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S U M M A R Y
Seasonal signals in geodetic time-series have long been recognized to be associated with en-
vironmental phenomena such as polar motion, atmospheric loading, groundwater loading and
other hydrological processes. Modelling these periodic signals is crucial for the geophysical
interpretation of these time-series. The most common approach used for resolving seasonal
(annual and semi-annual) signals is their approximation by sinusoidal functions with constant
amplitudes. However, because of their environmental source, seasonal signals are likely to be
quasi-periodic. In this study, we investigate a Gaussian process (GP) to model quasi-periodic
signals in geodetic time-series, a flexible method that allows capturing the variability structure
in the data using covariance functions. We use the Markov Chain Monte Carlo method to eval-
uate the posterior probability density function. To test its effectiveness, we apply this method
to a synthetic time-series in the presence of time-correlated noise. We find that the GP model
provides a better fit to the time-series, resulting in time-series residuals with fewer systematic
effects. We use the GP model to estimate the secular velocity of selected GPS sites from
Antarctica and Alaska, as well as an example of Gravity Recovery and Climate Experiment
time-series. The Bayesian aspect of the GP model allows inferring the linear velocity ensemble
in the vicinity of the true solution while taking into account the quasi-periodic systematics in
the time-series.

Key words: Satellite geodesy; Time variable gravity; Statistical methods; Time-series anal-
ysis.

1 I N T RO D U C T I O N

Modern space geodetic techniques offer surface position time-series
with an unprecedented level of precision. Coordinate time-series
derived from the Global Positioning System (GPS) are routinely
used to define terrestrial reference frames and to study of a variety
of geophysical phenomena, including crustal movements related to
plate tectonics (e.g. Feigl et al. 1993), glacial isostatic adjustment
(e.g. Milne et al. 2001), magmatic processes (e.g. Segall 2010),
atmospheric surface loading effects (e.g. Van Dam et al. 2001)
and hydrological surface changes (e.g. Borsa et al. 2014). Surface
displacement time-series contain three main types of signals: (i)
long-term slowly changing signals such as linear secular motion
associated with the interseismic motion of plate tectonics; (ii) tran-
sient changes such as sudden position jumps related to co-seismic
displacement or post-seismic deformation and (iii) periodic oscilla-
tions corresponding to the crustal response to seasonal environmen-
tal changes. Although the first two types of signals were identified
since the early days of the GPS development, the periodic oscilla-
tions (annual and seasonal) have only been adequately studied in the
last two decades after the deployment of multiple permanent GPS
stations offering continuous records of the positions, which was not

possible in the case of campaign GPS measurements. The annual
and semi-annual signals are the dominant observed periodicities
in position time-series and they are often assigned to local and/or
global environmental effects, such as thermoelastic effects, atmo-
spheric loading and groundwater pumping. Systematic positioning
errors, as well as reference frame mismodeling, can also contribute
to the position signals (e.g. Ray et al. 2008; King & Watson 2010).
The impact of the annual signal on the estimation of secular ve-
locities from geodetic time-series is today well known since it was
first demonstrated by Blewitt & Lavallee (2002). If not accounted
for, it can induce a significant bias in the estimation of the linear
velocity. Therefore, most geodetic studies today use models that
include sinusoids with annual frequency terms to reproduce the an-
nual/seasonal cycles. Although this approach might seem sufficient
for capturing the annual periodicity in GPS time-series, it suffers
from a limitation resulting from the assumption that the amplitude
of the signal is constant and cannot change from year to year. As the
main sources of the annual and seasonal oscillations in GPS time-
series are environmental related, it is expected that they exhibit
non-stationary behaviour. Therefore, a more complete description
of the time-series model would include deviations from the purely
repeating annual cycle, which we refer to here as quasi-periodicity.
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A number of studies have investigated the quasi-periodic variability
when modelling GPS time-series analysis. Langbein (2004) pro-
posed a bandpass filter to model noise sources where the 1 cycle
yr−1 frequency leaks into adjacent frequencies. The passband for the
filter considered lies between 0.5 and 2 cycles yr−1. The sharpness
of the filter was adjusted by the number of poles used to construct
the filter. He showed that approximately 30 per cent of the elec-
tronic distance meter (EDM) baseline seasonal noise spread over
a frequency band around 1 cycle yr−1. Bennett (2008) proposed a
semi-parametric method to investigate the effect of quasi-periodic
signals on secular velocity. He showed that if the temporal varia-
tions of the amplitude of the annual motion are not accounted for,
the residual-error of time-series may contain significant power at
the semi-annual band. Davis et al. (2012) used a stochastic ap-
proach using a Kalman filter to model the seasonal variability. A
more general version of the Kalman filter has been proposed by
Didova et al. (2016), where the noise parameters were estimated
using a least-squares approach. Chen et al. (2013) applied the sin-
gular spectrum analysis method to model time-varying signals in
weekly GPS time-series. Klos et al. (2018) published a complete
summary and a comparison between published methods of mod-
elling time-varying seasonal signals in GPS time-series. Using syn-
thetic time-series, they showed that the precision of the recovery of
quasi-periodicity depends on the annual-signal-to-noise ratio. They
also showed that the Kalman Filter approach outperforms other
published techniques by modelling between 77 and 90 per cent of
the total variance of the varying seasonal signal. However, this
can only be achieved by a special tuning of the noise parameters
because of the non-convex nature of the likelihood optimization
problem.

Given the importance of the noise characterization in the mod-
elling and interpretation of the time-varying signals in GPS time-
series, a more sophisticated method would involve a simultaneous
estimation of the trajectory model of the surface displacement of the
GPS site along with systematic artefacts and the noise processes. In
this paper, we explore a different approach using the Gaussian pro-
cess (GP) to model quasi-periodic signals in GPS coordinates time-
series. GPs are widely used in machine learning and have been used
in different aspects of signal processing (Rasmussen & Williams
2006). GPs are Bayesian non-parametric methods used for regres-
sion and classification problems. Despite the fast-growing interest
in using GPs in many physical applications, very few attempts have
been made to use them for geophysical problems. Hines & Hetland
(2018) used Gaussian process regression (GPR) to detect transient
strain resulting from slow-slip events. Sarkar et al. (2019) used
GPs to predict fast tidal currents. Valentine & Sambridge (2020)
described a theoretical framework of using GPs in geophysical in-
verse problems. Here, we use GPR to infer the secular rate of GPS
time-series in the presence of quasi-periodic signals and correlated
noise. We begin by introducing the GP model and the Bayesian
estimation of the parameters. In Section 2, we apply our GP model
using synthetic time-series. Then we show an application to real
time-series.

1.1 Gaussian process for quasi-periodic signals in geodetic
time-series

1.1.1 Linear trajectory model

The time evolution of a GPS station coordinates y(t) can be described
as a trajectory model in the form of a linear combination of a secular

linear velocity and a seasonal signal:

y(t) = yR + v(t − tR) +
Nf∑

k=1

(sk sin(ωk t) + ck cos(ωk t)) , (1)

where tR is a reference time, yR is a reference position, v is a time-
constant velocity, Nf is the number of frequencies, sk and ck are the
Fourier coefficients and ωk is the angular frequency. In terms of a
matrix formulation, the above eq. (1) can be re-written as

y = Xβ + ζ (2)

where the coordinate observations are stored in vector y, β repre-
sents the model parameters and ζ represents the residuals assumed
to be independent Gaussian noise. The X matrix is an n × m matrix
where n is the number of observations (epochs) and m is the number
of model parameters. This model is linear in its coefficients, and so
it can be solved using a linear least-squares method:

β̂ = (
X T X

)−1
X T y. (3)

1.1.2 Gaussian process model

Instead of considering a deterministic form of the trajectory model,
as described above, we model the coordinate time-series as a GP,
where the joint distribution probability of the observations y is a
multivariate Gaussian distributed about a mean function f with a
covariance matrix �, given by

p (y|X, θ, φ) = N ( f (t, φ), �(X, θ )) , (4)

where φ are the parameters of the mean function and θ are the
covariance matrix parameters referred to as hyperparameters. The
covariance matrix contains information about the observation’s sys-
tematics and the noise. For example, white noise would be repre-
sented by a matrix with variances in each element of the diagonal.
The elements of the covariance matrix are formed in the GP problem
using covariance kernel functions k(ti, tj):

�i j = σ 2
i δi j + k

(
ti , t j

)
. (5)

The term σ 2
i δi j represents the white noise, and δij is the Kronecker

delta. In our case, σ 2
i are taken to be the uncertainties from the

time-series position solution.
The main advantage of the GP method is its flexibility in mod-

elling complex signals which may include quadratics, sinusoids or
complex shapes without prior knowledge of the signal form. To do
this, a parametrization of the covariance matrix is needed. There
are various forms of the kernel functions in the literature (Roberts
et al. 2012) and their choice usually arises from the physical nature
of the problem treated. (Rasmussen & Williams 2006) proposed
the product of a periodic function and a squared exponential func-
tion to model the decay from exact periodicity of the Mauna Loa
CO2 concentration. The Matérn-3/2 family functions is an alterna-
tive kernel flexible enough to model rough local variations without
the addition of hyperparameters. We opted for the following kernel
(Foreman et al. 2017):

k(ti , t j ) = σ 2[(1 + 1/ε) e−(1−ε)
√

3τ/ρ . (1 − 1/ε) e−(1+ε)
√

3τ/ρ], (6)

where σ 2 and ρ are the amplitude and the timescale of the variations
τ = ti − tj. In the limit ε → 0 this covariance function becomes the
Matérn-3/2 function (Rasmussen & Williams 2006). The parameter
ε controls the quality of the approximation. As indicated by Fore-
man et al. (2017), the value of epsilon will depend on the specific
data set and the precision requirements for the inference. We have
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tested different values of epsilon between 0.0001 and 0.001 using
the same synthetic time-series described later in Section 2 and we
obtained similar results. We tested the stochastically driven damped
harmonic oscillator kernel (SHO; Foreman et al. 2017); however,
our Markov Chain Monte Carlo (MCMC) sampler did not converge.
The choice of Matérn 3/2 kernel was motivated by its flexibility in
allowing the description of short-term temporal variations as well
as rough aspects in the coordinate signals, while using only two
hyperparameters. Additionally, we model the mean function,f(t), as
a linear trend for the secular long-term motion, and a sinusoidal
function, which represents the constant part of the annual periodic
signal:

f (t) = d + vt + A cos(2π t) + B sin(2π t) +
n j∑
j=1

H (t − t j ), (7)

where d is the y-intercept, v is the secular velocity, and A and B are
the amplitudes of the annual sine and cosine functions. The Heavi-
side step function H is included only if an offset (point-change) due
to an instrument change or a co-seismic displacement is identified
at an epoch tj (nj is the total number of offsets). The log-marginal
likelihood of the GP is written as

logL (r |X, θ, φ) = −1

2
r T �−1r − 1

2
log |�| − N

2
log(2π ), (8)

where N is the number of data points and r is the residual vector
from the mean function

r = y − f (t, φ) . (9)

The calculation of the posterior log-likelihood (eq. 8) requires the
evaluation of the inverse and the determinant of matrix �. This
makes the computational cost proportional to N3. Therefore, the
evaluation of the GP likelihood using MCMC methods becomes
very expensive, especially for large time-series (more than 104

points). A remedy of this limitation was proposed by Ambikasaran
et al. (2016), where the matrix � can be hierarchically factored into
a product of block low-rank updates of the identity matrix. Foreman
et al. (2017) proposed a novel approach which represents the GP co-
variance matrix as a sum of a diagonal matrix and J semi-separable
matrices, allowing the inverse and determinant of the covariance
matrix to be computed in O(N J ) and O(N ) respectively instead of
O(N 3). This is achieved by exploiting the structure of the covariance
matrix as a mixture of exponentials (see Foreman et al. 2017,for a
detailed discussion about the CELERITE covariance formulation).
The application of this method is restricted to one-dimensional
datasets and the family of available kernels is also limited, although
a certain number of popular kernels can be approximated with the
combination of CELERITE kernels (Tyler et al. 2020). In our study
we used the CELERITE1 python package for the implementation
of our GP. The hyperparameters θ , including the mean function
parameters φ, were obtained using a full Bayesian inference via
an MCMC method. The sampling of the joint posterior probabil-
ity was performed using the emcee2 package (Foreman-Mackey
et al. 2013). We ran 500 steps burn-in and 2000 steps of MCMC.
We limited the explored space of the hyperparameters based on our
physical understanding of the position signals to prevent the MCMC
chain from moving into unrealistic parameter space. The Bayesian
approach allows us to infer the ensemble of optimal models that can
explain observed data.

1https://github.com/dfm/celerite
2https://github.com/dfm/emcee

2 T E S T O N S Y N T H E T I C T I M E - S E R I E S

We used a synthetic position time-series to demonstrate the per-
formance of the GP method proposed in the previous section. We
used the same kinematic model as in Bennett (2008), including a
long-term linear rate (5 mm yr−1) in addition to a constant annual
signal and a sinusoidal variation representing the time-variable part
of the quasi-periodic signal:

y(t) = vt + A sin

(
2π

T
t

)
+ B cos

(
2π

T
t

)

+c(t) sin

(
2π

T
t + p

)
+ H (t − t j ), (10)

where A and B represent the time-averaged signal amplitudes
(2.4 mm) and c(t) is the deviation function from the time-averaged
signal. Here we define c(t) as a sinusoidal function with 5 yr pe-
riod and an amplitude similar to the time-averaged. We consider
the time-variable part of the signal in phase with the time-averaged
part, such that p = tan −1(b/a). An offset of 3 mm was added at
the 3.5 yr epoch to simulate a typical instrumental change in GPS
time-series. We added a noise consisting of a combination of white
(1 mm) and flicker (1 mm yr−1/4) models. We chose a time-series
with 7 yr, well beyond the minimum data span recommended by
Blewitt & Lavallee (2002) to avoid the degradation in precision
arising from the estimation of extra annual signal parameters.To
compare the GP model fit with the traditional approach, we fitted
the same synthetic time-series using a time-constant seasonal sig-
nal. The noise was parametrized using a combination of Generalized
Gauss Markov (GGM) and white noise models and the parameters
were estimated using maximum likelihood estimation (MLE) in the
Hector software (Bos et al. 2013). This will be referred to as the
standard model in this study. Additionally, we included in the com-
parison two other methods that take into account the time-varying
seasonal signal: (i) The Wiener Filter-based (WF) method proposed
by Klos et al. (2019) and (ii) the Basis Functions (BF) method
described in Bennett (2008). We used the Hector implementation
of both methods. The WF method consists of using a first-order
autoregressive process to model the time-variable seasonal signal,
then applying a Wiener Filter adapted to the noise level of data. The
BF approach uses orthogonal basis functions to describe the slow
varying seasonal signals. Here we use the Hector implementation
of this method using the Chebyshev polynomials of a degree 3.

Fig. 1 shows the best fit using the three approaches as well as
the posterior mean of the GP model. Based on a visual inspection,
it is clear that the methods considering the time-varying seasonal
signal provide a better fit to the data than the standard approach.
The residuals from the standard model show smooth periodicity as
a result of not accounting for the deviations from a constant annual
signal. Using the BF method produces smaller residuals (Fig. 1d),
but with a clear pattern of seasonality. Although the WF method
shows a better performance (Fig. 1e), the obtained residuals show a
long-period signal indicating that the seasonal periodicity was not
fully modelled, unlike the GP model that provides residuals with no
periodic systematics (Fig. 1f). The covariance matrix parametriza-
tion of the GP model gives considerable flexibility allowing the
GP model to represent the quasi-periodic signals in the time-series.
Fig. 1(b) shows that the inadequate modelling of the annual signal,
in the classic model, biases the estimation of the offset amplitude,
similar to the finding of Montillet et al. (2015) who showed a bias
of up to 0.5 mm in the co-seismic offsets for an amplitude of the
seasonal signal greater than 1 mm. Fig. 2 is the corner plot of the
marginal posterior distributions of the hyperparameters. It shows
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Figure 1. Simulated time-series (∼ 7 yr) using a sum of linear rate (5 mm yr−1), constant and time variable component annual signal. (a) Lines represent the
model fit using the standard method, the posterior mean of the GP, the BF method (Bennett 2008) and the WF method (Klos et al. 2019). (b) The offset is
introduced at the 52822.5MJD epoch. Residuals are (observations–model) (c) from the standard model, (d) the BF method, (e) the WF method and (f) the GP
model.

that the distributions are consistent with the true values used in the
simulation with a slight correlation between the linear rate and the
intercept parameters. Fig. 3 shows the power spectral density (PSD),
computed using the Welch method, for the residuals of each model.
At the high-frequency level, the power spectra are relatively similar;
however, for the frequency band between 1 and 6 cpy, the classical
model shows more power than the GP model (Fig. 3a, b) because the
standard model ignores the time-dependent annual variations. The
PSD of the standard model fits well a power law plus white noise
model with a spectral index of −0.99, in line with what has been
previously shown by different studies of the noise properties in GPS
time-series (Mao et al. 1999; Williams 2003; Langbein 2004; Bos
et al. 2008). However, the PSD of the GP model residuals is more
flattened with a lower spectral index (κ = 0.2), indicating that the
GP models absorb some of the noise in addition to the stochastic
annual variability.

To understand the effects of the amplitude variations of the an-
nual signal on the estimation of the secular rates, we compared the
velocity estimates from the GP method against the standard model

described above, using different time durations of the time-series.
We generated 200 synthetic time-series with durations more than
2.5 yr at integer-plus-half year spans to ensure a minimal bias veloc-
ity due to constant annual variations. We created 200 time-series for
each period of 3.5, 5.5 and 10.5 yr, consisting of a noise model sim-
ilar to the example described above. Table 1 summarises the results
of the comparison. The overall comparison shows that the Median
Absolute Difference (MAD) with respect to the true rate decreases
as the time span of the time-series increases. For short time spans
(3.5 and 5.5 yr), the BF method produces the largest MAD even
larger than the standard model with a time constant seasonal signal
model. Klos et al. (2018) found similar result when comparing with
weighted least-squares for synthetic time-series with low noise am-
plitudes. The WF performed better than the BF and the standard
methods for short time-series, but resulted in comparable misfit for
longer time-series. As mentioned by Klos et al. (2019), the misfit
reduction also depends on the amplitude of simulated noise. They
showed that the WF outperforms when high amounts of noise exist
in time-series. The GP method provided the smallest MAD for the
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Figure 2. Marginalized posterior constraints on the hyperparameters of the time-series GP model fit of Fig. 1. The histograms along the diagonal show the
marginalized posterior for each parameter. The true values used in the simulation are indicated by red lines. The black dashed vertical lines on each histogram
represent the 16th, 50th and 84th quantiles.

three time-series periods, but resulted in the smallest trend uncer-
tainties compared to the other methods. This is possibly related to
the fact that the GP method absorbs too much power for periods
larger than 10 cpy (Fig. 3). We attribute this to the choice of the
covariance. Although the Matérn 3/2 is a flexible function with few
hyperparameters, other combinations of covariance functions might
provide better modelling with more realistic velocity uncertainties.
We leave this question for future investigations.

3 A P P L I C AT I O N T O A R E A L
T I M E - S E R I E S

3.1 Antarctic GPS

Different studies have attempted to model the annual signal from
GPS time-series by modelling different contributions from loading

effects and/or from the surface elastic deformation derived from
the Gravity Recovery and Climate Experiment (GRACE; Jiang
et al. 2013; Chanard et al. 2018); however, in many cases, the
GPS time-series might contain periodic or quasi-periodic signals
that cannot be explained by the loading models and are likely to
be caused by phase mismodelling during the processing or due to
instrumental effects. For example, Koulali & Clarke (2020) showed
that GPS time-series in Antarctica might contain a quasi-annual
apparent surface displacement related to snow intrusion inside the
antenna through drainage holes. This signal is abruptly halted when
the holes are permanently plugged, resulting in a complex pattern
of a periodic signal where the annual oscillations are limited in
time (Fig. 4). To demonstrate the performance of the GP method
in these situations, we used a time-series of the vertical component
from homogenous processing of the Antarctic network using
GAMIT-GLOBK software (Herring et al. 2016). Fig. 4 shows the
posterior mean of the GP fit to the uncorrected time-series data for
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Figure 3. Power spectral density for time-series residuals of the standard model (a) and the GP model (b). The blue dots are the computed periodogram and
the solid red line is the model power-law plus white noise model with spectral index.

Table 1. Mean velocity and uncertainties estimated from 200 simulations of the Gaussian processes,
BF, WF and the standard model using Hector. MAD refers to the median absolute difference. The true
parameters used in the simulation are 5 mm yr−1 for the velocity and 2.4 mm for the sine and cosine
amplitudes of the annual signal.

Time span 3.5 yr 5.5 yr 10.5 yr
vel (mm yr−1) MAD vel (mm yr−1) MAD vel (mm yr−1) MAD

Standard model 5.12±0.79 0.18 5.07±0.63 0.11 4.95±0.43 0.05
BF method 5.21±0.32 0.32 5.07±0.48 0.13 5.01±0.40 0.05
WF method 5.12±0.18 0.19 5.09±0.23 0.12 4.93±0.31 0.07
GP (this study) 5.00+0.30

−0.31 0.00 4.99 +0.15
−0.15 0.01 5.03+0.06

−0.06 0.03

three GPS sites located in West Antarctica. The model fits very well
the observations and reproduces the seasonal variability in the GPS
position time-series. We found the maximum difference between
the velocity estimated using the standard model and the GP median
velocity is 0.13 mm yr−1 for BURI (Supporting Information Table
S1). Although the corrected velocity is closer to our GP median, the
uncertainty is larger than the 1σ uncertainty from the GP model,
which might be related to the fact that ignoring the seasonal stochas-
tic variation results in an overestimation of the rate uncertainty.
Supporting Information Table S1 summarizes the comparison
between the standard model, the GP and the EMD-based approach
as described in Koulali & Clarke (2020). We noted a reduction in the
RMS of the GP model residuals compared to the EMD approach. We
think this is a consequence of the choice of the kernel function. The
GP covariance function absorbs not only the quasi-seasonal periods
but also other short-term systematics. Although the EMD approach
performs well in removing the snow-related spurious quasi-periodic
annual signal, it relies on GRACE observations for restoring the
geophysical loading signal. The advantage of the GP method here is
that the covariance structure reproduces the time variability of the
spurious signal without a priori removal of a surface deformation
model.

3.2 Alaskan plate boundary observatory GPS

There are many GPS sites in the Plate Boundary Observatory (PBO)
network that show discontinuities and quasi-periodic position sig-
nals in the time-series related to snow and ice accumulation on
antennas. In some cases, the signal is quite smooth and cannot be
rejected as an outlier or anomaly and it is usually retained in the
time-series when estimating velocity fields. For demonstration, we
selected the site AB35 which is located in Cape Yakataga, Alaska.

The time-series of this site shows high seasonal variation likely due
to external rime accumulation on the antenna. Fig. 5 shows the de-
trended time-series of the north component and the mean model fit
from the GP method. As demonstrated in the previous example the
GP model reproduces very well the observed variations, whereas
applying the standard model fails to fit the time-series and there
are clear systematics left in the residuals (Fig. 5). The median of
the marginal posterior probability distribution of the linear veloc-
ity is 15.74+0.17

−0.18mm yr−1. Using the standard model we obtain a
velocity of 15.33 ± 0.60. Using the MLE analysis on the residu-
als, we obtain a spectral index of −1.53 using the standard model
and −0.38 for the GP residuals. The lack of time-variable seasonal
modelling resulted in an overestimated spectral index, which led
to larger uncertainties for the standard model. To validate this es-
timation against other methods, we used the Median Interannual
Difference Adjusted for Skewness (MIDAS) method, proposed by
Blewitt et al. (2016). This method was designed to provide a more
robust linear velocities by mitigating the effects of seasonal signals.
Using MIDAS we obtained a rate of 16.74 ± 0.25 mm yr−1 with a
difference of 1 mm yr−1 with respect to the GP median, indicating
that the treatment of the time variable periodic signal can lead to
significant velocity differences even with long span time-series, in
situations where the true signal is time varying. However, the dif-
ference between MIDAS and the GPR rate is considerably smaller
than that between MIDAS and the standard model.

The GPS time-series of the site AB35 used in was derived using
the GAMIT/GLOBK software. To test how our GP model performs
with GPS time-series derived using a different analysis strategy, we
used the time-series (AB35) from the University of Nevada, Reno
(UNR) solution3, which is based on a precise point positioning

3http://geodesy.unr.edu/PlugNPlayPortal.php
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Figure 4. The posterior mean of the GP and standard model fit of the vertical component at the three selected GPS sites in Antarctica. The vertical dashed
lines are the time of GPS antenna drainage holes plugging/taping. The histograms are the marginalized posteriors of the linear rate parameters.

(PPP) approach. We kept the same parametrization of the covari-
ance matrix as described in Section 2. We found that the GP model
tends to overfit the observations unless a parameter σ is added to
the diagonal of the covariance matrix (‘jitter’ term). This means
either the position uncertainties provided by the UNR solution are
underestimated or the ‘jitter’ term absorbs the contribution from the
common-mode error, which results from data processing mismod-
eling effects in PPP.

3.3 GRACE monthly solution

GRACE observations have been used to study a wide range of sur-
face processes, including terrestrial water storage (TWS) and glacier
dynamics. In addition to the dominant seasonal cycle, the GRACE
time-series contain a significant interannual variability (e.g. Vish-
wakarma et al. 2021). Not accounting for this variability can lead
to erroneous interpretation of the linear trend estimates of mass
change. The approach proposed in this study is not restricted to
GPS coordinate time-series, but can also be applied to any type of
geodetic time-series. Similar to Davis et al. (2012), we applied the
GP model to the equivalent water height (EWH) time-series for one
of the Alaskan glaciers in the Lake Clark National Park, generated
using the ANU GRACE visualization tool Darbeheshti et al. (2013).
Although the noise properties and the sampling rate (monthly EWH

estimates) are different from the GPS case, the GP model reproduces
well the quasi-periodic signal, and the residuals do not show any
obvious systematics compared to the standard model (Fig. 6a, b).
Applying the time-constant model with a noise consisting of white
and power-law models, we obtain a linear rate of −46.22 ± 10.04
(WRMS = 12.08), while applying the GP we infer a median rate
of −41.26+5.68

−6.22 (WRMS = 4.83). Visual inspection of the EWH
time-series indicate some variability in the trend before and after
2010. However, since we are not allowing for a time-variable rate
in our study, the annual amplitude may be absorbing some of the
linear rate variability.

4 C O N C LU S I O N

For many geophysical investigations, GPS time-series are used
to derive linear velocities of surface displacement. For example,
Antarctic GPS vertical position time-series are fitted with trajec-
tory models to estimate linear trends that are used for comparisons
with forward GIA models (e.g. Whitehouse et al. 2012; Ivins et al.
2013), or to constrain GIA inverse solutions (e.g. Martı́n-Español
et al. 2016) as well as inferring mantle viscosity (Barletta et al.
2018). However, isolating the so-called secular linear velocities is
not a trivial task due to the presence of nonlinearities in the time-
series, including signals associated with the present-day surface
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Figure 5. The standard and the posterior mean of the GP for the north component of the AB35 GPS time-series. The dashed grey line corresponds to the time
of the 2018 January 23 Mw 7.9 earthquake (SE of Kodiak, Alaska).

mass change. This problem becomes even more complicated over
short periods in the presence of large interannual variability. There-
fore, it is important to consider those time-dependent signals to be
able to minimize the bias.

We have proposed a method for modelling quasi-periodic signals
in geodetic time-series based on GP, as an alternative to determin-
istic approaches. This method allows for better modelling of the
systematics in GPS time-series in the presence of correlated noise.
Our proposed method is not restricted to daily GPS time-series, but
it applies to a different geodetic time-series with different sampling
rates.

Fitting GPS time-series in areas where changes of groundwa-
ter withdrawals are significant can be a challenging task, given the
time-series often show large variations in vertical surface displace-
ment as well as highly variable annual cycle amplitudes due to
substantial alternations of drought and wet periods. GP methods are
a good alternative to traditional methods to mitigate the secular rate
estimation bias, especially in time-series spanning short periods as
well as leading to better predictions of coordinates positions.

One of the main challenges for GP modelling is the computa-
tional cost. GPs typically scale as O(N 3). Thus, for large problems
(>104 data points), matrix storage and linear system solving become
prohibitively expensive. This is particularly the case for Bayesian
inference that requires multiple calls of the likelihood function such
as MCMC methods. Olivares-Pulido et al. (2020) used MCMC for
geodetic time-series trajectory modelling including noise proper-
ties. They showed for GPS time-series with 103 data points the
computational time required is around 104 s CPU, which is an order

of magnitude slower than using the MLE approach used in CATS
software. In our study, we chose to use the CELERITE package for
computational efficiency. The CPU time required for a time-series
with 1278 data points is 20.03 s on an Intel i5-8350U 3.600GHz
laptop. This computation gain comes at the price of the limited
choice of covariance functions. The usage of more complicated
covariance functions will then require using non-CELERITE func-
tions and therefore the computational burden will increase. Another
limitation of our method is related to offsets (change-point) in the
time-series. In this study, we estimate the offsets as parameters of
the mean function in the GP model at known epochs. However, in
real case GPS time-series, offsets due to instrumental changes are
not well documented by operators. A more convenient GP model
for GPS time-series will include the description of multiple sudden
changes in the positions in the covariance function. We leave for fu-
ture investigations the usage of non-CELERITE kernel covariance
functions, including other aspects of GPS time-series modelling
such as post-seismic deformation and other transient deformation
signals.
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Figure 6. The equivalent water height (EWH) from the GRGS GRACE monthly solution (black) along with the mean GP model (orange) and the fit using a
constant annual model. The residuals are shown for each model.
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DATA AVA I L A B I L I T Y

The GPS data underlying this paper are available in the UN-
AVCO open repository at ftp://data-out.unavco.org/pub/rinex/obs.
The identifiers of the GPS data from the U.S. POLENET-ANET
network are: BERP (https://doi.org/10.7283/T54J0CC2), CRDI
(https://doi.org/10.7283/T5C24TQS) and FTP4 (https://doi.org/10
.7283/T5B27SKD). The time-series for AB35 are available at ftp:
//data-out.unavco.org/pub/products/position/AB35/. The GRACE
equivalent water height time-series is from https://grace.anu.edu.
au/evasph.php.
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