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S U M M A R Y  
The  analysis shows that the  spectra of geoid undulation (AN) and gravity anomaly 
(Ag) computed from the  values implied by the  OSU89B harmonic coefficients, 
degrees 4-100, Rapp & Pavlis (1990), do not fit the  spectra of AN and Ag computed 
from values implied by a Pratt-type isostatic model applied to the  Moho depth 
variations in Fennoscandia as suggested by Anderson (1984) and Marquart (1989). 
T h e  magnitudes of the  model spectra are that much larger than the  OSU89B spectra 
that the relevance of the  isostasy model is questionable. 
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1 INTRODUCTION 

Marquart (1989) tried to model the geoidal undulation in Fennoscandia, with the variations in Moho depth (h , )  given by 
Meissner, Wever & Fliih (1987), using Pratt's hypothesis of isostatically compensated variable densities of masses below the 
boundary down to a compensation depth D .  Specifically, Marquart (1989) used Anderson's (1984) formula for the geoid 
undulation generated by the Moho topography which, assuming a fixed density contrast between crust and mantle (p ,  - p J ,  
reads: 

where G is the gravitational constant and y is mean surface gravity. 
Marquart (1989) found that (with p, = 2700 kg mp3 and p, = 3100 kg m-3 and D adjusted to 80 km) the resulting geoid 

map agrees well with the geoid map determined from the potential coefficients of degrees 4 to 100 of the Rapp (1981) Earth 
Gravity Model. She concluded that the downward deflected Moho is the dominating source of the geoid undulation and not the 
post-glacial rebound. 

However, Anderson (1984) and Marquart (1989) based their analysis of the correlation between geoid undulation and 
Moho depth variations on equation (l) ,  which is an approximate formula consistent with a density contrast p, - p, within an 
infinite plate of thickness h,. The corresponding gravity anomaly is zero. Hence Sjoberg, Nord & Faan (1991) derived new 
surface integral formulae for the contributions to geoid undulation ( A N )  and free air gravity anomaly ( A g )  from Moho depth 
variations (see Appendix). The resulting formulae are: 

and 

d A N  2y  AN 
d R  R 

Ag=-y---  

(3) 
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or, approximately, 

where R ,  and R are the radii of mean Moho boundary and Earth's surface, respectively, and Pn(cos w )  is the Legendre 
polynomial of degree n and geocentric angle q between the computation point and the integration point. h ,  is the height 
(positive or negative) of the Moho boundary, with respect to its mean radius R,. One advantage of these new formulae is that 
they permit the study of a selected spectral window of the geoidal undulation or gravity anomaly. 

Using the Moho depth map of Luosto (1990) digitized into 29405 X 2" blocks in equations (2)-(3), Sjoberg et al. (1991) 
found that the magnitude of the resulting geoid map is heavily dependent on the choice of the arbitrary compensation depth D 
(cf. equations 4 and 5). Also when comparing the resulting geoid map with a map determined from the OSU89B Earth Gravity 
Model (degrees 4-loo), Rapp & Pavlis (1990), the resulting residual map is far from zero. Sjoberg et al. (1991) therefore 
concluded that the Moho depth variation contributes little to the Fennoscandian geoid undulation. 

In this study we take a different approach to the problem of determining the correlation between geoid undulation and 
Moho depth. We analyse the spectra of the already computed values for A N  and Ag in the Sjoberg et al. (1991) paper and 
compare the result with the OSU89B spectra. 

2 COMPUTATIONS 

Sjoberg (1982) developed a numerical approximation for determining degree variances cn of signal H: 

where H, and HI are (in this study) A N  or Ag over surface elements Aui and Au,. (Note that all values of A N  and Ag outside 
the area of interest are set to zero.) For the multiple integral in (6) Sjoberg (1982) used the following approximation: 

A q  A 0, 

where Pn are the eigenvalues of the mean value operator over a spherical cap of equal area (radius I+(,) as Au:  

or, iteratively (Sjoberg 1980): Po = 1, PI = (1 + t,,)/2 and 

where t,, = cos vO. Combining (6) and (7) we get the final formula for degree variances: 

The total power is given by: 
5 

llHll2= c. c,. 
n =o 

(7) 

The numerical study is based on 0 5  x 2" data blocks in Fennoscandia (@,,,, = 643).  Hence the area of such a block is 
approximately 

4 n  1" 
180 4 

A o  = - cos $,,,, sin - , 

and the radius I)(, of an equal area cap is given by 

A u  = 2n LVO sin d q  = 2 4 1  - cos q,,). (13) 

Equations (12) and (13) yields I$(, = OP37. 
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Figure 1. Percentage power spectra of geoidal undulation. Note that isostasy models D = 50 km and D = 30 krn are almost identical to the one 
with D = 100 krn. 
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Figure 2. Percentage power spectra of gravity anomaly. 

Figure 3. Magnitude of power spectra of geoidal undulation. 
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Figure 4. Magnitude of power spectra of gravity anomaly. 
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In Figs 1 ( A N )  and 2 ( A g )  we present the percentage power spectra degree by degree for both the computed AN and Ag 
with the method derived in the Appendix (degrees 4-100) for the variational Moho depth, and AN and Ag computed with 
coefficients given by OSU89B (also degrees 4-100). Also, in Figs 3 and 4 the magnitude of c, are presented. 

3 CONCLUSIONS 

The computations show that the magnitude of the isostatically modelled geoidal undulation contribution from the Moho 
density contrast does not fit the OSU89B data. The modelled gravity anomaly spectrum fits neither the magnitude nor the 
shape of the OSU89B spectrum. Subsequently, in contrast to the results of Anderson and Maquart, the conclusion must be that 
the Moho depth variation is not a major source of the geoid undulation and gravity anomaly in Fennoscandia. Although our 
computations were based on Anderson’s isostatic model, the conclusion is expected to hold for any reasonable model of 
isostatic compensation. 
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APPENDIX: DERIVATION OF INTEGRAL F O R M U L A E  

The geoid undulation generated by the density contrasts at the Moho boundary and its compensation is composed of the 
primary component ANl and the effect of compensation AN2, i.e. AN = ANl + AN2. The total contributions to AN and Ag are 
divided into those from two regions: u, with h ,  > 0 and a, with h ,  < 0. 
Case I (Region ul): h,, > 0. 
Density contrasts: 

D 
Primary: Ap, = ( P 2  - Compensation: 

H m + h m  A p , r f d r , d u ,  
dry  + R 2  - 2riR cos I#’ 

A N  I -  - = ’ I\ 
y y v ,  
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Figure Al. The computation model 

Case I1 (Region u2): h, < O .  
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Density contrasts: 

h m  
Primary: A p ,  = (pI - p2); Compensation: Ap2  = ~ (632 - P I ) !  D + h ,  

d AN 2 y  AN Ag=-y--- 
dR R 

As the contribution from regions u1 and u2 are formally identical, the total contributions to AN and Ag are  obtained simply by 
changing integration area u2 in (A7) and ( A 8 )  to u = u1 + u2. From ( A 3 )  and (A4) and the expansion (for small x ) :  

X L  

2 
(1 + x ) " + ~  = 1 + ( n  + 3)x + ( n  + 3 ) ( n  + 2) - + 0 ( x 3 ) ,  

where x is h,lR, or DIR,; one obtains the first-order approximations: 

and 
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