appropriate regularization technique, such as Tikhonov
and total variation (TV) regularization, should be applied to sup-
press the noise on the recovered model (Tikhonov et al. 2013). In
addition, we should adjust the weighting parameter to rely more
on the prior knowledge, which admits more constraints on the in-
version in the proposed method with DL-assisted regularization. In
this case, the noisy seismic data contributes less to the inversion,
and therefore, the corresponding artefacts can be suppressed. We
assume that the provided well information is reliable. It is worth
mentioning that different amount of facies classes is interpreted
from the well velocities in these two examples. As more facies are
used, the statistical distribution of well velocities will be delineated
more accurately. However, the complexity of the facies classification
will increase, which imposes more challenges on the DNN-based
facies classifier. We should balance these two extremes to determine
the facies classes. The interpretation of facies is done here manu-
ally, and a more advanced automatic clustering approach deserves
further studies.

We assume in this study that the subsurface medium is isotropic
elastic with fixed density in this study. We only invert for the P-
and S-wave velocities, and keep the density constant during the in-
version. When density information is available, we should use it
to avoid multiparameter trade-off, which often degrades inversion
results of too many parameters (Köhn et al. 2012; Blom et al. 2017).

The regularization technique is expected to be helpful in mitigating
this potential degradation because of the additional constraint from
prior information. The field data set has anisotropy (Szydlik et al.
2007), and it can influence the performance of the inversion, which
is based on an isotropy assumption. A good data matching at near
and far offsets often cannot be achieved simultaneously without
accounting for anisotropy. In the proposed methodology, the con-
tribution from seismic data is competing with that from the prior
model information from well logs to reduce the dependence of the
inversion on seismic data. Therefore, the anisotropy effects on the
inversion are somewhat suppressed. When the anisotropy proper-
ties are available from the well logs, the proposed method has the
potential to extend to anisotropic EFWI. The prediction of the prior
model for complex subsurface media should also combine more
prior knowledge from other sources and disciplines to enhance the
prediction accuracy.

When well logs are available along with seismic data in the
inversion region, the proposed method can boost the resolution and
illumination by combining the well information with the seismic
data using a deep-learning assisted regularization. The proposed
method can be extended to more complex media, for example, 3-D
anisotropic media, but might require more well information. This
can be a future topic of research.

C O N C LU S I O N S

We developed a deep learning assisted regularization algorithm to
push the resolution limit of regular EFWI. A DNN is used to learn
the statistical relation between the inverted model from an initial
EFWI implementation and facies extracted from well logs. The
mean and variance of the velocities, calculated within a Gaussian
window along the well, are utilized as the discriminant features for
the facies. Thus, the high-resolution well information is preserved
by including the variance into the facies features. The resulting
high-resolution prior model, recovered from the predicted mean
and variance fields, enhances the subsequent inversion resolution
and illumination as we use it as a model regularizer term in EFWI.
The numerical examples show that the proposed method improves
the model resolution and consistency with well logs.
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