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Numerical Applications of a Formalism for Geophysical 
Inverse Problems 

G .  E. Backus and J. F. Gilbert 

Sumniary 

A gross datum of the Earth is a single measurable number describing some 
property of the whole Earth, such as mass, moment of inertia, or the 
frequency of oscillation of some identified elastic-gravitational normal 
mode. We prove that the collection of Earth models which yield the 
physically observed values of any independent set of gross Earth data is 
either empty or infinite dimensional. We exploit this very high degree of 
non-uniqueness in real geophysical inverse problems to generate computer 
programs which iteratively produce Earth models to fit given gross Earth 
data and satisfy other criteria. We describe techniques for exploring the 
collection of all Earth models which fit given gross Earth data. Finally, 
we apply the theory to the normal modes of elastic-gravitational oscillation 
of the Earth. 

1. Introduction 

Any single number which describes some property of the whole Earth will be 
called a gross datum of the Earth. Examples of gross data are the Earth’s mass, its 
moments of inertia, its Love numbers, the frequencies of oscillation of its elastic- 
gravitational normal modes, the quality factors (Q’s) of those normal modes, the 
rotational splitting parameters of the normal modes, the travel time of S or P waves 
from a particular source to a particular receiver, and the coefficients in the spherical 
harmonic expansion of the Earth’s external gravitational potential. 

Human limitations are such that at  any given epoch only a finite number of gross 
Earth data will have been measured. This paper is a discussion of the extent to which 
these finitely many gross data can be used to determine the Earth‘s internal structure. 
The general procedure to be described is applicable to any finite set of gross Earth 
data which vary continuously in response to variations in the Earth’s internal structure. 
For concreteness and because of the authors’ present interests, detailed calculations 
will be given only for the mass, the moment of inertia, and the frequencies of the elastic- 
gravitational normal modes. 

It will be assumed that the Earth is invariant under all rigid rotations about its 
centre, that the angular velocity of steady rotation of the Earth is zero, and that the 
static stress field and dynamic stress-strain relation at every point in the Earth are 
isotropic. Each of these assumptions is false, but probably to an extent which only 
slightly perturbs the theoretical calculations of normal modes (Toksoz & Ben- 
Menahem 1963, Backus & Gilbert 1961, Hast 1958). The problem of determining 
the deep asphericities and anisotropies from measured gross Earth data is an inverse 
problem of the general sort to be discussed in the rest of this paper, but we shall not 
consider the details here. 
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248 G .  E. Backus and J. F. Gilbert 

The problem we shall consider is the following: suppose a non-rotating, spherical, 
isotropic Earth of radius a has density p(r), bulk modulus ic(r), and shear modulus 
p(r), all functions only of r, the radial distance from the centre. Suppose a finite 
number J of gross Earth data El, E,, . . ., EJ have been measured, and that these data 
depend only on the functions p, K, p. Given the observed values of El, . . ., E,, what 
can be said about the unknown functions p, K ,  p ?  

In carrying out the quantitative discussion, we shall use the radius or the Earth 
as the unit of length (6-371 megametres), the Earth’s mean density p as a unit of 
density (5-517g/cm3), and 27r(7rpC)-% as a unit of time (5844seconds). Here C is 
Newton’s universal constant of gravitation. Then the unit of velocity is 1.090 km/s 
and the unit of pressure or  elastic modulus is 65.57 kilobars. 

2. The nature of the inverse problem 

An ordered triple of functions, m=(p, K, p), defined on O b r G  1, will be called 
an Earth model. For the moment we put no restrictions whatever on the functions 
p, K, p except that they be real-valued, piecewise continuous functions of r, the radial 
distance from the centre of the Earth. If in=(p, I C ,  p )  and m‘=(p’, ti‘, p’) are two 
Earth models and b and 6’ are two real numbers, we shall use the symbol bm+b’m’ 
to denote the Earth model (bp + b’p’, bti + b’ ti’, b p  + b’ p ’ ) .  With linear combina- 
tions of Earth models being thus defined, Earth models can be thought of as points 
in an infinite-dimensional linear space 9 1 ,  the space of all conceivable Earth models. 
On zx3l we introduce an inner product as follows: 

(ni, m’)= drrz[p(r)p’(r)+K(r)K’(r)+,u(r) ,u’(r)] ,  (1) .i. 0 

and a norm llrnll= (m, m)*. With these definitions, 91 becomes an inner product 
space, which can be completed to a Hilbert space (Riesz & Nagy 1955). In (1) three 
positive weighting functions which vary with r may be introduced if some particular 
shell of the Earth is to be emphasized. We use unit weights so as to emphasize all 
volumes of the Earth equally. 

A gross datum of the Earth, such as the squared eigenfrequency of the normal 
mode oS, ,  is a real number E which can be calculated for each Earth model m in W. 
A gross datum can be thought of as a rule which assigns to every point m in CiJX (that 
is, to every Earth model) a real number E(m). Injine, a gross Earth datum is a real- 
valued function on the space ’911. Since 91 is itself a function space, real-valued func- 
tions on $331 are commonly called functionals. In general, a gross Earth datum will 
be a non-linear functional on zx31. However, the mass and moment of inertia are 
clearly linear functionals on 91: the mass is 

E ,  =47t d r r 2 p ( r )  i 0 

and the moment of inertia is 
1 

E,= j /drr4p(r) .  8n 

0 

If measurement shows that the value of a particular gross Earth datum E for the 
real Earth is Eo, then we know that the point me in 9ll which describes the real Earth 
lies on the hypersurface in ’iV1 defined by the equation 

E(m) = Eo.  (2 )  
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If E is a linear functional, the hypersurface (2) will be a hyperplane; this hyperplane 
will contain 93’s origin [the Earth model (0, 0, O)] if and only if Eo =O. If E is non- 
linear, in general (2) will be a curved surface. If we have measured J gross Earth data 
for the real Earth and found their values to be Ejo, j = 1, . . ., J ,  then we know that the 
point me which describes the real Earth lies on the intersection in 9X of the J hyper- 
surfaces 

From the measurements Elo, ..., E,’ we can deduce nothing whatever about the 
Earth, except what follows from the J equations (3). 

The inverse problem for the gross Earth data El,  .. ., E,  consists in trying to 
understand what is the totality of Earth models which lie on all the J hypersurfaces (3). 
If we are fortunate or shrewd in our choice of which J gross data to measure, then all 
the different Earth models which satisfy (3) may share some common property. For 
example, they may all have a low-velocity zone in the upper mantle; or they may all 
become essentially the same when we take running averages of their p, K and p over 
some fixed depth interval H .  In the first example, we can definitely assert that the 
Earth has a low-velocity zone in the upper mantle. In the second example, we can 
claim to know p,  K and p as functions of radius r ,  except for unresolved details whose 
vertical length scale is H or less. 

Of course, if E l 0 ,  . . ., E,’ are real measurements they will contain errors of observa- 
tion (such as incorrect identification of a mode) and will be perturbed by the rotation, 
asphericity, and anisotropy of the Earth. Therefore in principle it is possible that 
the set of Earth models which satisfy equations (3) will be empty, that is, that no 
spherical Earth model m is capable of producing the observed values of the gross 
Earth data El, . . ., E,. As far as we know, all of the theoretical work so far published 
on the inverse normal mode problem has been addressed to the question of whether 
equations (3) have even one solution m when Elo, ..., E,’ are the squared raw fre- 
quencies obtained from the real Earth and uncorrected for rotation, asphericity, 
and anisotropy. As yet no exact solutions have been published. The published Earth 
models have maximum errors between 0.5 and 1.5% for the normal modes with 
periods longer than about 300s (Pekeris & Jarosch 1958, Alterman et al. 1959, Sat0 
et al. 1960, Pekeris et al. 1961a, Bolt & Dorman 1961, MacDonald & Ness 1961, 
Alsop 1963a, Landisman et al. 1965). Slichter (1967) believes that many of the longer 
periods of spheroidal modes are now measured with an error no larger than 0.1 ”/,. 

E j ( m ) = E j o ,  j =  1, ..., J .  (3) 

3. Non-uniqueness in the inverse problem 
The linear space W of all conceivable Earth models m is infinite dimensional, and 

equations (3) place only finitely many restrictions on m. Intuitively it is reasonable 
that if equations (3) have any solution at all, they will have an infinite-dimensional 
(usually curved) manifold of solutions. That this intuitive argument needs some 
examination is indicated by the following example: for any m=(p,  K ,  p )  define 

1 

E(m) = 4 +  [ drr’ [ (p -  3)2 + (K- 2)2 + ( p  - I)’]. (4) J 
0 

Then the equation E(m)=4 imposes only one condition on the infinite-dimensional 
space of m’s, and yet there is exactly one m which satisfies that condition, namely 
m=(p, K, p)  with p ( r ) = 3 ,  1c(r)=2,  p ( r ) =  1 for O<r< 1. To suppress pathologies 
like (4) we appeal to  Frtchet differentiability. A functional E on the inner-product 
space )IJz is Frtchet-differentiable at the point m in W if there exists a member A of 
)IJz, determined by E and m, such that for any member 6m of 9.N 

E(m +6m) = E(m) + (A, 6m) + &(Sm), ( 5 )  
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where &(6rn)I(Smll-l approaches zero uniformly as 6m approaches zero. We 
shall call A the differential kernel of E at m. In our space !131 of function triples, 
FrCchet differentiability of E would require the existence of a function triple 
A = ( P ,  K ,  M) such that if 6m=(6p,6K, 6 p )  then correct to first order in the 
arbitrary small perturbations 6p, SK, 6 p  we have 

E(m +bm) = E(m) + dr r* [ P6p + K6k- + M 6 p ] .  (6) i 0 

Clearly mass is a Frkchet-differentiable gross Earth datum with -4 = (4n, 0,O) 
and moment of inertia is a Frhchet-differentiable gross Earth datum with 
A= (8nr2/3, 0,O). The travel time for P or S waves from any particular source to 
any particular receiver is a Frichet-differentiable gross Earth datum, as is evident from 
the expression for the travel time as an integral along the path of propagation, (The 
kernel J d  in this case is singular, being integrable but not square integrable; this 
requires some inessential changes in the formalism.) It is shown in Appendix B that 
the squared frequency of any normal mode of elastic-gravitational oscillation is a 
FrCchet-differentiable gross Earth datum. In that appendix, the kernel functions 
P(r), K(r) ,  M ( r )  in (6) are given explicitly as expressions quadratic in the eigenfunctions 
for the normal mode. Rotational splitting parameters are also Frkchet-differentiable 
gross Earth data, as is evident from the explicit expressions which have been derived 
for them (Backus & Gilbert 1961, Pekeris et al. 1961b, MacDonald & Ness 1961). 
Finally, as shown by Anderson & Archambeau (1964), quality factors Q expressing 
the damping of the normal modes are Frkchet-differentiable gross Earth data if the 
bulk and shear moduli are permitted to be complex and frequency-dependent. In 
short, all the gross Earth data which have so far received geophysical attention are 
FrCchet-differentiable. From a practical point of view the restriction to FrBchet- 
differentiable gross data is not severe. 

Now suppose that m, is a solution of (3) and that the gross Earth data El, .. ., E ,  
are Frkchet-differentiable at  and near m,, with differential kernels A,', . . ., .A',o 
a t  m,. Suppose further that A!]', . . ., At',' are linearly independent. Then (Halmos 
1958) we can find J linear combinations of Ale, ..., A,', say m,, ..., m,, such that 

<A!;, mk) =6jk  (7) 

whenj, k =  1, . . ., J .  Here djk  is the Kronecker delta. Since 911 is infinite-dimensional, 
for any finite K larger than J we can find K - J Earth models mk, with k = J + 1, . . . , K ,  
such that the K Earth models m,, . . . , i n k  are linearly independent. Let m t ,  ..., uK 
be arbitrary real numbers and define 

We shall show that within the K-parameter family of Earth models (8) there is con- 
tained a family with K -  J independent parameters (or dimensions) which satisfies 
(3) exactly when the parameters are sufficiently small. The proof is quite simple. 
When m is given by (8), equations (3) are J equations for the K unknowns a I ,  . . ., uK. 
When u1 =... =u,=O, then for any j between 1 and J and any k between 1 and K 
we have 

Thus, according to (7), the J x J matrix aEj/au,, with j ,  Ic= I ,  . . ., J ,  is non-singular 
(it is, in fact, the J x J identity matrix) when ccl =. . . = uK = 0. It follows from a standard 
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theorem in implicit function theory (Graves 1946) that for any sufficiently small 
..., aK there is exactly one set of values of a l ,  ..., uJ such that the m defined 

by (8) satisfies (3) exactly. Therefore a J + l ,  ..., aK are the K - J  independent para- 
meters of a K -  J dimensional family of solutions (8) of (3). Since K can be arbitrarily 
large, we are justified in asserting that the totality of solutions of (3) near any solution 
m, is infinite-dimensional if the differential kernels dllo, ..., A,' at m, are linearly 
independent. 

Without this hypothesis of linear independence serious complications ensue which 
we shall not examine, but which can lead to failure of the argument. In the numerical 
examples to be discussed in this paper we have computed Ato, . . ., .XJo explicitly 
and verified their linear independence by Gram-Schmidt orthogonalizing them. 
Physically, when Ale, . . ., 4,' are linearly dependent the gross Earth data El, . . ., E,  
are not independent, at least to first order in variations from the Earth model m,. 
Such a special situation is possible, but rare. The more usual situation is that 
~ h ' ~ ' ,  . . . , A,' are almost but not quite linearly dependent. That is, the determinant 
of the J x J matrix (.kjo, Aka) is not zero but is very much smaller than the product 
of its diagonal elements. This approximate linear dependence calls for great care 
in numerical calculations and error estimates, but does not affect the validity of the 
foregoing proof of non-uniqueness. 

Geometrically, the linear dependence of Allo, ..., A,' means that one of the J 
hypersurfaces (3) is tangent at  m, to some linear combination of the others. Examina- 
tion of the case J = 2  makes clear that this tangency permits the set of solutions of 
(3) to be infinite dimensional or finite dimensional or to consist of m, alone. 

One physical reason for the infinite-dimensional non-uniqueness of the inverse 
problem (3) becomes clear on examining (6). Only finitely many gross Earth data 
El0, . . ., E,' have been measured. There is a length H such that none of the kernels 
Pi, Kj ,  Mi,  with j = 1, . . ., J ,  changes appreciably in a length H. Then if to p, K ,  p 
we add perturbations 6p, 6 ~ ,  6 p  whose Fourier series contain no wavelengths greater 
than H ,  the perturbations produced in El, . . ., E j  by 6p, 6 ~ ,  6 p  will be extremely small. 
With only finitely many gross data we cannot expect to resolve details of arbitrarily 
small vertical scale; our vertical resolution is finite. This remark is sufficiently 
tautological to be without much geophysical interest. A geophysicaliy more interesting 
question is whether there is any other source of the non-uniqueness in (3) besides the 
finite resolving power inherent in a finite set of gross Earth data. We shall see that 
in general there is. 

Suppose that for the J gross Earth data El,. . ., E j  we have found an exact solution 
m, of (3). Suppose that Alo, ..., AJo, the differential kernels of El, ..., EJ at m,, 
are linearly independent. Simply to know that there are other exact solutions of (3) 
is unsatisfying. We would like to know what they look like and how they differ from 
m,. One approach to this problem is as follows: Let n be any Earth model orthogonal 
to all of A',', ..., AJo; that is, for any j among 1, ..., J ,  suppose 

(Aj,, n) = 0. (10) 

Then according to ( 5 )  if p is any small number the Earth model m, +/In is a solution 
of (3), a t  least to  first order in p. It is not generally an exact solution unless p = O .  

We can find an exact solution which is nearly m, + Bn when /? is small. To start 
the procedure, let m,', ..., mJO be chosen to satisfy (7). We have seen that for any 
sufficiently small p there is exactly one solution of (3) which has the form 

Since this solution is determined by p, the coefficients aj are functions of p, as is the 
solution m itself. For any p, let m(p) be the solution of (3) which has the form (1 1). 
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Let ~h'~(j?) be the differential kernel of E j  at m(p), so ,le,(0)=,41jo. If we change p 
to B+Sp we will change m to m +6m where, from (1 I) ,  

G. E. Backus and J. F. Gilbert 

J 

k =  I 
6m= 2: m,''6rL+n6B (12) 

and 6ak= (~~c t , / c fg ) sg+O[(s t ) ' )~] .  
according to (5 ) ,  

Then E,(m) will change to Ej(m +am) where, 

Ej(m +am) = Ej(m) + ( c  +Y,( t)'), dm) +cl1Smi I. (13) 

If both m and m+6m are exact solutions of (3), then from (12) and (13) we have 
J 

k = l  
X (ytLj(P), mk0)6%k + ( . / i j ( p ) ,  n)6B+&!16mll=O. 

Dividing by S/3 and letting Sp approach zero, we have 

with j = 1 ,  ..., J .  
Assume that near m, the differential kernels dtj depend continuously on m. Then 

the J x J matrix (.M,(fi), mko) depends continuously on p. Since it is the identity 
matrix when p=O, it is non-singular for all sufficiently small p. Therefore for all 
sufficiently small p, equations (14) can be solved for da,/dp. The numerical procedure 
for constructing the one-parameter family m(P) of exact solutions of (3) is now evident. 
We start with m(0) = m,, and a1 =. . . = rIJ = O  in  (1 1). Using ddj(0) we find dcr,/d/3 
at p=O from (14), and then take a small step At)' in p. With Aaj=Ap(daj/dp) we 
construct m(AP) from (11) .  For m(AP) we find the differential kernels A j ( A P )  as 
described in Appendix B. Then we use (14) to obtain du,/dp at AP, and proceed to 
another step in p. Notice that the curve m(P) thus constructed in the space 9Jl does 
have the form m, + Bn + O(P2) when p is small, because, according to (I  0), (I l), and 
(14), at  p=O we have cr,=...=aJ= dcr,/dp= ...= dcr,/dj?=O. 

The result of the foregoing discussion can be summarized as follows: let 
JLlo, ..., A',' be the differential kernels of El,  ..., E,  at m,, assumed linearly inde- 
pendent. Let n be any Earth model orthogonal to all of ..., AJo in the sense 
of (10). Then there is a unique one-parameter family m ( p )  of Earth models (a unique 
curve in the space 931) which starts at m, when p=O and leaves m, i n  the direction 
described by n. 

The key relations in these remarks are (10). Any model near m, which satisfies 
(3) exactly has the form m ,  + n + terms of second order in n, where n is an Earth model 
satisfying (10). Conversely, any Earth model n satisfying (10) generates a one-para- 
meter family of exact solutions or (3) which, for small p, have the form m, + /In+ O(fi2). 

4. Resolving power in the inverse problem 

We define the mean vertical wave number k, of a function f(r) by the equation 
It is now possible to give a quantitative discussion of the question of resolving power. 
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(A definition in terms of the Bessel, Legendre, Chebyshev or Fourier expansion 
coefficients off involves less computing in what follows. We use (1 5 )  because of its 
formal simplicity and intuitive appeal.) Then the resolving power with which a gross 
Earth datum E looks at  the density p is simply the mean vertical wave number of 
P(r)  in the differential kernel of E at mo. This idea could be elaborated by considering 
mean wave numbers in different regions, but we content ourselves here with the 
coarser discussion. 

If we assume that the P and S wave velocities, yP(r) and vs(r), are known exactly, 
so that the inverse problem is to find the density p from (3), then we must recall that 
~ = p ( v , ~ - - - $ o ~ ~ )  and p = p v s 2 ,  so that, from (6), 

1 

0 

where Pj= P j + K j ( v p 2 - $ v S 2 ) +  Mjvs2 .  (16) 
Then the resolving power of a gross Earth datum E is the mean vertical wave number 
of P. 

In the rest of this section, we will in fact assume that up and v, are known, in order 
to simplify the discussion. The required modifications for the more general problem 
will be apparent. We point out that all the results about non-uniqueness proved 
hitherto in this paper apply in toto to the case where up  and cS are known and only p 
is sought. 

We have defined the resolving power of a single gross Earth datum. Now we must 
define the resolving power of a finite set of gross Earth data El, . . ., E j  at a point mo 
in 91 where their differential kernels are PI ,  ..., PJ [see (16)]. One definition which 
at first looks reasonable is as follows: if we have available measurements of El, . . . , E j ,  
then we have available a measurement of the gross Earth parameter 

J 

j =  1 
E =  x u j E j ,  

where a l ,  ..., aJ are any constants whatever. The differential kernel of E at m, is 

J -  

j =  1 

If k p  is the mean wave number of P then this resolving power is available to us from 
our data. The best resolving power available from all our data is the largest value 
that kp  can take as a l ,  ..., aJ in (17) take all their possible values. This maximum we 
will call K ( E , ,  ..., EJ). It  seems at first to be a reasonable definition of the resolving 
power of our data. For normal modes of oscillation it corresponds to the assertion 
that we can expect to see unambiguous detail in p whose vertical wavelength is approxi- 
mately the shortest wavelength of any of the squared wave functions or linear combina- 
tions of squared wave functions whose eigenfrequencies we have measured. It is 
easy to compute K 2 ( E l ,  ..., E j ) ,  since it is A, the largest root of the equation 

where 
det ( A ,  - AB,) = 0 

d P ,  d P j  
A,= d r r 2 -  - ./ dr dr 

0 
and 

1 

Bij=  / d r r 2  F i  Pj .  
0 
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Furthermore, lower bounds for K(E, ,  . . ., E,) are easily obtained. The mean wave 
number of any particular linear combination 

G. E. Backus and J. F. Gilbert 

is such a lower bound. Estimates of such lower bounds can be obtained by Gram- 
Schmidt orthogonalizing the sequence PI, ..., p,  relative to the inner product (1) 
and inspecting the wavelengths of the oscillations in the resulting functions. In other 
words, we expect detail in p to  be meaningful if its vertical scale is not smaller than the 
shortest wavelength available in the Gram-Schmidt orthogonalization of P,, . . ., P,. 

In general this expectation will be disappointed. A little consideration shows that 
the real resolving power of our data is obtained from a second definition. Suppose 
we have a density po(r) which satisfies ( 3 )  exactly. Among all perturbations Sp which 
can be added to p o  without affecting the validity of (3), which is that one, f (r)=Sp, 
whose mean vertical wave number k, is least (whose mean wavelength is longest)? 
Since, to first order in p ,  p o  + pf satisfies (3), we cannot tell from our data how much 
of .f is present in the true p .  And among all such undetectable perturbations Sp in 
po, f has the longest mean wavelength. Clearly we want to know what f is, and what 
k, is. Equally clearly, the real resolving power of our data is not K ( E , ,  . . ., E,) but k ,. 

is simply the demand that 
for j=1,  ..., J we have 

The demand that p o  + p f satisfy (3) to first order in 

1 

Thus the problem is to find thatfwhich minimizes the k, of (15) subject to the constraints 
(18). This is a classical variational problem, The method of Lagrange multipliers 
shows that there are Lagrange multipliers R, M ~ ,  ..., aJ such that 

while f is finite a t  r = 0, and 

df - =o 
dr 

at r = 1. For any fixed 1 let fj be chosen so as to be finite at r = 0, to satisfy (20) at r = 1, 
and to satisfy 

d d  
dr  dr 

r - - r2  --fi + Af, = Fj 

in O<r< 1 .  Then the solution of (19) and (20) is 
J 

f = c Y j f J  
j =  1 

where the constants yj are determined by the requirements 
1 

J d r r 2 f 2  = 1 
0 

1 
and, for k=l, ..., J ,  

j = 1  yj  . \drr2-fiFk=0. 
0 
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The existence of a nonzero solution yl, ..., yJ of (22) is a condition on I ,  namely 

det (i dr r’fj p”) = 0. 
0 

The smallest 1, which satisfies this condition is the desired minimum k,’, as can be 
seen on multiplying (19) by r2f, integrating from 0 to 1, and applying (15), (18) and (21). 

We will see from a numerical example later in this paper that kf can indeed be 
considerably smaller than K ( E 1 ,  . . ., E j ) .  That is, the real resolving power of a finite 
set of normal modes can be considerably poorer than the resolving power estimated 
from the vertical wavelengths present in the eigenfunctions of the normal modes. 
In the light of the foregoing discussion, this result is not surprising. Speaking 
very loosely, what we know from El0, ..., EJo are the coefficients in the expansion 

where Pl,  ..., pJ,  PJ+& ... is some sort of a complete set on O < r <  I whose first 
members are P1, ..., PJ.  Among the remaining functions pJ+l, ... may be some 
whose vertical wavelength is longer than the shortest of the wavelengths of pl, . . ., p J .  
For example, the whole set might be sin nnr, n = 1,2, . . ., and p j  might be sin n(j  + 1) r 
for j = I ,  . . . , J .  The procedure described above for calculating k, and f is essentially 
a constructive procedure for finding the lowest such ‘gap’ among the vertical wave 
numbers made available by Pi, ..., PJ.  The next gap can be computed by adjoining 
.f to the set H,, ..., PJ and calculating a new function g which minimizes kg2 subject 

1 

to (18) and the new constraint drr2 fg=0 .  J 
0 

Some of the modifications made possible in the foregoing discussion by the 
presence of discontinuities in p, K and ,u will be discussed elsewhere. 

5. Finding solutions to the inverse problem 

Since the set of solutions m of (3) is usually infinite dimensional, any practical 
numerical technique for finding one such solution must somehow remove this serious 
ambiguity. When there are v functions of radius to be determined and J Earth data 
available, previous systematic procedures for dealing with the ambiguity have involved 
subdividing a part or all of the Earth radially into J / v  or fewer shells in which the 
functions are assumed constant or linear (Dorman & Ewing 1962, Anderson & 
Archambeau 1964, Anderson 1967, Landisman et ul. 1965, Verreault 1965b). 

The question arises whether it is not possible to make more explicit use of the very 
large extent of the non-uniqueness in the inverse problem. For example, the ideas in 
Section 4 might be pursued. Given P and S velocity distributions up@) and us(r), 
we might seek the smoothest p(r)  which solves equations (3). That is, we might seek 
to minimize 

1 

[ d r r 2  (dpldr)’ 

kp2= 1 

J drr’p’ 
0 

subject to the constraints (3) onp. All the structural detail in such a smoothest solution 
would be real, in the sense that, roughly speaking, the shortest vertical wavelength 
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256 G. E. Backus and J. F. Gilbert 

Present in such a solution would be longer than the longest vertical wavelength present 
'n any acceptable perturbation to the solution. An iterative numerical technique can 
be set up, using Lagrange multipliers and the differential kernels of El, . . ., E,, which 
Produces this smoothest solution of (3). The technique is essentially the same as 
another which we shall describe in detail later in this section, so we postpone the details. 

Another use to which the non-uniqueness of the inverse problem can be put is to 
test the validity of guesses about the internal structure of the Earth. Suppose again 
that up(r) and us@) are known, and that a guess p G ( r )  is put forth concerning the internal 
density of the Earth. The model m, = (p,, K ~ ,  p , )  with IC, =pc(up2 -&') and 
F G = ~ ~ u ~ ~  may not solve (3). Yet we can always ask, what is the model m closest 
to mG in the least squares sense which does solve (3). That is, we can seek to minimize 

1 

I I m -m,l12 = jdrr2  [ (p  - - p c ~ ~  + ( K  - .G12 + ( p  - p G ) 2 ~  (24) 
0 

Subject to the constraints (3). In general this problem will have a unique solution m, 
and if m, is at all close to m then m can be found numerically by a simple iterative 
procedure. This particular application of the non-uniqueness of the solutions of (3) 
Produces a simple, systematic scheme for generating exact solutions of (3). Every 
reasonable guess will generate such a solution. The scheme is very close to the 

procedure we have used to generate solutions of (3), so we describe it in 

Suppose, for generality, that we are trying to obtain p, K ,  ,u from El0, ..., EJo. 
when uP(r) and us(r) are already known the required modifications in our procedure 
will be obvious, and we have in fact used both procedures. If m(")is a good approxima- 
tion to an exact solution m of (3) we may write, to first order in m-m'"), 

detail. 

Ej(m)=Ej(m("))+ (Jf), m-m(")) (25) 

for j = 1, . . . , J .  Here A,(") is the differential kernel of Ej  at m("). Then to first order 
in m-rnc") we have, from (3) and (25), 

(A?), m- m("))= Ejo -Ej(m(")) (26) 

for j = 1, . . ., J .  Thus we seek to minimize (24) subject to the constraints (26). Intro- 
ducing Lagrange multipliers uj, we conclude that 

J 

k =  1 
m-m,= X ffk.,dk(n), (27) 

and that the @k are determined from (26) as the solution of the linear system 
J 

k =  1 
2 uk(.,d?), ,,dfl)) = E; - Ej(m(")) - (-a;Ci'"), m, - m(")) (28) 

for j =  1, ..., J .  When we have solved this system we define 

If (25) were exact, we would have Ej(m("+'))=Ej0, and ,("+I) would be the exact 
to our problem. Because of the non-linearity of (3), usually we will have only 

I Ej(m("+ ')) - Ejo 1 -g I Ej(m(")) - EjO 1, 
SO that m("+') will be more nearly a solution of (3) than ism("). It  seems likely that fairly 
weak hypotheses on the continuity of the differential kernels of El, . . ., EJ as functions 
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of m will suffice to ensure that if mG is sufficiently close to the solution m of our problem 
and if we take m(')=m,, then as n approaches infinity m(") converges to m. 

The numerical procedure we have actually used to generate solutions of (3) is like 
the foregoing except that at the nth stage we try to minimize m-rnc") rather than 
m-m,, subject to the constraints (26). In all of the numerical work to be reported 
here we have assumed that the Earth had a radius of 6371 km, consisted of a fluid core 
of radius 3473 km and outside the core a solid mantle. We have described any Earth 
model numerically by giving the values ofp, K and p at 66 core points, 98 mantle points, 
and 4 crust points spaced for Gauss-Legendre integration, and we have obtained 
intermediate values of p,  K ,  and p by linear interpolation. Thus we have in fact 
confined our attention to a 438 dimensional subspace of %I]. Since we always have 
J 4 438, this limitation affects none of the foregoing arguments. The problem 
attempted has been to find p and K in the core and p,  K ,  and p in the mantle from (3). 

By introducing into the inner products (1) and (24) and the differential kernels A 
terms involving the depths of the discontinuities in p and K, it is possible to  let the 
depths of the discontinuities as well as their magnitudes be determined by the data 
in (3). The necessary formalism is presented in Appendix C. In this paper the depths 
of the discontinuities were assumed to be known exactly, and only their magnitudes 
were determined by (3). In a subsequent paper we will report on calculations in which 
a solid inner core was used and the depths as well as the magnitudes of the 
discontinuities were assumed at the outset to be unknown. 

Theie is, of course, no reason in principle why one must postulate discontinuities 
in trying to solve (3). However, when all the observational data in (3) are at very low 
frequencies and when m, is continuous it seems most unlikely that among the infinitely 
many solutions of (3) the iteration procedure will select a discontinuous one. High- 
frequency data assure us that the real Earth has at least one discontinuity on the scale 
on which we work here. Ideally we would like to know the whole manifold (3), but 
limitations of time and ingenuity make it possible for us to explore only a small part 
of it. We have elected to  try to arrange that the small part we do  explore is near the 
real Earth, so we have explicitly introduced a discontinuity at the core-mantle boundary 
in our starting models m,. 

6. Numerical experiments with raw data 

In a first application of the foregoing procedure we took as gross Earth data Ejo 
the Earth's mass (Gutenberg 19-59), the Earth's moment of inertia (Jeffreys 1963, 
King-Hele et al. 1964), and the squared frequencies observed by Slichter (1966) for 
oSo, $,, oS, ,  ..., oS,. Here ,Sl denotes the (n+ 1)th term in a list of all spheroidal 
modes of angular order I ,  arranged in order of increasing fiequency. Similarly ,,7; 
denotes a toroidal mode. For m, we used Gutenberg's up and tiS as reported by 
Bullard (1957), smoothed so as to have no low velocity zone, and Bullen's density 
model A, slightly modified to agree with recent satellite measurements of the moment 
of inertia. This m, will be called the smoothed Gutenberg model in what follows. 
We performed seven successively more demanding calculations: in the first, only 
mass, moment, and oSo were used; in the Ith we used mass, moment, oSo, oS2, . . . , oS,. 
All of p,  K, p were regarded as unknown. In each of the seven calculations only one 
iteration was performed. The quality of the Earth model m so produced was measured 
by its r.m.s. error em, defined by 

J 

j =  3 
( J  - 2) 8,' = 2 (I - Ej(m)/EjO)'. 

Since Elo and Ezo,  the mass and moment, were always fitted exactly, we did not 
include them in our measurement of error. Table 1 gives the r.m.s. errors E~ and el 
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258 G. E. Backus and J. F. Gilbert 

Table 1 

T1~er.m.s. errorsEo and E l  for the starting model (smoothed Gutenberg) 
and the first iterate, using as gross data the mass, moment, and 

Slichter’s observed raw frequencies for oSo, oS2,  oS3,  ..., ,,S1 

I 0 2 3 4 5 6 7 
EO x 102 1.1 1.0 1.0 1.0 0.9 1.0 1.0 
El x 104 2.6 1.7 3.1 17.0 25.0 320’0 - 

for m, and the first iterate in each of the seven calculations. At 1=7 the first iterate 
for the density was negative and the computer program was unable to produce eigen- 
frequencies. That is, the procedure described in Section 5 was unable to produce a 
model to fit Slichter’s data for oSo, oS2, oS,, ..., oS,. 

In a second experiment we used as Earth data mass, moment, and Slichter’s (1966) 
observations of oSo, oS2q, q = 2,3, . . ., 9. We used only even angular orders so as 
to reach moderately high frequencies without excessive computer time, and we omitted 
oS2 as the mode most heavily contaminated by the ellipticity and rotation of the Earth. 
Again all of p ,  K, ,u were regarded as unknown. In the core we took form, the smoothed 
Gutenberg model already mentioned, while in the mantle we took velocity and density 
distributions of the form A+&’, with A and B chosen so that the mass and moment of 
inertia of the whole Earth were correct,, while the corresponding moments of u p  and us 
agreed with those for the Gutenberg velocities. This m, we will call ‘quadratic 
Gutenberg’. Taking this m, as a zeroth iterate we had, for the r.m.s. error E, at the 
nth stage of iteration the result given in Table 2. The r.m.s. error had dropped by the 
third iteration to a value which was below the estimated errors of observation (Slichter 
1966) but it remained essentially unchanged through six further iterations. We regard 
this as an unsuccessful outcome. 

Table 2 

The r.m.s. error E, of the n-th iterate, starting with the quadratic 
Gutenberg model and using as gross data the mass, moment, and 
Slichter’s observed raw frequencies for oSo, oS4, oSs ,  oS8,  . . ., oSls 

n 0 1 2 3 4 5 6 7 8 9 
&, x 104 200 8 11 5 4 4 4 6 3 4 

The negative results of these two experiments on the real raw data imply one or 

(i) there is an undiscovered conceptual or numerical error in our iteration 

(ii) the models were too far from the real Earth to permit the linearization (26); 
(iii) the raw observational data cannot be obtained exactly from any spherical, 

isotropic, non-rotating Earth model of radius 6371 km with a fluid core of 
radius 3473 km inside a solid mantle. 

The last possibility might be the result of contamination by asphericity, anisotropy 
and rotation, or the misidentification of one or more modes. It seems unlikely that 
any inner core mode was included in our list of observations, because their surface 
amplitudes are small (Alsop 1963b); but if an inner core mode was mistaken for a 
mantle mode, we might expect difficulty from our failure to include an inner core in 
our models. 

more of the following conclusions: 

procedure; 
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7. Numerical experiments with artificial data 

In the hope of understanding our lack of success with real data, we replaced the 
real gross Earth data by artificial gross data generated from a particular model Earth 
which we shall call Model I. It has the correct mass and moment, fits 56 of Slichter’s 
(1966) spheroidal frequencies, including oSo, oSz, oS3, .. ., with a maximum 
error of 1-3%, and fits the lowest ten ,T frequencies (Benioff et at. 1961) with 
a maximum error of 0.9%. For all these 66 modes the r.m.s. error of Model I is 

FIG. 1. The dimensionless density p(r) for Model I (solid line), the initial guess 
(dotted line), and the thirteenth iterate (dashed line), using 20 gross Earth data cal- 
culated from Model I, and permitting p, K and p to vary during iteration. The 
centre of the Earth is at bottom, the surface at top. Values of p range from 

0 at left to 3 dimensionless units at right. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/13/1-3/247/919988 by guest on 09 April 2024



260 C .  E. BdCkUS and J. F. Gilbert 

FIG. 2. The dimensionless compressional velocities cP(r )  for the same numerical 
experiment as in Fig. 1 .  Full scale for up  is 67r dimensionless units. 

0.3%. We took as our ‘observed’ gross Earth data, Ejo,  the mass, moment, and 
various calculated eigenfrequencies of Model 1. In a first experiment we used 
oSo, oSz, oS, ,  ..., o S , ,  and took for mG, our starting model, the smoothed Gutenberg 
model. All of p ,  K, p were allowed to vary. One iteration reduced the r.m.s. error 
from 1.2 x 

In a second experiment we used the same gross Earth data and took m, to be the 
quadratic Gutenberg model, a poorer starting point. All of p, K, p were allowed to 
vary. The r.m.s. error E,, after n iterations is given in Table 3. 

In a third experiment we used as gross Earth data twenty numbers, the mass, the 
moment, and the squared eigenfrequencies, computed from Model I, of the eighteen 
modes oSo, lSo, 2So, ,S, ,2S1, ..., ,S1, ,,S2, ..., ,S2. The starting model m, was 

to 1.9 x 
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Table 3 
The r.m.s. error E,, of the ntli iterate, starting with the quadratic 
Gutenberg model and using as gross data the mass, moment, and 

frequencies calculated from Model I for oSo, oS2, oS3, ..., $18 

n 0 1 2 3 
&,x 104 200 50 16 0.6 

261 

the quadratic Gutenberg model. All of p, K, p were allowed to vary. The r.m.s. error 
E, after n iterations decreased steadily from 1.75 x for E ~ ~ .  

Fig. 1 shows p(r) for Model I, the starting model, and the thirteenth iterate. Fig. 2 
shows up(r) for these same three models, and Fig. 3 shows us(r) for them. Model I 

for E~ to 1.1 x 

FIG. 3. The dimensionless shear velocities vs(r) for the same numerical experi- 
ment as in Fig. 1. Full scale for us is 6n dimensionless units. 
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262 G. E. Backus and J. F. Gilbert 

and the thirteenth iterate have the same gross Earth data El0, . . ., EZo0 to eight signifi- 
cant figures. 

In a fourth experiment we used the same gross Earth data, but we permitted only 
p to vary during our attempts to fit the data. We required that the starting model, 
m,, and all subsequent iterates have the same up(r) and us@) as Model I, the source of 
the ' observed ' gross Earth data being used. The initial guessed density was obtained 
essentially by demanding that the Brunt-Vaisala frequency vanish in a fluid core and 
solid mantle and that the mass and moment of inertia be correct. The r.m.s. error E, 
after n iterations decreased steadily from &,=0.9 x and then 
steadily but more slowly to = 3.6 x loV6.  In Fig. 4 are shown the densities for 
model I and the 1 lth iterate. 

to & 6 =  1.6 x 

FIG. 4. The dimensionless density p(r) for Model I (dashed line) and the eleventh 
iterate (solid line) using the same gross data and the same units on horizontal 

and vertical axes as in Fig. 1. Only p was varied during iteration. 
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8. Conclusions 
We regard the experiments with artificial Earth data as successful. Since they were 

reasonable imitations of the unsuccessful experiments performed with the real data, 
there is some suggestion that our difficulties with the real data lay not in the inversion 
technique nor the initial guess, but in contamination of the real data by rotation, 
asphericity, anisotropy, mode misidentification and other effects. The evidence is 
inadequate to justify a firm conclusion, but we intend to keep the suggestion in mind 
as a guide to future work. In a subsequent paper we propose to correct the real data 
as far as possible for rotation and the known asphericities, to introduce an inner core 
and variable core boundaries, and to learn what we can about the possibility of mode 
misidentification. In this latter connection, a world-wide array of long-period seismo- 
meters (tiltmeters, gravimeters and strain gauges) would be extremely helpful, although 
some mode-identifying criteria can also be obtained by observing correlations among 
components of strain, gravity and tilt at a single station (Gilbert & Backus 1965, 
Smith 1966). Admittedly a world-wide array of strain-gauges, tiltmeters and gravi- 
meters would be expensive to establish and maintain, but it might be a good investment 
in earthquake prediction. Press (1965) has shown that the Alaskan earthquake of 
1964 produced a permanent strain change of lo-' at Hawaii which could be explained 
approximately by treating the stressed source region before the earthquake as a disloca- 
tion loop. Such a dislocation would strain the whole Earth and redistribute its mass, 
so it ought to produce over the whole Earth changes in gravity of about one part in 
10' as well as the observed changes in tilt and strain. A world-wide network of long- 
period seismometers appears to be capable of detecting and locating such localired 
accumulations of large stress as occurred prior to the Alaskan earthquake. It is to be 
hoped that if such a network is established, the data it produces will be made available 
for work on normal modes. 

Our third experiment with artificial gross Earth data from Model I leads to an 
interesting conclusion about resolving power. Model I and the thirteenth iterate had 
the same values for mass, moment, and the eigenfrequencies of oSo, lSo, 2S0, lS1, zS1, 

..., 7S2, correct to eight significant figures. The twenty gross 
Earth data used to find the thirteenth iterate included frequencies of modes with high 
radial orders. It is widely believed that if such data can be observed they will give 
unambiguous results about the deep interior of the Earth. The Gram-Schmidt 
orthogonalization of the sequence of differential kernels Ply P,, . . . , P Z D  produces 
functions the nineteenth of which is shown in Fig. 5. In the mantle this kernel has 
wavelengths shorter than 900 km. Our naive expectations about resolving power [as 
measured by K(E,, ..., E J ]  might lead us to expect that the data permitted us to 
determine the density structure except for details with wavelengths shorter than 900 km. 
In fact the density difference between Model I and the thirteenth iterate, as shown in 
Fig. 1, has wavelengths of 1800 km in the mantle. 

By contrast with the third experiment, the fourth numerical experiment with 
artificial gross Earth data produced a very good fit between the eleventh iterate and the 
Model I which was the source of the data. This fit is seen in Fig. 4. In the third experi- 
ment all of p, K, p were to be determined from (3), while in the fourth experiment 
up and vs were assumed known and only p was to be determined from (3). The same 
gross Earth data were used in both experiments. Is it possible that those gross data 
are sufficient to determine p uniquely (except for small-scale ambiguities due to lack of 
resolving power) if up and us are given, but are not adequate to determine all three of 
p ,  vp and us? We have no idea whether this suggestion is correct, but a very naive 
argument may be advanced in its favour. Borg (1945) has shown that when a Sturm- 
Liouville problem on a finite interval is reduced to its canonical form as a Schrodinger 
equation for a wave function $(x) on the interval 0 < x< 1 then the spectrum of eigen- 
values does not determine the potential V(x) uniquely. However, if for a single poten- 
tial V ( x )  the eigenvalues are known for two different pairs of boundary conditions, say 

..., 7S1, 0S2, 
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r I I I 1- 

< 

I 

I 

FIG. 5. The 19th member of the Gram-Schmidt orthogonalized sequence 
obtained from the differential kernels Pi, . . , Pzo appropriate to Fig. 1 .  The 
centre of the earth is at bottom, the surface at top. The horizontal scale is 

arbitrary. 

$(0)=$(1)=0 and +(O)=&+(l)=O, then V is uniquely determined. Suppose that 
the mass, moment of inertia, and shear velocity in the mantle of a spherical isotropic 
Earth are given. Suppose that for some fixed 1 the eigenfrequencies of ,,?; are known 
for all n. As shown in Appendix E, Borg’s result implies that these data do not deter- 
mine the density, but that if in addition the eigenfrequencies of .?; for all n are known 
when the surface is rigidly fixed, then the density must be one of two uniquely deter- 
mined functions. Borg’s result suggests the following conjecture: suppose that for a 
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spherical Earth us is a known function of r and for two dilTerent angular orders 1 and 1‘ 
the eigenfrequencies of 7; and 7;. are known for all radial orders n. Then the density 
is determined if the total mass and moment of inertia of the mantle are known. This 
conjecture suggests a further conjecture: that if we seek uniquely to determine v of the 
functions p,  K ,  p (with v = 1, 2, 3) from the mass, moment, and eigenfrequencies of 
normal modes, we need 2v different infinite sequences of eigenfrequencies, each sequence 
consisting either of all toroidal modes of a given angular order or all spheroidal modes 
of a given angular order. By thus piling conjecture on conjecture we produce a 
conjectured explanation for the different outcomes of our third and fourth experiments 
with artificial data. In the fourth experiment we had the beginnings of two infinite 
sequences of the required type, namely ,,Sl with 1= 1, 2 and n=O, 1, 2, .. ., 7 (and the 
brief beginnings of a third sequence with 1 = 0, n = 0, 1,2). We were trying to determine 
only one function, the density, and the conjecture suggests this is possible, at least 
within the limits of resolution of the data. In the third experiment we had exactly 
the same three sequences of data, but we were trying to determine three functions. 
The conjecture suggests that to do this we would need at least six sequences of the 
form ,,SI, .... We emphasize that we have no reason to accept 
the conjectures just described except the very naive counting of variables based on 
Borg’s result. Our only reasons for mentioning the conjectures are that they do 
explain the different outcomes of experiments three and four, and that they may be 
suggestive to  investigators proposing to pursue the theoretical inverse problem. 

This work was supported by the National Science Foundation under NSF 
Grant GP-4096. 

zS1, ... or ,,7;, 

Appendix A 

Rayleigh’s principle and the differential kernels for normal modes of oscillation of the 
Earth 

Rayleigh’s principle for the eigenfrequencies of the normal modes of an arbitrary 
conservative system in a stationary equilibrium configuration has been written in 
several different forms for application to the Earth (Pekeris & Jarosch 1958, Jobert 
1961). The form which is most convenient for our purposes is 

wz/  d v ( p s 2 )  =/ dv ( K R  + p a  +psi S j a i a j $ , ,  + p a j $ , , ( S i a i S j  - sjaisi)}  
V V 

E 

In equation (29), p is the density and $,, the gravitational potential in an elastic, self- 
gravitating body at rest in hydrostatic equilibrium and occupying the bounded region 
V. All of space is E .  At any point r within the body, K and p are the bulk and shear 
moduli appropriate to the hydrostatically compressed state of the material at  r 
(Rayleigh 1906). Newton’s universal constant of gravitation is G, and ai denotes 
partial differentiation with respect to x i ,  the ith Cartesian component of r. The vector 
s is a possible dispIacement field for an elastic deformation of the body, si being the 
ith Cartesian component of s; and is a possible disturbance in the gravitational 
potential at  points fixed in space (not moving with the body). The quantities $ K R  
and +p&? are the energy densities of elastic compression and shear produced by s, 
correct to second order in s. Therefore 

R = ( ai S i ) 2 ,  (30) 
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and AT = 2A i j  A, (31) 
where Aij  is the strain deviator: 

A i ,  = 4 ( ai sj + a, S i )  - 3 ( a, s,) 6 i j .  

The content of equation (29) is twofold. First, if an elastic-gravitational normal 
mode has displacement field eiw's(r) and gravitational potential perturbation field 
eiU'+,(r) then w ,  s, and 41 are related by (29). Second, if s is permitted to be an 
arbitrary vector field defined in Vand is an arbitrary scalar field defined in E [not 
necessarily the potential produced by the density disturbance p1 = - V .  (ps)]  and if 
(29) is regarded as defining a functional w2 of s and 41, then that functional is stationary 
to first order in arbitrary independent small variations of s and 41 if and only if s 
and r$l are the displacement and gravitational perturbation fields of a normal mode 
of oscillation whose angular frequency is w. 

The derivation of (29) from Rayleigh's principle consists in equating the kinetic 

This 

potential energy includes elastic energy, work done against hydrostatic pressure, 
gravitational energy, and the self-energy of the deviation of 41 from the gravitational 
potential produced by the density perturbation p1 = - V .  (ps) .  If I) is that deviation 
in 41, its self-energy is (8nG)- 'Jdv lV$I2 .  

du{ps2} to the total potential energy of the disturbance s, 41. 
V 

E 

Rayleigh (1877) points out that the small change 6w produced in any eigenfrequency 
w by small perturbations ~ I C ,  6 p ,  6p, 6cj0 in the static body can be calculated directly 
from (29) if the eigenfunctions s and $1 for the unperturbed body are known. The 
perturbations BK, 6 p ,  Sp, 64, will produce perturbations 6w, 6s, 641 in the normal mode 
w, s, c#I~. The first order relation among all these perturbations is computed by taking 
first-order variations in (29). The terms containing 6s and 64, will sum to zero on 
account of the stationary character of w relative to any small changes in the eigen- 
functions. Therefore 

w ) dv{ps2}+w2 du(Sps2) 
(6 2 s  V s V 

=J d u ( B K K + B p R  +6psisjaiajf$, + p s i s j a i a j 6 ~ o  
V 

+6paj4,(siai sj -sjaiSi)  +pa j6~o(s ia i s j - s ja i s i )  + 26ps,i3,4,}. (33) 

The foregoing applications of Rayleigh's remarks require no restrictions on the shape 
of Vor the symmetries (if any) of IC, p ,  p and 40, nor do they demand that 4o be entirely 
due to p. Rayleigh's suggestion for using his variational principle to simplify first- 
order perturbation theory has been a classical technique in mechanics for almost a 
century, and in quantum mechanics for at least one-third of a century. Its first 
appearance in seismology seems to be an application to dispersion relations for Love 
waves in a half-space in the absence of gravitation (Meissner 1926, Stoneley 1926). 
Subsequent applications are described by Jeffreys (1935, 1961) and Takeuchi el al. 
(1964). 

Appendix B 
Rayleigh's principle for spherical bodies 

For a self-gravitating body, 6 p  and&$, are not independent. This makes calculation 
of 60 from (33) cumbersome. We prefer to simplify (29) a t  the outset by making 
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explicit use of spherical symmetry and the absence of gravitational fields other than that 
due to the body itself. We assume that V is a sphere of radius a whose centre is the 
origin of a system of Cartesian co-ordinates x i ,  x 2 ,  x 3 .  We assume that p,  K, p depend 
only on r ( r Z = ~ ~ Z + ~ ~ 2 2 + ~ 3 2 )  and vanish when r>u .  We assume that 4o is entirely 
due to p ;  then 

and q50 and ar40 are continuous at r = a .  
Since Cpo depends only on r ,  we have 

a: cpo +2r-  a,4, = 4 n ~ p  (34) 

aj40 = r xjar 4o (35)  
and 

a ia j+ ,  =r -3 ( rZ  6, - x i  xj>ar 4o + r-’(xi xj)ar2 Cpo. 

Then according to (34), 

aia j+ ,  =r -3 ( r281 j -  3xi xj)ar 4o +4nGpr-’(xi xj). (36) 

If we denote by s, the r component of s, then (35) and (36) reduce (29) to 

0’ \ d u { p s 2 } =  ~ d u { ~ ~ + ~ ~ + 4 r r C p ~ s ~ + p A ~ , ~ ~ }  
V t 

where 
A = (S . V) S, - s,(V . S) - 2r- sr2. (38) 

If s and 4’ are the eigenfunctions of a normal mode with angular frequency w, 
then Rayleigh’s argument which led to (33) can be used to calculate from (37) the 
first-order perturbation 60’ produced in m2 by small perturbations B K ,  8 p ,  6p, 640 
in the equilibrium configuration. The result is 

Note that 
r 

If we define 

then 

a , 6 4 , = 4 n ~ r - ~  dr‘[r’26p(r’)]. J 
0 

a 

S(r)=  J p A  dr 
I 

/du{pAa,6$,}= -4nC s d A  J’ dr(a,S) . r  dr’[rr26p(r‘)] ,  
V s1 0 0 

where d A  is the element of area on S, ,  the surface of the unit sphere. Integrating 
by parts with respect to r ,  we obtain 

18 
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Therefore we can write (39) in the form 

G.  E. Backus and J. F. Gilbert 

V V 
where 

a 

i? = 8nCpsr2 - w2 s2 + Aa,40 + 4rrG pA dr + 2s. Vcjl. (41) J 
r 

The kernels R, fi, R can be reduced to a form more amenable to numerical calcula- 
tion by noting (Backus 1967) that for any vector field s defined in 0 6 r 6 u  there are 
unique scalar fields U ,  V, W such that V and W average to  zero on every spherical 
surface concentric with the origin, and 

s = U? + v 1 v- 3 x v1 W. (42) 
A r ,  8 and ;i are unit vectors in the directions of increasing radius r ,  colatitude 8, and 
longitude 1, while 

v, = 6a, + cosece laA.  (43) 

In a spheroidal normal mode (Hoskins 1910) W vanishes and U, V and + 1  are all 
products of the form U ( r )  Y,”’(O, A), V(r )  Y;.(O, A), 41(r) Y;n(O,  I ) ,  where Y r  is a normal- 
ized surface spherical harmonic of angular order 1 and azimuthal order m. In a toroidal 
normal mode (Alterman et uZ. 1959) U ,  V and $1 vanish, while W has the form 
W(r)  Kw(O, A). There are no other normal modes (Backus 1967). 

To apply (42) to (40) we introduce a shorthand notation. I f f  and g are two 
functions of position we say f =g when f -g averages to zero on every sphere concentric 
with the origin. Since BK, Bp and 6 p  depend only on r, the validity of (40) is unaffected 
if we replace I?, A and k? by functions K’ ,  M’ and R’, as long as K ’ = E ,  M ‘ s z f i  and 
R’ =R. We note that for any functions f and g we have 

Vlf . V , g =  -fV12g, (44) 

where V 1 2 = V ,  . V ,  =cosecOa, sinOd,+cosec2Ba,2, so that V12 Y;n= -l( l+ 1) xm. 
order 1. We define 

We restrict attention to  a normal mode (either spheroidal or toroidal) of angular 

F = ~ - ~ ~ u - I ( z +  1) vl. (45) 

Then (Backus 1967) some applications of (42) and (44) show that K ’ z R ,  M ‘ r A ,  
and R’=t?, where 

M’ = + ( 2  a, u - F ) ~  + r-’ I(I + 1) [@ar V- v+ u12 + (r arw- w ) ~ ]  

and 

IS= (a, u + ~ 1 2 ,  (46) 

+r-’(l-  1)1(1+ 1)(l+2)[v2+ w’], (47) 

R’ = - W 2 [ u z + z ( i  + i)(v2 + w2)1+2u(ar+, + rlnPcu - ~ 8 ~ 4 , )  
a 

+2r-11(1+1)V41-87rG 

It follows that 

(6c02) /dv {ps2}=  f du{K’6ti+M’6/t+R’6p}. (49) 
V t 
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Appendix C 

269 

Locations of discontinuities 
In all of the foregoing discussion it has been assumed that the radii of the dis- 

continuities in p ,  K and p are known exactly. Since this is not the case for the Earth, 
it is of some interest to include the locations of discontinuities as unknowns in the 
inversion procedure described in Section 5. We need to know how varying the location 
of a jump discontinuity in p ,  K or p affects the frequencies of the normal modes. In 
what follows, if a function f ( r )  has a jump discontinuity at r =  b, we will denote by 
[ f ] ?  the limit of [ f ( b + ~ ) - f ( b - ~ ) ]  as E approaches 0 through positive values. 

Suppose that w is the angular frequency of a normal mode whose eigenfunctions 
s and Cpl are known, and that p ,  K and p have jump discontinuities at r = b. Suppose 
we perturb the Earth model (the equilibrium configuration) by raising the level of the 
discontinuity to b + h  but leaving p ,  K and p otherwise unaffected. We seek the 
resulting change So2, correct to first order in h. To this order 6w2 is unaffected by 
the manner in which p, IC and p are defined in the gap b < r < b + h, as long as they are 
continuous in b < r < b + h. 

If K’, M’ and R’ were continuous, 6w2 could be computed directly from (49) by 
replacing BK by - [ ~ ] ? h d ( r - b )  and similarly for p and p ,  a ( r -6 )  being the Dirac 
delta function. Since K‘, M’ and R’ may be discontinuous at r=b ,  we must start 
from (37). 

As in the deduction of (33) from (29), Rayleigh’s (1877) argument applied to (37) 
in the present situation implies 

(6w’)l dv{ps’) = h  d A  [w2ps2 - (4nG)-’ I Vq511z - 2 p s .  V+l s 
V s b  

- K’ K - M’ p - 4nCps; -pAa,+,]+ +I du(pAa,6+,). (50) 
V 

In (50) the surface integral is over the surface Sb defined by r = b ,  and the volume 
integral arises because moving the discontinuity in p from r = b to r = b + h perturbs 
the equilibrium potential 4, in the region b < r < a by the amount 

~,S$J,= - 4 ~ G r - ~ h [ p ] t .  

If we define 

gl  =ar& t4nGpU (51) 

then g , ,  U, +,, a,+,, I $ ~  and V l + l  are continuous at  r = b  while V, W, a,U, a, V, a, W 
and i?r41 may be discontinuous. Calculations like those in Appendix B, including 
appropriate integrations by parts, lead finally to the formula 

( 6 w 2 ) j  du @s2} = -h  f d A [ K ’  K + M ’  p+ R’ p -2pUgl ]+ .  
V s b  

Appendix D 

Finding the zeros of the secular equation from a variational principle with boundary 
term 

Verreault (1965a) has pointed out that a generalization of the variational principle 
for torsional modes to include a boundary term provides a rapidly convergent iterative 
scheme for numerical calculation of the torsional eigenfrequencies of any spherical 
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Earth model. We have extended Verreault's result to spheroidal modes and have 
used it in our calculations of all eigenfrequencies w. We find that if an initial estimate 
of w was accurate to one part in lo2, three integrations of the radial ordinary differential 
equations (Alterman e l  ul. 1959) usually reduce the error to one part in lo8. 

To obtain the desired generalization of the variational principle we assume that 
for some value of w, not necessarily an eigenfrequency, we have a vector field s(r) 
and a scalar field cbl(r) which satisfy the momentum and Poisson equations inside a 
model Earth V, but do not necessarily satisfy the appropriate boundary conditions 
on av the surface of V. If we define 

G.  E. Backus snd J. E Gilbert 

Eij= (K- *p)(V . S ) d i j +  p(a i s j+a j s i ) ,  

= -ai(psi), 

then the equations in question are 

02psi = - a j  Eij +ai(pSjaj 4 0 )  + P I  ai $0 + P O  a i  41 (53)  

O=p1-(4&)-'  v24'. (54)  

We multiply (53)  by si, (54)  by $', add the two, and integrate over V. With the help 
of Gauss's theorem we obtain 

w 2 j  do  {psZ] =J do  { K R  + p f l  f p  a,4,<siai Sj - sjaisi) 
V V 

+ps i s ja ia j I jo  +psiai$,} - d A  {Si EijIZj], (55)  
JV s 

where nj are the Cartesian components of the unit outward normal to aV. 

at 8V. Then 
Now we assume further that V2 = 0 in E -  V(outside V )  and that is continuous 

0 = 1 dv { p s i a i 4 , }  + (47d3-I 1 do1 V$' 1' +I d A 4 ,  ni[(4nC)-' ai$' +psi]?.  (56) 
V E av  

a= d A  ni (Eijs j -41[(4nG)-'  a i $ i  +psi]+}. J 
d V  

In case s, 4l is an eigenfunction pair, the boundary conditions imply g = O ,  so 
(57) reduces to (29). 

To deal with a spherical Earth model, we denote by ki the unit vector in the 
direction of xi, so that the radial stress field is T=r-' x i E i j f t j .  Then we write s in 
the form (42) and T in the form 

T =  P+Vl Q- r^ x V, R .  
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We confine attention to normal modes of a fixed angular order 1, and introduce the 
ellipsis U = U ( r )  Y;n(O, A), and similarly for V, W, P, Q, R ,  41, and g,. Here is a 
surface spherical harmonic normalized so that 

j 'dAj do sino(yy)2 = 1. 
0 0  

Then if r = a  is the surface aV, we have 

T = 471 dr r2  p ( r )  {U*(r)  + I ( /  + 1) [V2(r )  + w 2 ( r > ] )  
0 J' 

and 
.9?=4na2 {U(a)  P(a)+l ( l+  l)[V(a)Q(a)+R(a) W(a) ]  

+ (47-G- 41 (a"l(4 + (1 + 1) 41 ( 4 1 1 9  (59) 

where g, is given by (51). 

principle we have 
If w ,  s, 41 are close to some normal mode 3, G, $1, then because (29) is a variational 

(32  = vy- ' + E ,  

where c is a term of the order of I s-51' and I 4, - 4 ,  lz, and $'- and 9 are calculated 
from s and 4, rather than ?i and 6,. Then, from (57), 

6 2 = w 2 + 9 w - - 1  +&. (60) 

When the equations of motion have been integrated from r = 0 to r = a for some value 
of w near an eigenfrequency 6, then equation (60) without E can be used to improve 
the estimate of 6. 

If the normal mode under study is torsional or radial (spheroidal with l=O) then 
the closeness of w to 3 and the fact that s and 41 are regular at r = 0 and solve the 
equations of motion suffice to ensure that s and 4, are near 3 and so that (60) 
is a good estimate. If, however, the normal mode under study is spheroidal with 
12 1, the pairs s, 4,  which are regular at r=O and solve the equations of motion con- 
stitute a three-dimensional linear space. The numerical integration (Alterman el al. 
1959) produces three linearly independent six-by-one row vectors 

= ( P(i)(r) ,  Q(i)(r)y I#)(r), U(i)(r)y V(i)(r)y r$l(i)(r)) 

where h ( r ) = g , ( r ) + ( Z + l ) r - 1 4 1 ( r )  and i = l ,  2, 3. The problem is to find a linear 
combination of these three row vectors which is nearly the row eigenvector corres- 
ponding to 6. If o were an eigenvalue, the 3 x 3 matrixfij(a), with i, j = 1 ,  2, 3, would 
be singular, and its adjugate Flj (a)  [the transpose of the 3 x 3 matrix of cofactors of 
f i j (a)]  would be of rank 1. The eigenvector would be 

Fki(G)fij(rh (41) 

where j = 1 . . . , 6 ,  and k is any one of 1,2  or 3. When w is not an eigenvalue we define 
fi and hence s and 41 via (61). For numerical stability we choose k so as to maximize 
the largest element of Fki(a), i= 1, 2 ,  3. Then when 0=3, sand  become 3 and c$,, 

so by continuity s and 41 will be nearly G and when (r) is near 6. 
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Appendix E 

Determination of the density from the torsional eigenfrequencies for rigid and free 
surfaces 

In this appendix we show that the density p(r)  in the mantle of a spherical isotropic 
Earth model is one of a pair of functions uniquely determined by the following data: 

(i) the inner and outer radii of the mantle, b and a; 
(ii) the total mass and moment of inertia of the mantle; 

( i i i )  the shear velocity vs(r) for b < r < a ;  
(iv) the values of all the torsional eigenfrequencies for some fixed angular order 1 

when the boundaries of the mantle at  r = b and r =a  are free; 
(v) the values of all the torsional eigenfrequencies for the same fixed angular 

order 1 as in (iv) when the boundary of the mantle at r = b  is free while that 
at  r=a  is rigid. 

If we write the displacement as s= -r  x V, [ ~ ( r )  E;"(O, A)] then the equations of 
motion (Alterman et al. 1959) are 

in b ,< r < a, while the boundary conditions are iv= 0 at a rigid boundary and dw/dr= 0 
at a free boundary. Equation (62) can be reduced to Schrodinger's equation, 

d2u  
d t2  
- + [ 0 2  - V ( t ) ]  u = 0. 

The new independent variable t ,  the new dependent variable u, and the ' potential ' V 
are obtained from the following substitutions (Courant & Hilbert 1953): 

The 

at a 

t ( r )  = 7ls- (r)dr; i b 

f ( t )=r2p- )v ,+ ;  

z,(t) = fw; 

V ( t ) =  --+ 1 d2f 
f dt2 r2 

( 1  + 2)(1- 1)  us2 

boundary conditions become 

dt  

free boundary and 
21=0 

at a rigid boundary. The boundaries are now at t(b) = 0 and at t(a). 
If the 'free surface' torsional eigenfrequencies are known, the eigenvalues w2 of 

(63) are known when the boundary condition is (68) at both ends of the t interval. 
I f  the ' rigid surface ' torsional eigenfrequencies are also known, the eigenvalues w2 
of (63) are known when the boundary condition is (68) at  t(b) and (69) at t(a). Accord- 
ing to Borg (1945) these two spectra suffice to determine V ( t )  uniquely on the interval 
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t(b)< l< t(a). But from (64) r and us are known as functions of t, so (67) can be 
integrated for f. Since (67) is linear in f, we may write the general solution as 
A ,  fl + A J 2  wheref, andf, are solutions chosen so that 

4n drr-'v,-'  f i f j = S i j .  i b 

Then from (65) 
p = r - 4 u s - 1  ( A ,  f, + A , f d 2 ,  

so the mass and moment of inertia are respectively 

i 8n 2 2 
I=--- C C A i A j  d r v S - ' f i f j .  

3 i = l j = 1  
b 

We assume that the observed spectra come from an Earth model, so the circle (71) 
and the ellipse (72) intersect. Except in the singular event of tangency, there will be 
four points of intersection, (Al ,  A2),  (Air, A,'), ( - A l ,  -A2) ,  and (-Air, -A2 ' ) .  
Of these, only two will produce different functions p,  so there will be exactly two 
densities (70) satisfying the given data (i), ..., (v). 

Appendix F 

Relative energies for some of the normal modes of Model I 

Using (37) we have 
gravitational effects for 
for each mode so that 

computed the relative energies of compression, shear, and 
144 spheroidal normal modes of Model 1.  Normalizing s 

we have the relative compressional elastic energy, E,, shear elastic energy, E,, and 
energy due to gravitational effects, E,; 

E,= s du(rcR) 

E,= s d u ( p f i }  

V 

V 

E,=l -E,-E,. 

(74) 

Both E, and E,  are necessarily positive but E, may be either positive or negative. 
Numerical results for 17 low frequency modes are given in Table 4. The mode *So 
has much less shear elastic energy than any other mode; a fact that correlates interest- 
ingly with the observed high Q of oSo. If dissipation is roughly proportional to E, 
then a Q of 350 for ,S2 implies a Q of 6800 for ,,So. 

Institute of Geophysics and Planetary Physics, 
University of California, 

California, 
U .S .A .  

Sun Diego, 
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Table 4 

Relative energies for  some of the spheroidal modes of Model I .  
f ( c /h )  is the frequency i n  cycleslhoia 

n I 
0 0 
1 0 
2 0 
1 1 
2 1 
0 2 
1 2 
2 7 

0 3 
1 3 
2 3 
0 4 
1 4 
2 4 
0 5 
1 5 
2 5 

L 

f k / h )  E C  

2.932 1.304 
5.961 0.946 
9.100 0.870 
1.460 0.295 
3.400 0-831 
1.115 0.115 
2.452 0.196 
3.946 0.552 
1.685 0.166 
3.383 0.116 
4.499 0437 
2.327 0.179 
4.221 0.056 
4.984 0.396 
3.022 0.186 
4.931 0.031 
5473 0.362 

E, E, 
0.028 -0.332 
0.159 -0.105 
0.172 -0'042 
0.689 0.016 
0.306 -0.131 
0.546 0.339 
0.791 0.013 
0.491 -0.043 
0.642 0.192 
0.838 0.046 
0.573 -0.010 
0.716 0.105 
0.875 0.069 
0.609 -0.005 
0.757 0.057 
0.888 0.081 
0.643 -0.005 
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