
Geophys. J. Int. (2008) 173, 168–188 doi: 10.1111/j.1365-246X.2007.03689.x
G

JI
S
ei

sm
ol

og
y
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S U M M A R Y
When a mantle plume with elevated temperature underlies an oceanic spreading centre it
affects the generation of oceanic crust by creating thicker crust. We map the variation in
crustal thickness and seismic velocity along three long-offset seismic profiles acquired over
oceanic crust generated shortly after continental breakup in the North Atlantic: a 212-km-
long flowline from the Faroes rifted continental margin across crust of 51–42 Ma age, where
oceanic spreading developed close to the inferred centre of the Iceland mantle plume; a 256 km
flowline extending from the Hatton rifted continental margin across crust of 52–40 Ma age,
about 800 km south of the presumed centre of the mantle plume; and a 99 km strike line over
oceanic crust formed at 43 Ma in the Iceland Basin off the Hatton continental margin. The
crustal velocity structure along each profile is constrained by multichannel seismic reflection
data, which is used primarily to map the sediments, and by densely spaced ocean-bottom
seismometers, which recorded wide-angle reflections and refractions to offsets of more than
100 km. Over 56 000 crustal diving wave and Moho wide-angle reflection arrivals were used in
joint crustal refraction and reflection tomographic inversions. Quantitative error analysis shows
that the seismic velocity of the crust is mostly constrained to within 0.1 km s−1 and the depth
of the Moho to within ±250 m. We interpret the crustal thickness and velocity changes along
the profiles as caused primarily by changes in the mantle temperature at the time of crustal
formation. If all the oceanic crustal thickness variations are ascribed to mantle temperature
changes, we infer that as mature seafloor spreading developed following continental breakup,
the mantle cooled by ca. 75 ◦C over a 10 Myr period, although it still remained hotter than
the global average of normal oceanic crust. The crust formed close to Iceland is at all times
thicker than that formed further away, which we interpret as reflecting higher temperatures
close to the centre of the thermal anomaly created by the mantle plume. Currently at the
Reykjanes Ridge, south of Iceland, we interpret thicker than normal oceanic crust as being
caused by the presence of hotter mantle, modulated by thickness variations of 1.5–2.0 km
which are attributed to temporal variations in the mantle plume temperature of about 25 ◦C
on a 3–6 Myr timescale. A 1.5 km increase in thickness of oceanic crust generated between
48 and 45 Ma on the Faroes line is similar in magnitude and duration to those occurring on
the present day Reykjanes Ridge, which we suggest is due to a temperature pulse of ∼25 ◦C.
Gravity lineations in the northern North Atlantic suggest that the oceanic crust has exhibited
small thickness fluctuations of similar size throughout its history, interpreted as due to small
fluctuations in the temperature of the Iceland mantle plume.

Key words: Tomography; Controlled source seismology; Mid-ocean ridge processes; Con-
tinental margins: divergent; Hotspots; Atlantic Ocean.

1 I N T RO D U C T I O N

Oceanic crust provides a temporal record of mantle melting pro-

cesses because it is formed by the melting of mantle welling up

beneath an oceanic rift as spreading proceeds. By mapping the thick-

ness and seismic velocity of the oceanic crust generated along two

flowlines shortly after continental breakup in the northern North

Atlantic we are able to investigate the history of mantle melting

and hence the mantle temperature in this region over a period of

12 Myr during the Eocene. In this paper, we consider only crust

generated unambiguously at an oceanic spreading centre with clear

seafloor spreading anomalies, thus avoiding complications that may

arise from mixed continental and oceanic crust in the region of the

continent–ocean transition (COT).

One of the main factors controlling the generation of melt beneath

seafloor spreading centres, and hence the thickness of the oceanic
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Influence of Iceland mantle plume on oceanic crust 169

crust is the temperature of the mantle (Klein & Langmuir 1987;

McKenzie & Bickle 1988). Mantle melting under oceanic spread-

ing centres is extremely sensitive to the temperature of the mantle:

an increase in mantle temperature of 50 ◦C, a change of less than

5 per cent of the normal mantle potential temperature of ∼1300◦C,

causes a 50 per cent increase in the volume of melt and hence

50 per cent thicker oceanic crust (Bown & White 1994; White

1997). An example of the effect of small quasi-periodic variations

in oceanic crustal thickness occurs on the Reykjanes Ridge, south

of Iceland. Here, V-shaped ridges of thickened oceanic crust have

been interpreted as caused by variations of up to 30 ◦C in the tem-

perature of the underlying mantle on a timescale of about 3–6 Myr

(Vogt 1971; White et al. 1995; Smallwood & White 1998; Ito 2001).

Three other factors also control the amount of melt generated

under seafloor spreading centres. The first is the composition of

the mantle. The consistency of the majority of Mid-Ocean Ridge

Basalt (MORB) compositions and the uniformity of oceanic crustal

thickness across a range of spreading rates from 15 to 150 mm a−1

(White et al. 2001), point to a broad uniformity in mantle composi-

tion. This is unsurprising, since the spreading centres circle the entire

globe, and so cut across a wide range of well-mixed upper mantle.

However, in some areas differences in the fertility of the mantle,

caused for example, by the presence of subducted lithosphere or of

previously depleted mantle may cause variations in the amount of

melt generated from mantle at a given temperature (Sallarès et al.
2005). The presence of more fusible mantle has been proposed as

an explanation for thick igneous crust in the North Atlantic, par-

ticularly for melts formed beneath Iceland (Foulger & Anderson

2005), and during the initial continental breakup phase (Korenaga

2004).

Another factor is the presence of volatiles and particularly of wa-

ter in the mantle. These lower the solidus temperature markedly

(Braun et al. 2000). Although there are significant volumes of

volatiles in backarc basins, which are introduced into the overlying

mantle by subducting slabs, there is probably only a small percent-

age of volatiles in normal upper mantle. This is rapidly incorporated

into the melts, and the remainder of the subsequent melting is under

dry conditions. Once the volatiles have been removed from the man-

tle source, the mantle temperature again dominates the amount of

melt produced beneath a spreading centre, although the dehydration

and concomitant increase in viscosity of the mantle may affect the

mantle flow, particularly where a mantle plume is involved (Ito et al.
1999; Braun et al. 2000; Ito 2001; Maclennan et al. 2001).

The third factor is the presence of active upwelling. If the man-

tle upwelling under the spreading centre is purely passive (i.e. it is

corner flow driven by the plate separation), then the rate of melt pro-

duction by decompression melting of mantle at a given temperature

is proportional to the rate of plate spreading. However, if there is a

component of active upwelling, such as might be produced by an

underlying mantle plume, then the amount of melt produced also

depends on the rate of mantle upwelling: if the active upwelling rate

is far higher than the rate driven by passive upwelling beneath sep-

arating plates then far more melt may be generated (e.g. Korenaga

et al. 2002; Sallarès et al. 2005). Note that there may also be some

local buoyancy-enhanced active flow in otherwise passive mantle

upwelling caused by the presence of melt in the matrix in the region

of decompression melting under the spreading centre (Braun et al.
2000), although this is likely to have only a relatively small effect on

crustal thickness at the spreading rates of the areas we are studying

(Sallarès et al. 2005).

In this paper, we assume that the temperature of the mantle is

the main control on the amount of melt generated at the North At-

lantic oceanic spreading centres for the first 12 Myr after continental

breakup for which we have data. In Section 7 near the end of this

paper we consider alternative explanations that have been proposed

for the variations in crustal thickness and seismic velocity, including

the effects of volatiles, of variations in the composition of the man-

tle, of alteration and cracking of the oceanic crust and fractionation

of melts during crustal genesis.

We show results from two seismic surveys over northern North

Atlantic oceanic crust formed shortly after continental breakup.

Our data is from the integrated Seismic Imaging and Modelling

of Margins (iSIMM) project (White et al. 2002). Three profiles

(Fig. 1) were surveyed in the summer of 2002 adjacent to the

Faroes and Hatton continental margins. This paper reports results

from the oceanic sections of those surveys in order to investigate

changes in melt production during the seafloor spreading follow-

ing continental breakup. By using only oceanic crust with clear

seafloor spreading magnetic anomalies, we avoid complications

caused to both the crustal thickness and the mean crustal veloc-

ity measurements created by the presence of residual continental

crust in the COT. A further advantage of restricting our analy-

sis to oceanic crust is that if there are along-margin variations in

the style of rifting in different segments, these may affect mag-

matic production in the ocean–continent transition, but would not

be expected to affect the melting during subsequent mature seafloor

spreading.

The Faroes profile, located ∼100 km north of the Faroe–Iceland

Ridge (FIR) traverses 212 km of oceanic crust in the Norwegian

Basin, while the Hatton line, 800 km south of the FIR, crosses

256 km of oceanic crust in the Iceland Basin. Both near-offset mul-

tichannel seismic (MCS) data and wide-angle ocean-bottom seis-

mometer (OBS) data were acquired to allow well constrained de-

termination of the structure and seismic velocity of sediment layers

above the basement and modelling of the deeper crustal refractions

and Moho reflections. We show evidence for a pulse in the temper-

ature of the mantle plume from 48 to 45 Ma similar to those that are

inferred to have formed the V-shaped ridges seen south of Iceland

at the present day Reykjanes Ridge. Together with the presence of

lineated gravity anomalies in the oldest oceanic crust adjacent to

the continental margins, this suggests that the parameters control-

ling the amount of melt generated, of which we consider the main

one to be the temperature of the Iceland mantle plume, may have

been pulsing with a similar amplitude and frequency since at least

50 Ma (Parkin et al. 2007).

2 R I F T – P L U M E I N T E R A C T I O N S I N

T H E N O RT H E R N N O RT H AT L A N T I C

Continental breakup in the northern North Atlantic occurred during

the Palaeocene (Saunders et al. 1997), creating the Reykjanes and

Aegir Ridges (Fig. 1). Prior to the continental breakup, NW–SE

oriented extension opened a number of NE–SW trending basins

parallel to the Atlantic rift (Dóre et al. 1997; Ziegler 1989). These

basins include the Møre and Vøring basins off Norway, the Faroe–

Shetland Basin, and the Hatton–Rockall Basin.

The Iceland mantle plume probably initiated at 62–61 Ma, some

5 Myr before continental breakup (Saunders et al. 1997; Jolley &

Bell 2002), resulting in the onset of widespread volcanism. Mantle

thermal anomalies deduced from basalts emplaced in the Scottish

Hebrides (Kent 1995), in Greenland’s Baffin Bay (Gill et al. 1995)

and offshore the east coast of Greenland (Fitton et al. 2000) are re-

ported as 50–110, 240–300 and 100 ◦C above normal, respectively. A

C© 2008 The Authors, GJI, 173, 168–188

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/1/168/552819 by guest on 19 April 2024



170 C. J. Parkin and R. S. White

Figure 1. The North Atlantic. Grey lines show existing seismic surveys in the region: SIGMA I-IV off the Greenland margin (Holbrook et al. 2001); EB across

Edoras Bank (Barton & White 1997); SW98 on the Reykjanes Ridge (Smallwood & White 1998); HB across Hatton Bank (Spence et al. 1989; Fowler et al.
1989; Morgan et al. 1989); FIRE along the Faroe–Iceland Ridge (Smallwood et al. 1999); BM04 across the Faroe–Iceland Ridge (Bohnhoff & Makris 2004).

HRB is Hatton–Rockall Basin, FSB is Faroe–Shetland Basin. Black lines and Panels (b) and (c) show the iSIMM Faroes and Hatton surveys, respectively.

Circles mark OBS positions from which data was used for this study. Bathymetry contour interval 1000 m.

brief hiatus in volcanism followed the earliest phase, until 56–53 Ma

when a second, more sustained period of volcanism accompanied

the onset of seafloor spreading in the North Atlantic (Saunders et al.
1997). During this second phase of widespread volcanism the ubiq-

uitous seaward dipping reflector (SDR) sequences were generated

along the continental margins. SDR sequences form when basalts

from an elevated rift flow towards the adjacent continent; as rifting

continues the region subsides and the SDRs acquire a seaward dip

(Mutter et al. 1982).

Various conceptual models exist for the shape of the Iceland man-

tle plume at the time of continental breakup. White & McKenzie

(1989) postulated a circular planform 1200 km in radius and cen-

tred on Iceland. Jones & White (2003) proposed a larger ellip-

tical shaped anomaly which ascribed thickened Eocene oceanic

crust at the Gakkel Ridge and Newfoundland Sea to the same

mantle plume thermal anomaly. Smallwood & White (2002) noted

that the onset of volcanism was probably within 1 Myr across the

entire region and that the thickness of intruded igneous material in

the lower crust varied little along the 2000 km extent of the continen-

tal margin, suggesting that anomalously hot asthenospheric material

arrived almost simultaneously beneath the region that subsequently

rifted. They suggested that the original thermal anomaly consisted

of a quadrapole-junction of vertical connected sheets of astheno-

spheric mantle each extending about 1200 km from the centre of

the anomaly (see fig. 1 of Roberts et al. 2005, for a diagram of the

extent of these suggested anomalies). Such a quadrapole-junction

pattern, as well as triple-junctions of connected sheets have been

modelled by Houseman (1990) as characteristic of the initial stages

of rising mantle plumes created by boundary layer instabilities in

the mantle. Near the surface they develop into axisymmetric plumes

centred on the intersection of the spokes of rising mantle sheets. If a

quadrapole-junction of hot connected mantle sheets lay beneath the

base of the lithosphere when volcanism started in the North Atlantic,

it could explain the observed patterns of volcanism and extension

and would also explain the transient uplift without accompanying

volcanism seen in the northern North Sea distant from the North At-

lantic continental breakup (Nadin & Kusznir 1995; Barton & White

1997).

A different type of thermal anomaly was proposed by Nielsen

et al. (2002), who suggested that a thin subhorizontal sheet of mantle

∼100–200 ◦C hotter than normal was emplaced beneath the litho-

sphere by the plume prior to continental breakup. They suggested

that when continental breakup occurred this hot mantle decom-

pressed to form a thick layer of melt which moved buoyantly upward

into the crust. Nielsen & Hopper (2004) suggested that small-scale

convection could occur within this mantle layer until the layer was

exhausted and mantle flow reverted to passive upwelling beneath

the rift.

Present-day oceanic crust generated at the Reykjanes Ridge

spreading centre, up to 1000 km from the centre of the Iceland plume

is thicker than normal non-plume influenced oceanic crust, which

has an average thickness of 6–7 km (White et al. 1992). The increase

in thickness towards Iceland along the Reykjanes Ridge is consistent

with increasing temperature of the mantle plume towards its centre

with crust formed proximal to the plume centre being thicker than

that formed further away (White 1997). As well as the spatial effect

of the plume there is also a temporal effect of the plume tempera-

ture pulsing (White et al. 1995). Prominent V-shaped ridges caused

by crustal thickness variations are mapped on crust younger than

37 Ma on the Reykjanes and Kolbeinsey Ridges, suggesting mantle

temperature fluctuations of ∼25 ◦C on a timescale of 3–6 Ma (Vogt

1971; White 1997; Smallwood & White 1998; Ito 2001; Jones et al.
2002).

Other evidence for temperature oscillations come from the

composition of Northern Component water flowing across the

Greenland–Iceland–Faroes Ridge. Compositional variations in

the water have been interpreted by Wright & Miller (1996) and Poore

et al. (2006) as being controlled by fluctuations in the temperature

of the Iceland mantle plume causing changes in the elevation of the

Greenland–Iceland–Faroes Ridge, which then acts as a ‘lockgate’
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Influence of Iceland mantle plume on oceanic crust 171

Figure 2. Top panel shows the Hatton iSIMM seismic reflection profile. Bottom panel shows the Faroes iSIMM seismic reflection profile. Note the different

scales of these profiles. Inverted triangles show the positions of the OBS deployed along the lines; we only use those marked by open triangles for this study.

Magnetic anomaly data with anomaly identification is shown above the Hatton profile.

controlling water flow. Indirect evidence for pulsing of the Iceland

mantle plume in the early stages of its history has also been proposed

using sedimentation patterns (White & Lovell 1997) and dating of

seamounts in the Rockall Trough (O’Connor et al. 2000).

In this paper, we interpret variations in the seismic velocity and

thickness of the oceanic crust as indicative of variations in the tem-

perature of the mantle from which it was formed, and discuss the

constraints this provides on mantle temperature changes immedi-

ately following continental breakup.

3 S U RV E Y DATA

The iSIMM profiles were acquired using the RRS Discovery for

OBS wide-angle profiles and the M/V Geco Topaz for the seismic

reflection profile along the Faroes line. In this paper, we report re-

sults from 34 OBS deployed at a spacing of 6 km over the oceanic

crust and adjacent continental margin on the Faroes profile and 46

OBS deployed at a spacing of 4 or 10 km across the oceanic crust and

adjacent continental margin on the Hatton profile (Fig. 1). The seis-

mic source for shooting into the OBS arrays was a bubble-tuned 101

l (6340 cubic inches), low-frequency (∼10 Hz), broad-band airgun

array designed to optimize deep penetration at large offsets (Lunnon

et al. 2003). Magnetic and bathymetric data were collected by RRS

Discovery. Forty-two Expendable Bathy-Thermographs (XBTs) and

a velocimeter were used during the cruise to determine accurately

the water column velocity structure. The Faroes margin seismic re-

flection profile was acquired after the OBS survey using a 12 km

streamer deployed from the M/V Geco Topaz, and a 167 l (10 160

cubic inches), low-frequency (∼9–11 Hz dominant frequencies) air-

gun source (White et al. 2002).

3.1 Near-offset MCS

3.1.1 Hatton MCS

The MCS reflection data for the Hatton survey (Fig. 2a) were ac-

quired simultaneously with the shooting into the OBS using a 2.4 km

long streamer towed at 18 m depth. Ninety-six streamer groups were

recorded with 25 m spacing and a sample rate of 4 ms, to a record

length of 15 s. Processing focused on determining the depth to base-

ment and the velocity of the sediments, since penetration into the

deeper basement was poor. The shot separation was 150 m to pre-

vent overshooting the OBS profile by creating wrap-around noise:

this resulted in a CMP fold of 8 in the MCS profile. CMP super-

gathers of up to 45-fold were constructed by summing adjacent

CMP gathers and were used for an initial velocity analysis, after

which a geometrical spreading correction was applied, followed by

a second iteration of velocity analysis. Dip moveout correction was

used to compensate for dipping layers and then a final velocity

analysis was made. A Kirchoff post-stack migration was applied

to reduce diffractions and improve identification of the basement

reflections.

3.1.2 Faroes MCS

The Faroes MCS profile (Fig. 2b) was acquired by WesternGeco

using their Q-MarineTM system, with three streamers deployed for

the entire 380-km-long Faroes line. The 12-km long Q-MarineTM

streamers recorded single sensors spaced every 3.125 m, which were

grouped into 12.5 m sections during processing. A high capacity,

167 l (10 160 cubic inches) bubble tuned source was deployed using
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172 C. J. Parkin and R. S. White

Figure 3. Vertical component geophone data, traveltime picks and model ray coverage from four example OBS on the Faroes profile. For each OBS, the top

panel shows the record section reduced at 7 km s−1; middle panel shows the phase arrival picks (black) and those predicted by the model (red); bottom panel

shows the ray coverage of each instrument.

48 guns towed at 18 m depth. Each shot was recorded by calibrated

near-field hydrophones mounted within 1 m of each gun. Using the

notional source algorithm of Ziolkowski et al. (1982), the far-field

signature was calculated for processing the complex waveform pro-

duced by the bubble tuned array. Spitzer et al. (2005) provide a

detailed description of key features of the Faroes iSIMM reflec-

tion data and a comparison to previous reflection surveys in the

region.

3.2 Wide-Angle OBS

All seismometers deployed were 4-channel OBS from Geopro com-

prising a hydrophone and a gimballed type SM-6, 4.5 Hz, three-

component geophone. Data were recorded digitally using a 24-bit

analogue-digital converter with a dynamic range of 120 dB and a

4 ms sample rate. Figs 3–5 show typical record sections from the

vertical geophones of OBS deployed along the profiles, together
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Influence of Iceland mantle plume on oceanic crust 173

Figure 4. Vertical component geophone data, traveltime picks and model ray coverage from four example OBS on the Hatton dip profile. For each OBS,

top panel shows the record section reduced at 7 km s−1; middle panel shows the phase arrival picks (black) and those predicted by the model (red); bottom

panel shows the ray coverage of each instrument.

with traveltime fits to the main arrivals and the associated ray paths

through the model. Additional vertical hydrophone arrays were de-

ployed for each survey and were used by Lunnon et al. (2003) to

compare the peak and bubble airgun tuning methods used during ac-

quisition. To reduce the impact of reverberation of seismic energy

in the water column, which can obscure the succeeding record with

‘wrap-around’ noise (Nakamura et al. 1987; McBride et al. 1994),

we required the time interval between shots to be 50 s or more. On

the Faroes profile, where we were not towing a streamer, we were

able to steam at 4.5–5.5 km h−1 to achieve a shot interval of 75 m,

while still retaining an interval of more than 50 s between shots.

However, on the Hatton profile we acquired simultaneously a seis-

mic reflection profile, so in order to maintain the streamer depth we

had to use a higher towing speed of 9.3 km h−1, which necessitated

an interval between successive shots of 150 m.

The overall quality of the data is good for all three geophone

components. OBS locations were repositioned from their drop po-

sitions using the water wave arrivals with an accurate water-layer

velocity profile model from the XBT and velocimeter profiles taken

during the cruise. The OBS drifted by typically ca. 400 m from their

surface deployment positions before they reached the seafloor.

4 A G E O F O C E A N I C C RU S T

To determine the age of the oceanic crust along our profiles, mag-

netic anomalies were identified from magnetometer data. The ages

of the identified anomalies were determined using the timescale

of Cande & Kent (1992). For the Hatton line we used data from a

towed magnetometer (Fig. 2a), as well as the gridded North Atlantic

data of Verhoef et al. (1996). The Hatton profile extends from the
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174 C. J. Parkin and R. S. White

Figure 5. Vertical component geophone data, traveltime picks and model ray coverage from four example OBS on the Hatton strike profile. For each OBS, top

panel shows the record section reduced at 7 km s−1; middle panel shows the phase arrival picks (black) and those predicted by the model (red); bottom panel

shows the ray coverage of each instrument.

continental margin to 39 Ma crust (chron 18). No magnetic data

were collected during acquisition of the Faroes line. Instead we

used magnetic anomaly data from ship tracks near the profile and

the gridded data of Verhoef et al. (1996). In addition, we use the

adjacent DSDP drill sites 336 and 337 which both reported basaltic

basement ages (Kharin et al. 1976). The basaltic basement radio-

metric age of site 337 is in error and we consider the oldest sediment

age above the basement to be a better indication of the basement age

here. The Faroes line extends from the continental margin to 42 Ma

oceanic crust. Our interpretation of the seafloor spreading at the Ae-

gir Ridge is similar to that from a recent study by Scott et al. (2005),

with spreading at the Aegir Ridge continuing until chron C17, some

100 km beyond the NNW end of our line.

5 T O M O G R A P H I C M O D E L L I N G

We use wide-angle seismic data (diving waves and Moho reflections)

from all 34 OBS deployed over oceanic crust of the Norwegian

Sea and the adjacent continental margin on the Faroes line and 46

OBS deployed along the two profiles shot over oceanic crust of the

Iceland Basin and the adjacent continental margin in the Hatton area

(open triangles on Figs 2a and b). Three separate OBS profiles were

modelled: two profiles are >200 km long and lie approximately

along flowlines, with a shorter 99 km long strike line in the Iceland

Basin across oceanic crust formed at 43 Ma (chron C20) (Fig. 1).

These profiles are hereafter named the Faroes, Hatton dip and Hatton

strike lines. Table 1 shows the number of traveltime picks made along

each profile.

For the modelling, the OBS (with locations typically 400 m off-

line), were repositioned onto the profile and the traveltime picks were

corrected to the seafloor. By checking for traveltime reciprocity be-

Table 1. Line lengths and traveltime picks.

Line Length (km) Pg PmP Total OBS

Faroes 212 26 282 7447 34

Hatton dip 256 15 353 3441 37

Hatton strike 99 2906 1260 9

tween shots made close to OBS positions projected onto the profile

using Zelt & Smith’s (1992) method, we confirmed the consistency

of these corrections. Following the wide-angle modelling guide-

lines of Zelt (1999), traveltime picking errors were assigned to each

arrival corresponding to the duration of the first half-cycle of the

picked phase. We assigned picking errors of 60 ms for the first ar-

rival Pg phases and 70 ms for the secondary arrival Moho (PmP)

reflections.

Tomographic inversions were used to find best-fitting velocity

models from the traveltime data. To produce starting models for the

inversions we used a sediment velocity model derived from sem-

blance analysis of the MCS data. We then determined the velocity

variation with depth of the best-fitting 1-D crust below these sed-

iments. The combined sediment and 1-D crustal models (Fig. 6)

were used as starting models for the tomographic inversions using

the tomography code of Korenaga et al. (2000) which uses both

diving wave and reflection constraints. The Moho was the deepest

reflector considered in the inversion.

5.1 Parametrization

For the tomographic inversions we use a grid spacing of 0.5 km hor-

izontally with the vertical nodes hung below the seafloor, increasing
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Influence of Iceland mantle plume on oceanic crust 175

Figure 6. Starting models for the joint refraction and reflection tomographic inversion using the method of Korenaga et al. (2000). Starting models were

prepared using the MCS data (Fig. 2) for sediment velocities above a best-fitting 1-D crust determined from ray tracing the traveltimes of arrivals from a subset

of the OBS. Velocity profiles show the velocity from the left-hand side of each model. Moho is at the depth of the dotted line on the velocity profile and the

white line on the models. Circles show OBS positions.

from 50 m spacing at the top of the models to 800 m at the bottom

of the models at 30 km depth. We define our correlation lengths to

be the approximate resolving power of our data set. The horizontal

resolution is controlled by the OBS spacing along each line, giving

4 km near the seafloor, increasing with depth to 6 and 10 km for

the Faroes and two Hatton surveys, respectively. The vertical cor-

relation length is based on the size of the first Fresnel zone of the

signal recorded by the OBS, and was set as 200 m at the seafloor,

increasing to 2.5 km at the base of the models.

In order to stabilize the inversion, smoothing and damping con-

straints can be applied independently to the model updates in vertical

and horizontal directions. This provides four independent ways of

constraining the inversion. Following Korenaga et al. (2000), we first

determine appropriate smoothing constraints to apply to the corre-

lation lengths by examining smoothing versus rms trade-off (‘L’)

curves and by inspection after testing a variety of values across each

model. We then fix these smoothing constraints and apply variable

damping to the model updates. To restrict the model updates and

prevent large swings in the models during the first few iterations

we set the damping values (as defined by Korenaga et al. 2000) to

be 5 per cent for velocity and 10 per cent for depth. These restrain

the second-order derivatives in the inversion. The damping was re-

moved for later iterations to ensure that the final model was not

closely dependent on the starting model. Prior to inversion the rms

misfits of the starting models were 203 ms (χ2 ∼ 10) for the Faroes

line, 286 ms (χ 2 ∼ 20) for the Hatton dip line and 150 ms (χ2 ∼
7) for the Hatton strike line. After fewer than ten iterations the final

rms misfits are 67 ms (χ 2 ∼ 1.0), 66 ms (χ2 ∼ 1.1) and 41 ms

(χ2 ∼ 0.5) for the same three lines. Fig. 7 show the reduction of the

traveltime residuals before and after inversion while Fig. 8 shows

the derivative weight sum (DWS) ray coverage of each line.

6 M O D E L U N C E RTA I N T Y A N A LY S I S

The uncertainty in tomographic inversions is often assessed us-

ing synthetic tests such as checkerboard or spike sensitivity tests

(Spakman & Nolet 1988). Synthetic tests determine how well a

particular, user defined, synthetic pattern can be recovered by the

data, given the particular configuration of sources, receivers, veloc-

ity structure and ray paths through it. Where an inversion is regu-

larized by smoothing constraints, as in the code of Korenaga et al.
(2000), the full detail of the anomalies can never be recovered be-

cause the smoothing that is applied to stabilize the inversions allows

recovery of only the smoothed crustal structure. The way we have

chosen to measure the uncertainty of seismic velocity constraints

in our modelling, which uses a non-linear inversion technique, is a

Monte Carlo method with multiple random samples of the solution

space. The randomization is based on likely information about the
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176 C. J. Parkin and R. S. White

Figure 7. Traveltime residuals across each line before (left-hand panels) and after (right-hand panels) tomographic inversion. From top (a) the Hatton strike

line, (b) the Hatton dip line and (c) the Faroes line. Grey bar shows typical errors assigned to traveltime picks.

model so that it searches a particular area of the model space, yet still

retains a random element (Gubbins 2004). The a posteriori marginal

density function σ M (m) is the solution of the inverse problem, com-

bining all information and physical relationships across the model

space m and can be found from

σM (m) =
∫

σ (d, m) dd, (1)

where d and m are the observable (data) and model parameters, and

the probability density σ (d, m) is the a posteriori state of informa-

tion (Tarantola 2005). By taking N samples randomly about d and

m we sample m1, m2, . . . , mN of σ M (m). Assuming that all N real-

izations of σ M (m) have the same probability 1
N , the mean and other

statistical measures such as standard deviation σ can be estimated

from the velocity models (Mosegaard & Sambridge 2002). By tak-

ing the initial randomization about assumed information in d and

m (information such as picking error and knowledge of the velocity

model), the random errors map into the a posteriori function and

statistical methods give a measure of the random values that depend

on the data, the model and the physical relationship between them.

Both our starting models and traveltime picks were randomized 100

times within the wide bounds shown in Fig. 9.

Using an average 1-D velocity profile with depth the wide range

of starting models shown in Fig. 9 were found by randomizing points

on the 1-D profile in both velocity and depth. Sediment layer infor-

mation is known a priori from the MCS data. However, because the

velocity profile is continuous, the velocity at the base of the sedi-

ments was varied by ±0.3 km s−1 and its depth by ±0.4 km to fully

randomize the basaltic oceanic layer 2 below it. Further randomiza-

tions in velocity of ±0.4 and ±0.5 km s−1 were made at the base

of oceanic layers 2 and 3, respectively, and an additional random-

ization of ±0.25 km s−1 was introduced at the base of the model to

provide wide sampling of the velocity space. The depths of oceanic

layers 2 and 3 were varied by ±0.25 and ±3.0 km, respectively. By

using a wide range of starting velocities and depths we ensure that

the 1-D crustal thickness variations cover the likely bounds of the

oceanic crustal structure.

Instead of adding random noise to each individual traveltime

pick we follow Zhang & Toksöz (1998), who noted that it is un-

likely one would pick truly randomly varying traveltimes on adjacent

shots along a phase arrival, because in most cases one identifies the
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Influence of Iceland mantle plume on oceanic crust 177

Figure 8. Derivative weight sum (DWS) for all lines. DWS is highest at

the Moho (constrained by PmP reflections) and within oceanic layer 2 and

the top of oceanic layer 3 (constrained by diving waves). The Faroes line

has the highest DWS as a result of the more closely spaced instruments and

smaller shooting interval.

moveout of a phase across a record section (e.g. Figs 3–5), rather

than picking a time based on a single trace. It is more likely that

the traveltime picks inadvertently slip from one phase to another,

especially in the presence of noise or other interfering arrivals. We

therefore randomize traveltimes in a manner similar to that used by

Zhang & Toksöz (1998), using a common receiver error as well as a

random moveout error across each phase. We assigned three control

points for the variations: the start point is at the minimum observed

offset of a particular phase; the second point is at the mid-position

in the offset ordered picks; and the third point is at the position of

maximum offset of that phase. The middle point was randomized to

incorporate a pseudo-random position where the traveltime gradi-

ent changes to simulate a skipping of phase across the picks, which

can often happen when picking the arrival times of noisy data. We

used a traveltime moveout error of ±50 ms at the start, decreasing

to 0 ms in the middle and then increasing again to ±50 ms at the

end. The common receiver error was set to be one half of the Pg

picking error. Combining the two errors, the maximum possible er-

ror across the traveltime picks was ±75, ±25 and ±75 ms (i.e. 1.5,

0.5 and 1.5 times the Pg error of 50 ms), at the start, middle and

end of each phase arrival, respectively. By varying the traveltime

errors in this way we randomize them all by an average of 50 ms

while still incorporating the bigger errors of the PmP phase at larger

offsets.

Each random starting velocity model was inverted with a ran-

domized traveltime data set to obtain 100 Monte Carlo realizations.

The average velocity distribution of all 100 tomographic models is

shown in Fig. 10, and the standard deviation of the 100 realizations

in Fig. 11. The standard deviation of the velocity at any point in the

model is typically less than 0.1 km s−1. There is a band of velocities

with higher standard deviation of up to 0.2 km s−1 present on each

profile (Fig. 11), at a depth which corresponds to the sharp tran-

sition from relatively low-velocity sediment to the top of basaltic

oceanic layer 2, which has typically twice the velocity of the sed-

iment. It may appear paradoxical that there is a large uncertainty

in the seismic velocity near such a well-defined interface as that

between sediments and the top of the igneous oceanic crust. The

reason is that the model is parametrized by discrete depth control

nodes, and just a small variation in the steep velocity gradient be-

tween nodes from velocities typical of sediments to those typical of

basalts causes a large variation in velocity at any particular depth

in this interval between model nodes. So the standard deviation of

acceptable models in this depth interval increases markedly, even

though the overall change in traveltimes may be very small.

There are large areas of the lower crust above the Moho where the

standard deviation rises to 0.2 km s−1, which correspond to the areas

of low ray coverage (see DWS in Fig. 8) towards the continental end

of the profile (right-hand side). Where the ray coverage is good the

standard deviation for the depth of the Moho is within 250 m.

In addition to the Monte Carlo test we also test for velocity ver-

sus depth trade-off in the lower crust above the Moho, which can be

problematic for traveltime tomography where, as is the case for our

study, only PmP reflections are used to determine the depth to the

Moho reflector. Depending on the geometry of the source–receiver

pairs and the coverage of the reflections it may be possible to reduce

the trade-off between the velocity and depth. Bickel (1990) showed

that by increasing the number of multiple offset traveltime picks, the

velocity versus depth non-uniqueness might be overcome, providing

the offset of the picks span at least three times the lateral variations

in velocity. The tomography code of Korenaga et al. (2000) pro-

vides a method for testing the velocity versus depth problem using

the weighting parameter w to adjust the relative weighting of depth

sensitivity in the Fréchet matrix. By using w �= 1.0 the model itera-

tions can be forced to preferentially update either the lower crustal

velocity or the Moho depth. Any areas of the model subject to large

velocity versus depth ambiguity will be revealed by systematically

varying w. For our final models we keep w = 1.0 which gives

equal weighting to both depth and velocity. To test our velocity ver-

sus depth trade-off we use w = 100 to preferentially update depth

changes and w = 0.01 to preferentially update velocity changes.

The results of these trade-off tests as well as the reference model

with w = 1.0 are shown in Fig. 12. For the two long dip lines

the difference is only notable at the continental ends where the ray

coverage is reduced. By using w < 1.0 the Moho is shallower at the

continental end and closer to its starting position, since the model

has preferentially updated the velocity rather than the depth. The

difference between the Moho positions for the Hatton strike line

(Fig. 12) is small across all values of w, although the velocity above

the Moho was changed further from the starting model when using

w < 1.0. However, it is the Hatton strike-line that has the smallest

offset range across the Moho reflector due to its shorter length, and it

should, therefore, exhibit the most velocity versus depth ambiguity.

In general, given the receiver geometry, the ray coverage and the

large correlation lengths used, the inversions do not suffer from

any serious velocity versus depth ambiguity and the rms traveltime

residuals of all the models are similar.

C© 2008 The Authors, GJI, 173, 168–188

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/1/168/552819 by guest on 19 April 2024



178 C. J. Parkin and R. S. White

Figure 9. Random starting models for the Monte Carlo analysis. 100 random starting models and Moho positions were taken for each line (grey) about the

average profile from an initial inversion of the traveltime data (black). Moho depth (horizontal lines) was varied independently of velocity by ±3 km of the

average depth.

7 D I S C U S S I O N

7.1 Velocity structure

Representative velocity–depth profiles of the oceanic igneous crust

(i.e. the section beneath sediments), from along the Hatton and

Faroes dip lines are shown in Fig. 13. They show the character-

istic increase in velocity with depth through the upper 2–3 km of

crust (i.e. layer 2 of oceanic crust), from around 4 km s−1 at the

top of layer 2 to 6.7 km s−1 at its base. This increase is a result

mainly of the increase in pressure with a concomitant decrease in

fractures and pore space, and a decrease in alteration within the ex-

trusive lavas and dykes of the upper oceanic crust. There is a marked

inflexion point in the velocity versus depth curve at a velocity of

6.7 km s−1, beneath which the velocity gradient decreases by an

order of magnitude from ∼1.0 s−1 in layer 2 to ∼0.1 s−1 in the

underlying lower-crust (oceanic layer 3). We use the velocity of

6.7 km s−1 at this inflexion point to define the top of Layer 3, the

oceanic lower-crust.

The mean velocity of the lower oceanic crust is everywhere some-

what higher than the global average of 6.95 km s−1 for normal

oceanic crust determined from a compilation by White et al. (1992),

reaching nearly 7.3 km s−1 where the oceanic crust is thickest. Melt-

ing of mantle which is hotter than normal increases the amount of

Mg in the melt, which causes higher than normal seismic veloc-

ities when the melt freezes in the crust (e.g. White & McKenzie

1989; Kelemen & Holbrook 1995; Korenaga et al. 2002; Sallarès

et al. 2005). Anomalously high lower-crustal velocities in excess

of 7.1 km s−1, similar to those reported here, have also been ob-

served in oceanic crust adjacent to other continental margins in

the North Atlantic, including the eastern side of Greenland (e.g.

Korenaga et al. 2000; Holbrook et al. 2001; Hopper et al. 2003;

Voss & Jokat 2007), the northwest European margin (e.g. Fowler

et al. 1989; Barton & White 1997; Breivik et al. 2006), and the Nor-

wegian margin (e.g. Zehnder et al. 1990; Mjelde et al. 1997, 1998).

We discuss later the inferences about mantle temperature and com-

position that can be drawn from these observations of lower-crustal

velocities.

At the continent-ward end of the Hatton and the Faroes dip lines

(i.e. at distances greater than 210 and 150 km, respectively), the

profiles intersect the crust of the COT. Although heavily intruded

by igneous material and with thick extrusive basalts forming SDRs

(Fig. 14b), the influence of residual continental crust on the seismic

velocity structure in this region can be seen by the abrupt deepening

of the 6.5 km s−1 velocity contour at the COT (Figs 10b and c). The

thick layer with velocities of 5.0–6.5 km s−1 is caused by residual

continental crust which lies beneath the extrusive lavas and above

the main zone of lower-crustal intrusion on the COT. We do not

include results from the sections of the profiles that traverse the

COT in our interpretation of the oceanic crustal structure discussed

later.

7.2 Seaward dipping reflectors

The extrusive basalts on the continental margin show the charac-

teristic arcuate SDR sequences typical of volcanic rifted margins

elsewhere in the northern North Atlantic. The smooth arcuate SDRs

imaged on the COT of the Faroes profile (Fig. 14b) and those re-

ported by White et al. (1987) on the Hatton COT indicate that rifting

was initially subaerial and remained so until about C24 time (52

Ma). Similar subaerial SDRs are reported by Larsen & Jakobsdóttir

(1988), Larsen & Saunders (1998) and Hopper et al. (2003) on the

Greenland margin COT conjugate to the Hatton profile prior to C24.

Between C24 (52 Ma) and C23 (51 Ma) there is a rough broken hum-

mocky basement below which little is imaged: this is interpreted as

marking the change from subaerial to submarine eruptions (Planke

et al. 2000).

Younger than 51 Ma the rough basement ends and more SDR

sequences are seen, but with a lower curvature and dip, and a more

broken, irregular nature (Fig. 14a); these are interpreted as subma-

rine SDRs (Planke et al. 2000; Parkin et al. 2007). In shallow water

environments the volcanic extrusions are normally explosive due to

magma degassing, resulting in flows that are chaotic in nature. In

deep water the gas cannot escape so easily from the extrusive lavas

and in these conditions large sheet flows can form if the melt supply

is sufficient to flow over local bathymetry (Gregg & Fornari 1998).

So we interpret the change from arcuate SDRs through a segment

of rough hummocky basement to linear, irregular SDRs as caused

by a change from subaerial rifting at the time of continental breakup

to submarine seafloor spreading after 51 Ma (anomaly C23 time).

7.3 Oceanic crustal thickness

In order to ensure that we use only crust generated at a mature

seafloor spreading centre, we do not in our analysis use crust which
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Influence of Iceland mantle plume on oceanic crust 179

Figure 10. Ensemble average of each line following Monte Carlo analysis. White lines show position of the Moho, dashed lines are where Moho ray coverage

is low and the Moho position unreliable. Only those areas where there is ray coverage are coloured. Mantle velocity is determined independently by modelling

the PmP amplitude variation with angle of incidence. Contours shown at 0.5 km s−1 intervals and labelled at 4, 5, 6 and 7 km s−1.

exhibits arcuate SDRs such as those shown in Fig. 14(b). This en-

sures that we do not include in our analysis any crust from the

COT, which may include a proportion of relict continental material,

although it also means that the oldest oceanic crust we consider

is about 53 Ma old and is, therefore, somewhat younger than the

breakup time of about 55 Ma. Nevertheless, we see a clear decrease

in oceanic thickness for the first 5–6 Myr of seafloor spreading in the

early North Atlantic ocean (Fig. 15). As we show later, the thickness

of oceanic crust of the same age on the SIGMA III line off Green-

land (Hopper et al. 2003), which is approximately conjugate to the

Hatton dip profile, is the same within the measurement uncertainty

as that of the Hatton profile, as of course we would expect since it

was generated at the same time and at the same spreading centre.

The oceanic crust of the Faroes profile is at all times thicker than

crust of the same age on the Hatton profile. If the crustal thickness

is dependent only on the temperature of the mantle, then this obser-

vation is consistent with the Faroes profile being closer to the centre

of the mantle thermal anomaly created by the Iceland mantle plume

than was the Hatton profile at the time the crust was generated. The

full spreading rate of the crust between Hatton Bank and Green-

land decreased from about 30 mm a−1 at 53 Ma (anomaly C24), to

close to its present-day rate of 20 mm a−1 at the Reykjanes Ridge

(Smallwood & White 2002).

As we discuss later, we ascribe these changes in crustal thickness

to decreasing mantle temperatures following continental breakup. If

for the moment we accept that the seafloor was generated by passive

upwelling and decompression melting of mantle (Bown & White

1994), then the right-hand scale of Fig. 15 shows the mantle potential

temperature that is required to generate the crustal thickness. Normal

oceanic crust, averaged across segment lengths, is 6.4 ± 0.8 km
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180 C. J. Parkin and R. S. White

Figure 11. Standard deviation of each line following Monte Carlo analysis. White lines show position of the Moho with uncertainty estimates. Only those

areas where there is ray coverage are shown.

thick (White et al. 1992), and formed from mantle with a potential

temperature of ∼1300 ◦C. A decrease in mantle temperature of about

75 ◦C is required over the period of 9–12 Myr sampled by the Faroes

and Hatton profiles (Fig. 15).

7.4 Mantle control on oceanic thickness and velocity

If mantle upwelling is a passive response to the plate separation

at a seafloor spreading centre and is faster than a full spreading

rate of about 15 mm a−1, below which conductive cooling of the

upwelling mantle reduces the amount of melting (Bown & White

1994), then for a given mantle composition, the amount of melt gen-

erated depends primarily on the mantle temperature. Provided the

melt bleeds efficiently upward to freeze in the crust, which studies of

the geochemistry and thickness of oceanic crust suggests is a good

assumption (White et al. 2001), then the igneous crustal thickness

can be used to infer the parent mantle temperature. Fig. 16(a) (solid

lines) shows a compilation of theoretical curves of oceanic igneous

thickness as a function of mantle potential temperature for passive

upwelling and decompression melting of a dry pyrolitic mantle.

These calculations assume that all the melt is accumulated in a 1-D

section directly above the rift where it freezes to form the crust, and

that the crust has zero porosity.

At first sight, the range in the different solid curves in Fig. 16(a)

appears to be quite large. However, most of this range is caused by

different legitimate choices for some of the parameters that con-

strain the melting models used to generate the theoretical curves,

within the bounds of the uncertainty to which they are known. For

example, White & McKenzie (1989) [W&McK 1989 on Fig. 16a]

used a value for the entropy of melting of 250 J kg−1 ◦C−1, whereas
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Influence of Iceland mantle plume on oceanic crust 181

Figure 12. Velocity versus depth ambiguity tests for all profiles. Depth kernel weighting parameter, w, has been varied from w = 0.01 to 100 to investigate

the trade-off between velocity and depth.

Figure 13. Representative velocity–depth profiles at 50 km intervals, with

distances along profile labelled adjacent to Moho step, along (a) Hatton dip

line and (b) Faroes line. The boundary between seismic Layer 2 and Layer

3 is at the inflexion point in the curves marked by arrow, at 6.7 km s−1.

Bown & White (1994) [B&W 1994 on Fig. 16a] used a value of

400 J kg−1 ◦C−1, and this makes a difference of 20–40 ◦C in the

mantle temperature required to produce a given amount of melt,

assuming all other factors are held fixed. Another significant uncer-

tainty is the shape that is assumed for the melting region. However,

the significant point to which we wish to draw attention is that the

slopes of the different curves are closely similar for mantle poten-

tial temperatures higher than 1300 ◦C, the temperature at which

normal oceanic crust is generated. This means that with any given

melting model, we can deduce from the change in oceanic crustal

thickness the increase in mantle temperature above that required to

produce normal thickness oceanic crust (i.e. the mantle tempera-

ture anomaly), even though we cannot deduce the absolute mantle

temperature with such precision.

The broken lines on Fig. 16(a) show calculations of the crustal

thicknesses that result if the mantle has a more fertile component

added. The representative fertile mantle source has 70 per cent de-

pleted pyrolite mantle and 30 per cent MORB. As expected, the

effect of this change in mantle composition is to cause more melt to

be generated by decompression of mantle of a given temperature.

The results of a similar exercise to calculate the seismic velocity

of the crust are illustrated in Fig. 16(b), where we show the theoret-

ical P-wave seismic velocity of the crust formed from the primitive

mantle melt when it freezes in the crust, as a function of the tempera-

ture of the parent mantle. The melt composition, and in particular its

Mg, Fe and Si content, is dependent on the depth of melting, which

in turn is controlled by the mantle temperature. White & McKenzie

(1989) calculated the melt composition using the parametrization

of McKenzie & Bickle (1988), and showed that the igneous crust

would have higher velocities if the parent mantle were hotter. They

calculated the seismic velocity of the rocks that crystallized from

the melt by finding its CIPW norm and the Voight–Reuss–Hill av-

erage first for each mineral and then for the aggregate. Kelemen

& Holbrook (1995) refined this by making empirical correlations

of the composition of igneous rocks, while Korenaga et al. (2002)

subsequently improved the theoretical calculations. Sallarès et al.
(2005) introduced the possibility of a small amount of melting at

depth in the presence of water in the mantle.

There is again considerable scatter in the curves in Fig. 16(b),

although since the uncertainty in the calculations of the P-wave ve-

locity is of the order of ±0.1 km s−1, the curves made with similar

assumptions are all within error of one another. However, as with

the variation of crustal thickness with mantle temperature, the sig-

nificant point is that the slopes of all the curves are closely similar

above a normal mantle potential temperature of 1300 ◦C. So it is

possible to determine from any of the curves the mantle temperature

anomaly from the change in seismic velocity much more precisely

than the absolute temperature. For a hypothetical fertile mantle com-

prising 70 per cent depleted pyrolite mantle and 30 per cent MORB

(broken lines on Fig. 16b), the different mineralogy of the source
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182 C. J. Parkin and R. S. White

Figure 14. Seaward dipping reflectors imaged on the Faroes profile from migrated seismic reflection profile. (a) SDRs on thick oceanic crust are broken and

irregular, formed from rifting in a submarine setting; (b) SDRs on continent–ocean transition are smooth and convex-upward, formed subaerially as basalts

flowed landward from the elevated rift. Horizontal distances correspond to those on Fig. 2(b).

Figure 15. Total oceanic igneous crustal thickness variation with age for

the Faroes and Hatton dip lines. Vertical bars show statistical uncertainties in

thickness from multiple inversions with randomized starting models. Mantle

potential temperature (right-hand side) is from the relationship of Bown &

White (1994), which assumes melt generation is by passive decompression of

the mantle beneath the spreading ridge. Both profiles show a rapid decrease

in thickness for the first 5–6 Myr of seafloor spreading, with the thickness

of the crust on the Faroes profile always greater than that of the same aged

crust on the Hatton profile. The Faroes line also exhibits a pulse in thickness

similar in amplitude and frequency to those that produce the V-shaped ridges

south of Iceland at present, with much smaller fluctuations that are barely

above the uncertainty present on the Hatton line.

means that the seismic velocity of material generated from mantle at

a given temperature is reduced by between ∼0.2 km s−1 (Korenaga

et al. 2002) and ∼0.35 km s−1 (Sallarès et al. 2005) compared to

that formed by pyrolitic mantle.

The theoretical calculations shown in Fig. 16 all assume passive

upwelling. However, it is possible that there was active upwelling

beneath the seafloor spreading centre driven by convection in an

underlying mantle plume. Active convection can explain, for ex-

ample, the large volumes of melt generated above mantle plumes

in intraplate settings such as Hawaii where there is no lithospheric

rifting and the mantle decompression responsible for generating the

melt is driven entirely by thermal convection (Watson & McKenzie

1991; White 1993). If there were active upwelling at the time of

melt generation, then the crustal thickness alone could not be used

to infer either the mantle temperature or the amount of active up-

welling. This is because active convection would cause mantle to

be cycled through the melting region, potentially generating large

volumes of melt from small thermal anomalies in the mantle. So

the curves in Fig. 16(a) would no longer give a direct link between

mantle temperature and melt thickness.

In the case of the crustal seismic velocity, if there is active mantle

convection through the melting region, then the melt composition

would remain unchanged, however active the mantle convection,

and so the seismic velocity of the rocks formed from that melt

would remain little changed. This behaviour has the advantage for

our purposes that the seismic velocity of the rocks may be used

to constrain the mantle temperature, but the disadvantage that they

cannot give any information on the amount of active upwelling.

An innovative method of inferring both the mantle temperature

and the degree of active mantle upwelling responsible for the melt

generation was developed by Kelemen & Holbrook (1995). They

showed that the effect of mantle temperature and upwelling on the

melt products could be separated if the total igneous crustal thick-

ness, H , is plotted against the average bulk crustal velocity, V p ,

in what we shall term an H − V p diagram. We show in Fig. 17

the theoretical curves from Fig. 16 for passive mantle upwelling

plotted onto an H − V p diagram, with the curves plotted for a ref-

erence pressure of 230 MPa and an average temperature of 150 ◦C,

which are representative of the lower-crust of the observed oceanic

crustal data in our results. Note that both Korenaga et al. (2002) and

Sallarès et al. (2005) plotted their curves using a reference pressure

of 600 MPa and a reference temperature of 400 ◦C, so we applied a

pressure correction of 0.2 × 10−3 km s−1 MPa−1 and a temperature

correction of −0.4 × 10−3 km s−1 ◦C−1 (using the same pressure

and temperature corrections as Korenaga et al. 2002). Also shown

on Fig. 17 as a filled circle is the average thickness and average

lower-crustal velocity of normal oceanic crust from White et al.
(1992) with correction for along-segment variations in thickness as

discussed by Bown & White (1994).

Perhaps the most difficult and uncertain issue in plotting observed

data on an H − V p diagram is in choosing an appropriate measure

of the bulk crustal velocity. The theoretical curves assume that the

primary melt is frozen in situ in the crust without any differentiation

either before or after it is emplaced in the crust. In reality, the melt

ponds at sill-like magma chambers in the crust where it fractionates

and indeed the melt may also undergo some subcrustal fractionation.

As olivine is precipitated out, the residual melt becomes less dense,

and what is eventually erupted to the surface with a MORB-type

composition is this less dense residual melt, which freezes in the
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Figure 16. Theoretical calculations of (a) crustal thickness and (b) seismic

velocity of primary melt frozen in the lower crust as a function of mantle

potential temperature for dry pyrolitic mantle (solid lines) and fertile mantle

comprising 70 per cent depleted pyrolite mantle and 30 per cent MORB

(broken lines) as published by a range of authors. Curves are calculated for

an average pressure of 230 MPa and an average temperature of 150 ◦C,

which is representative of the average pressure and temperature conditions

in the lower crust from the North Atlantic profiles discussed in this paper.

Sources of curves: White & McKenzie (1989) [W&McK 1989]; Bown &

White (1994) [B&W 1994]; Kelemen & Holbrook (1995) [K&H 1995];

Korenaga et al. (2002) [Kor 2002] and Sallarès et al. (2005) [Sall 2005].

lower pressure and temperature conditions of the upper-crust to form

a rock with lower seismic velocities than that of the rocks formed

from the residual melt in the lower-crust. So it is likely that crustal

fractionation causes the lower-crustal velocities to be slightly higher

than the bulk velocity would otherwise have been (as shown by the

upward-pointing dotted arrow on Fig. 17), while the upper-crust has

reduced seismic velocities.

It is possible that some of the melt crystallizes in the mantle be-

neath the crust. Cannat (1996) suggests that perhaps 15–20 per cent

of the melt may be trapped in the mantle beneath slow-spreading

ridges, while Lizarralde et al. (2004) report observations of up-

per mantle velocities which they interpret as due to about 1.5 km

(about 20 per cent) of the melt being trapped in the mantle where the

spreading rate of oceanic crust in the western North Atlantic was be-

Figure 17. Theoretical igneous crustal thickness versus P-wave velocity of

primary melt (H − V p) curves for melt generated from normal pyrolitic

mantle with passive upwelling curves are from White & McKenzie (1989)

[W&McK 1989], Kelemen & Holbrook (1995) [K&H 1995], Korenaga et al.
(2002) [Kor 2002], Sallarès et al. (2005) [Sall 2005] and from fertile mantle

of Korenaga et al. (2002) [Kor 2002 fertile]. Curves are calculated for a

reference pressure of 230 MPa and an average temperature of 150 ◦C, which

are representative of the lower crust of the observed data in our results.

Filled circle shows the thickness and average lower-crustal velocity of normal

oceanic crust from White et al. (1992) with correction for along-segment

variation in thickness as discussed by Bown & White (1994). Arrows show

schematically the directions in which the lower crustal velocity and total

igneous thickness would change due to the effects of: fractionation in the

lower crust or upper mantle; an increase in the temperature of the parent

mantle; active mantle upwelling under the oceanic rift; or an increase in the

fertility of the parent mantle.

low 20 mm a−1. These relatively small amounts of melt are within

the uncertainty of the agreement between geochemical and seis-

mic measures of the amount of melt generated on slow-spreading

ridges (White et al. 2001). Even where the crust is thick, as it is

under present-day Iceland with its full spreading rate of 20 mm

a−1, pressure–temperature estimates suggest that some melt is in-

truded into the upper mantle (Maclennan et al. 2001). Korenaga

et al. (2002) show that the effect of subcrustal fractionation would

be to lower the seismic velocity of the residual melt which bleeds

upward to freeze in the crust. The effect of subcrustal fractionation

on the crustal bulk seismic velocity is greater when the bulk velocity

is higher. For an average bulk crustal velocity of 7.15 km s−1, which

is typical of what we observe in our data (Fig. 18), melt retention in

the mantle of 10–20 per cent would cause the bulk seismic velocity

of the crust to be decreased by about 0.1 km s−1 (Korenaga et al.
2002). Since the effect on the lower-crustal velocity of subcrustal

fractionation (downward-pointing dotted arrow on Fig. 17) operates

in the opposite direction to the effect of crustal fractionation, and

fortuitously with a similar magnitude, it suggests that it is a reason-

able approximation to use the measured lower-crustal velocity as an

estimate of the bulk velocity of the primary melt.

In addition to these fractionation effects on the seismic veloc-

ity, there is the more important effect of pore space, fractures and

cracks in the upper crust which create the steep vertical velocity

gradient of typically ∼1.0 s−1, as seen in the upper 2–3 km of the

velocity profiles in Fig. 13. Superimposed on the intrinsic veloci-

ties of the igneous crust caused by its composition and porosity is

a downwards increase in velocity caused by the increasing pressure
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Figure 18. Average lower crustal velocity, V p, and crustal thickness, H ,

for the Faroes profile (filled squares), the Hatton profile (filled diamonds),

and the conjugate east Greenland SIGMA-III profile (open diamonds from

Hopper et al. 2003) plotted with theoretical H − V p curves for primary melt

generated from normal pyrolitic mantle with passive upwelling from White

& McKenzie (1989) [W&McK 1989], Kelemen & Holbrook (1995) [K&H

1995], Korenaga et al. (2002) [Kor 2002], Sallarès et al. (2005) [Sall 2005],

and from fertile mantle of Korenaga et al. (2002) [Kor 2002 fertile]. Tick

marks on curves are at 50 ◦C increments in temperature (see Fig. 16 for values

of potential temperature used to calculate curves). Thickness and average

lower-crustal velocity of normal oceanic crust from White et al. (1992) with

correction for along-segment variation in thickness as discussed by Bown &

White (1994) is shown by filled circle. Average thicknesses and velocities

are calculated with a 20 km window in distance and theoretical curves are

calculated for the average pressure of 230 MPa and average temperature

of 150 ◦C which are representative of the lower crust of the observed data.

Uncertainty ranges typical of the data and of the theoretical curves are shown

in the top left-hand corner of the diagram.

(P) and a downwards decrease in velocity caused by the increasing

temperature (T) with depth. Rather than adjust our observed data to

the average P, T conditions, we have chosen to calculate the H–Vp

curves at the average P, T conditions appropriate for our data.

So how best to calculate the bulk crustal velocity from the ob-

served data for comparison with the theoretical curves? Kelemen &

Holbrook (1995) and Hopper et al. (2003) replaced all the upper-

crustal material that had velocities of less than 6.8 km s−1, with a

uniform velocity of 6.8 km s−1 on the basis that the low velocities

were caused primarily by the presence of pores, cracks and weath-

ering, and that 6.8 km s−1 was a good representation of its intrinsic

velocity. They then calculated the average velocity of the whole crust

using these corrected velocities for the upper-crust. Korenaga et al.
(2002) argued that the average velocity of the lower-crust alone was

a better representation of the bulk crustal velocity, so they used only

this section of the crust to calculate the average seismic velocity,

though they calculated the crustal thickness H from the entire ig-

neous section. Because the lower-crust contains the first fractionates

from the primary melt, they argue that the velocity of the lower-crust

is an upper bound on the bulk velocity, although as we noted earlier,

for the typical lower-crustal velocities in our data, fractionation in

the subcrustal region would tend to cause a reduction in velocity in

the lower-crust which to first order is likely to be similar in magni-

tude to the increase caused by crustal fractionation. In this paper, we

follow Korenaga et al.’s (2002) method of using the lower-crustal

velocity as a proxy for the seismic velocity of the primary melt were

it to freeze in the crust with its primary composition. The top of the

lower-crust is defined by the inflexion point in the velocity–depth

profiles at a velocity of 6.7 km s−1 (Fig. 13).

The bold arrows on Fig. 17 show the direction in which the lower-

crustal velocities and whole crustal thicknesses would change under

the specified changes in the mantle. For example, if the mantle tem-

perature increased, but the upwelling remained passive, the seismic

velocities on the H − V p diagram would move towards both higher

thicknesses and higher velocities. If the mantle upwelled by ac-

tive convection without any change in temperature, there would be

an increase in thickness but no significant change in seismic ve-

locity. This, therefore, provides a test which discriminates between

the effect of increased mantle temperature and the presence of ac-

tive upwelling if an increase of crustal thickness is observed along

the profile. Finally, a change in mantle composition to a more fer-

tile mantle would cause both a decrease in seismic velocity and an

increase in crustal thickness.

7.5 Observational results from north Atlantic oceanic

crust

The result of plotting our whole-crustal igneous thickness versus

V p measurements from the lower oceanic crust on the Faroes and

Hatton lines is shown on a H − V p diagram in Fig. 18 by filled

squares and diamonds, respectively. We also show measurements

(open diamonds on Fig. 18) from the same aged oceanic crust on the

east Greenland SIGMA-III profile which is approximately conjugate

to the Hatton profile, using results from Hopper et al. (2003). Note

that we have undone the replacement made by Hopper et al. (2003)

of the upper-crust by material with a velocity of 6.8 km s−1, and

have instead used the lower-crustal velocity for direct comparison

with our data. There is a strikingly close similarity of the H − V p

data from the east Greenland side of the ocean with that from our

new results on the NW European side as would be expected since

the crust was formed at the same spreading centre. It is also clear

that all the data lie on the same trend, a trend which points directly

to the oceanic average shown by the filled circle on Fig. 18. All our

observations show thicker crust with higher seismic velocities than

normal oceanic crust.

The trend of the observed H − V p data from oceanic crust on both

the Faroes and Hatton profiles shown on Fig. 18 is consistent with

melting by passive decompression of normal dry, pyrolitic mantle

(thin solid curves on Fig. 18) of variable temperature, with an end-

member trending directly towards normal oceanic crust. Note that

we have not included the uncertainty bars on the data (and they are

of similar magnitude for the theoretical curves, too), which would

have overwhelmed the plot, but instead show the representative un-

certainty of the values in the top left-hand corner of Fig. 18. There

is no evidence either of the presence of fertile source mantle (which

would have moved the data points towards decreasing seismic ve-

locities as the crustal thickness increased, see Fig. 17), or of active

upwelling in the mantle (which would have produced a trend of in-

creasing crustal thickness with little or no change in seismic velocity

of the lower-crust, see Fig. 17).

The agreement is good between the trends of the data and the

theoretical predictions for passive upwelling of mantle with a vari-

able temperature (solid lines on Fig. 18), especially when the typical

uncertainties are borne in mind. However, there is a faint indication

that as the seismic thickness increases, the seismic velocity may

be increasing slightly more than would be predicted theoretically

from its increase in thickness. This is barely resolvable, given the
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uncertainties in the velocity constraints, but nevertheless is in the

opposite direction to the effects of either the presence of fertile man-

tle or of active upwelling (Fig. 17). However, it would be consistent

with Korenaga et al.’s (2002) suggestion that the thicker oceanic

crust may be slightly less prone to seismic velocity reduction by

the presence of cracks in the lower crust than is the thinner oceanic

crust. The change in average pressure in the lower-crust between

the thickest and the thinnest crust on our profiles is only about

10 per cent, even though the crustal thickness varies by about

100 per cent, because the crust was generated, and has remained,

in isostatic equilibrium. So we would not expect there to be large

changes in seismic velocity resulting from pressure changes in the

lower crust, nor for there to be large differences in the amount of

cracking in the lower crust, and our observations of only a very small

change in seismic velocity are in agreement with this expectation.

The overall trend of decreasing crustal thickness and decreasing

V p with age in our data is consistent with a trend of decreasing

mantle temperature with age, heading towards normal oceanic crust,

although always hotter than the mantle that produces normal oceanic

crust. The inferred mantle temperature drop over the 10–12 Myr

portions of the oceanic crust that we sample is∼75 ◦C. The transition

from subaerial to submarine SDRs on both sides of the Atlantic

(Fig. 14 and Hopper et al. 2003) occurred at about the same time

(51 Ma), as dynamic support from the mantle decreased, along with

its decreasing temperature anomaly.

Similar decreases in crustal thickness, which are attributed to

a drop in mantle temperature during the early seafloor spreading

have been reported from oceanic crust of the same age adjacent to

Edoras Bank, some 400 km along the continental margin to the south

of the Hatton Bank survey (Barton & White 1997). About 800 km

to the north of Iceland, off the Greenland margin, a similar decrease

in oceanic thickness from 13.7 to 6.8 km occurs over the period

50.5–47.0 Ma on profile AW1-20030400 reported by Voss & Jokat

(2007). Somewhat thinner oceanic crust, though with a complication

caused by an 11.5 km thick igneous ridge, also shows a decrease

in thickness over a similar period on profile AW1-20030500 which

lies about 100 km to the south.

Also north of Iceland, but in the conjugate location on the Euro-

pean margin, similar decreases in oceanic crustal thickness are ob-

served immediately after continental breakup off the Vøring margin

(Mutter & Zehnder 1988; Mjelde et al. 2005). Nearer to our surveys,

Breivik et al. (2006) report results from a profile across the Møre

continental margin, some 400 km north of the Faroes profile, which

also shows the igneous thickness decreasing by half over the interval

from 52 to 42 Ma, although the reported oceanic crustal thickness is

thinner than for the Vøring and Faroes margins which lie along strike

on either side. We conclude that the decreases in oceanic thickness

seen regionally in the first 10 Myr after continental breakup can be

explained by a regional decrease in mantle temperature.

Away from the continental margin itself, subsidence of the Moray

Firth prior to 49 Ma (Mackay et al. 2005), and of the NW European

and Greenland basins prior to the mid-Eocene (∼45 Ma) (Mackay

2005) also suggests that continental breakup was followed by rapid

subsidence. This is consistent with the reduction of regional dynamic

support that can be explained by a regional decrease in the mantle

temperature.

7.6 Pulsing of the Iceland mantle plume

In addition to the major decrease in mantle temperature recorded by

the oceanic crust following continental breakup, there are superim-

posed fluctuations (Fig. 15), suggestive of the pulses which generate

the V-shaped ridges seen on the Reykjanes Ridge. The Faroes pro-

file younger than 49 Ma exhibits a pulse of increased thickness of

∼5 Myr duration with an amplitude of 2 km (equivalent to an in-

crease in mantle temperature of ∼25 ◦C).

The thickened crust imaged on the Faroes profile using the seismic

data also produces a linear positive anomaly in the gravity field off

the Faroes (Fig. 19). Similar lineations are present within the gravity

signature south of Iceland on both the western and eastern sides of

the North Atlantic in crust older than magnetic chron 18 (some are

marked by arrows on Fig. 19). The gravity lineations on the oldest

oceanic crust south of Iceland are subdued due to the burial of the

oceanic crust beneath thick sediments, but nonetheless are similar

to the more prominent gravity lineations of the V-shaped ridges on

the young crust of the Reykjanes Ridge where sediments are thin

or absent. Seismic data shows that the recent V-shaped ridges on

the Reykjanes Ridge are caused by crustal thickness variations of

∼2 km (Smallwood & White 1998). On the western side of the

basin, off Greenland, it is clear that the gravity lineations (marked

by arrows on Fig. 19) are oblique to the magnetic isochrons (chrons

18 and 21 are shown as thin black lines on Fig. 19), in the same way

as are the recent V-shaped ridges near the present spreading centre.

Weak gravity lineations of the same age occur on the eastern side of

the oceanic basin off Hatton Bank (marked by arrows on Fig. 19),

and there are some indications of concomitant crustal thickness

increases on the Hatton seismic profile at ∼48 Ma (chron 21–22)

and ∼39 Ma (chron 18) (Fig. 15).

This suggests that the pattern of mantle flow and its modulation

by temperature fluctuations in the Iceland mantle plume have been

maintained for the last 50 Ma since mature seafloor spreading com-

menced following continental breakup.

8 C O N C L U S I O N S

From our analysis of the seismic velocities and thicknesses of crust

formed shortly after continental breakup in the North Atlantic we

suggest that the earliest oceanic crust was generated from abnor-

mally hot mantle, with a temperature anomaly of ∼100–150 ◦C

above normal. Both the Faroes and Hatton regions show the oceanic

crustal thickness gradually decreasing over time as the seafloor

spreading continued, which we interpret as caused by a gradual

decrease of ∼75 ◦C in the temperature of the mantle during the

first 10–12 Myr of seafloor spreading. Similar decreases in crustal

thickness, attributable to mantle temperature decreases, are reported

from the oceanic crust formed off the Edoras, Møre and Vøring con-

tinental margins, which lie along the margin to the south and north

of our profiles, and also from the oceanic crust formed adjacent to

the east Greenland continental margin on the other side of the North

Atlantic ocean. The change in morphology of the SDR sequences

near the Faroes inferred as due to a change from subaerial to subma-

rine extrusion is consistent with this decrease in mantle temperature

as the dynamic support from the thermal anomaly in the mantle de-

creased. At all times the inferred mantle thermal anomaly near the

Faroes was ∼30 ◦C higher than that of the Hatton region, consistent

with its location closer to the centre of the Iceland mantle plume.

We see no evidence of either active upwelling or of unusually fertile

mantle during the period 52–40 Ma that we sample with our profiles

since both mechanisms for generating melt would have produced

igneous crust with lower seismic velocities than we observe at the

igneous thicknesses found for our data.

Superimposed on the overall temperature decrease are ther-

mal pulses of ∼25 ◦C which created linear ridges of thickened

oceanic crust similar to those that form the V-shaped ridges of the
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Figure 19. Free-air satellite gravity field (Sandwell & Smith 1997) illuminated from the northwest. Triangle shows location of seismic experiment by Smallwood

& White (1998). Black lines show magnetic isochrons 18 (∼39 Ma) and 21 (∼48 Ma) from Müller et al. (1997). Arrows indicate some of the gravity lineations

in the oldest oceanic crust thought to be generated by crustal thickness variations similar to those that cause the V-shaped ridges on the young oceanic crust at

the present day.

Reykjanes Ridge during the Neogene. Lineations in the gravity

field of the oldest oceanic crust formed south of Iceland suggest

that the temperature of the Iceland mantle plume has been oscillat-

ing with a similar amplitude (∼25 ◦C) and periodicity (3–6 Myr),

since at least 50 Ma. We note that it would be difficult to explain

such frequent, regular and basin-wide fluctuations in crustal thick-

ness that cause the gravity lineations using a model where the en-

hanced melting is caused solely by compositional rather than by

thermal variations in the mantle, as suggested by Foulger (2002) and

Foulger & Anderson (2005). Whether or not the mantle beneath Ice-

land is enriched by remnants of subducted plates, the widespread and

well lineated crustal thickness variations can be readily explained

by small variations in the temperature of the mantle as it flows out-

ward from a central rising region in the vicinity of Iceland. It is

likely that other mantle plumes exhibit similar fluctuating tempera-

tures, although the small temperature variations cannot normally be

detected because, unlike Iceland, the plumes do not directly under-

lie an oceanic spreading centre which provides a sensitive mantle

thermometer where small mantle temperature fluctuations produce

measurable crustal thickness variations.
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