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S U M M A R Y
We present a model of seismogenesis on an extended 3-D fault, subject to the external perturba-
tions of coseismic stress changes due to an earthquake occurring on another fault (the causative
fault). As an application, we consider the spatio-temporal stress redistribution produced on the
Hvalhnúkur fault by the M S 6.6 2000 June 17 mainshock in the South Iceland Seismic Zone
(SISZ). The latter is located nearly 64 km from the causative fault and failed 26 s after the main
shock with an estimated magnitude M w = 5.25 ± 0.25, providing an example of instantaneous
dynamic triggering. The stress perturbations are computed by means of a discrete wavenumber
and reflectivity code. The response of the perturbed fault is then analysed solving the truly
3-D, fully dynamic (or spontaneous) problem accounting for crustal stratification. In a previous
study, the response of the Hvalhnúkur fault was analysed by using a spring–slider fault model
(SS fault model), comparing the estimated perturbed failure time with the observed origin
time. In addition to the perturbed failure time, this model can provide numerical estimates of
many other dynamic features of the triggered event, which can be compared with available
observations—the rupture history of the whole fault plane, its final extent and the seismic mo-
ment of the induced event. We show the key differences existing between a mass–spring model
and this extended fault model; in particular, we show the essential role of the load exerted by
the neighbouring slipping points of the fault. By considering both rate- and state-dependent
laws and non-linear slip-dependent law, we show how the dynamics of the 26 s fault strongly
depend on the assumed constitutive law and initial stress conditions. In the case of rate- and
state-dependent friction laws, assuming an initial effective normal stress distribution that is
suitable for the SISZ and consistent with previously stated conditions of instantaneous dynamic
triggering of the Hvalhnúkur fault, we obtain results in general agreement with observations.

Key words: Earthquake dynamics; Earthquake interaction, forecasting, and prediction; Com-
putational seismology; Wave propagation; Rheology and friction of fault zones.

1 I N T RO D U C T I O N

Earthquake slip results in a stress redistribution with respect to the

initial state of the seismogenic area—a net local shear stress decrease

on the fault surface (stress drop) and a variation of the stress tensor

components in the surrounding medium caused by the propagation

of seismic waves. In particular, stress increase can cause further

earthquakes or aftershocks.

In spite of the logical and apparent simplicity of the above-

mentioned mechanism, fault triggering is not a well-understood

phenomenon. First of all, it has not been observed as widely as

expected (King et al. 1994). Moreover, impeding understanding of

this mechanism, there is a general ignorance about the initial state

of fault(s)—in term of pre-stress, fault surface geometry and seg-

mentation, initial sliding velocity, etc.—and several uncertainties

about the physical processes occurring during faulting or, in other

words, the ignorance about the most proper analytical form of the

governing law describing the processes.

In this paper we will focus on the so-called instantaneous (or

immediate) dynamic triggering, that is, a kind of dynamic triggering

that is realized after the arrival of the seismic waves of the causative

event in the location of the triggered event and within the wave train

duration (e.g. Belardinelli et al. 2003; Ziv 2006). Static triggering

is not suitable to interpret this kind of fault interaction because it

occurs before the static level of stress changes. The triggering effect

considered in this work occurs in a temporal interval of tens of

seconds and in a spatial distance of several tens of kilometres from

the causative event.

Remote triggering is a case of dynamic triggering occurring at

distances larger than the dimension of the causative fault. In these

conditions, the transient stress perturbations are dominant with re-

spect to the static (or permanent) stress changes, leading to static

triggering (see for instance Rybicki et al. 1985; Cotton & Coutant

1997; Gomberg et al. 1997, 1998). Since the M w 7.3 1992 Landers

earthquake, only a few examples of remote triggering of earthquakes

have been observed: M w 5.4 1992 Roermond EQ (Camelbeeck
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et al. 1994), M w 7.1 1999 Hector Mine EQ (Gomberg et al. 2001),

M S 7.6 1988 Gulf of Alaska EQ, M S 7.1 1989 Loma Prieta EQ

(Stark & Davis 1996), M w 7.4 1999 Izmit EQ (Brodsky et al. 2000)

and M w 7.9 2002 Denali EQ (Eberhart-Phillips et al. 2003). The

two early events in Reykjanes Peninsula of the 2000 June 17 seis-

mic sequence in the South Iceland Seismic Zone (SISZ) fall into

this small class of examples.

The 2000 June 17 seismic sequence took place in the SISZ and in

the Reykjanes Peninsula (hereafter RP) starting in June 2000 (see

Fig. 1). It was very well monitored by different local networks: strong

motion network, volumetric strain meter networks, digital seismic

stations and permanent GPS stations (Árnadóttir et al. 2000, 2001,

2004). We recall here only a few features of this sequence, as all the

details are given in a previous paper [Antonioli et al. 2006 (hereafter

AEA06)] and references therein. The sequence started on June 17,

at 15:40:41 UTC (this corrects a misprint in AEA06), with an event

of magnitude M S = 6.6 (Pedersen et al. 2001), with hypocentre

located at the absolute coordinates of (63.973◦N, 20.367◦W, 6.3 km)

(Stefánsson et al. 2003; Árnadóttir et al. 2006). Three early events

occurred along the SISZ and its prolongation along the RP at 8 s

(M L 3.5), 26 s (M L = 5.5) and 30 s (M L = 5.5) after the June 17

main shock, respectively. The 26 and 30 s events are associated to

the arrival of the shear waves of the main shock (Vogfjör 2003).

Conditions to have instantaneous dynamic triggering of these

three events were found by AEA06 using a simple 1-D spring–

slider analogue model (SS analogue model) of perturbed fault and

comparing the modelled failure times with the observed origin

times. Of these three events, the 26 s event is the best constrained

from seismological observations, and therefore in the following of

this study we will focus on this aftershock, which occurred on

the Hvalhnúkur fault (HV in Fig. 1). Its hypocentre is located at

(63.951◦N, 21.689◦W, 8.9 km); latitude and longitude have uncer-

tainties of 0.004◦ and 0.008◦, respectively. The hypocentre depth

uncertainty is 1.3 km, allowing us to consider the possibility of a

focal depth up to 7.6 km (Vogfjör 2003; personal communication

2003). The Hvalhnúkur fault is assumed here as a north–south, ver-

tical, right-lateral fault as, in AEA06 and Árnadóttir et al. (2004).

The main goals of this paper can be summarized as follows.

(i) To study the instantaneous remote triggering of one of the

early events of the 2000 June seismic sequence in SISZ by means of

a realistic 3-D fault model, including heterogeneities in the crustal

profile and in the fault rheology.

(ii) To characterize the initial stress on the fault of the early event

studied here, by comparing the available observations with the 3-

D model estimates of hypocentre location, rupture extension and

seismic moment, as well as the model failure time. In the light of

this fact, we extend the conclusions of AEA06.

(iii) To study the dependence of the response of the triggered

fault on the assumed constitutive relation: rate- and state-dependent

laws and slip-dependent law.

2 T H E N U M E R I C A L A P P ROA C H

2.1 Basic ingredients

First of all, we compute the stress field variations due to the June

17 main shock using the discrete wavenumber and reflectivity code

developed by Cotton and Coutant (1997) and assuming exactly the

same set of parameters and the same ramp source time function

Figure 1. Location of the two main shocks (large stars) of 2000 June 17 (J17) and 2000 June 21 (J21) and aftershocks occurring within five minutes after the

first main shock (small stars) in the South Iceland Seismic Zone (SISZ). The 26 and 30 s events occurred in the Reykjanes Peninsula (RP) on the Hvalhnúkur

fault (HV) and Kleifarvatn fault (K), respectively. The epicentre of the 8 s event is represented by the small black star near the J17 fault. N represents the

hypocentre of the aftershock that occurred near Núpshlı́darháls nearly 5 min after the main shock. Light shaded areas are individual spreading segments with

associated central volcanoes (He is the Hengill Volcano and Sv the geothermal area of Svartsengi). The Western Volcanic Zone (WVZ) and the Eastern Volcanic

Zone (EVZ) are also indicated. After Árnadóttir et al. (2004).
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908 A. Bizzarri and M. E. Belardinelli

Figure 2. (a) Coordinate systems used in this work: OX 1X 2X 3 is the northeast-depth system with respect to which coordinates of the receivers are defined,

whereas Ox1x2x3 is the local system. (b) Three-dimensional view of the local coordinate system—the vertical plane x2 = x f
2 (�) represents the fault, whereas

dashed lines represent the ends of the computational spatial domain �(FD). Considering the spatial distribution of the change of the Coulomb Failure Function

in the RP (see Fig. 3 of AEA06) we have set the origin O of the Ox1x2x3 reference frame to have the epicentre of the 26 s event located at 16.5 km in the strike

direction. TT (n̂) is the total traction acting on �; T(n̂) is its shear component and Σ(n̂) is the normal component.

( f (t) = 1
2
[1 + tanh( t

t0
)]; Bouchon 1981, with t0 = 1.6 s) used

in AEA06. We neglected the stress perturbations due to the 8 s

aftershock owing to the large spatial distance from the 26 s event

(see Fig. 1) and the smaller magnitude with respect to the main

shock. The crustal profile corresponds to the east of Hengill structure

(continuous line in Fig. 2 of AEA06; see also Vogfjör et al. 2002).

The values of the perturbation stress tensor are calculated on the

Hvalhnúkur fault plane up to 2.78 Hz, in a total of 12 × 8 ‘receivers’,
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located in nodes uniformly spaced 1650 m in the strike direction

and at depths of 0, 1650, 3300, 4950, 6550, 8100, 9900 and 11550

m. The coordinates of the receivers are expressed in a Cartesian

coordinate system OX 1X 2X 3, having the origin O on the free surface

at the epicentre of the June 17 main shock (see Fig. 2a). In the local

coordinate system Ox1x2x3, the plane � (Fig. 2b), defined by x2 =
xf

2 = 5 km, represents the 26 s fault and the nominal location of its

hypocentre is (16.5, 5.0, 8.9) km.

The computed values of the stress perturbations are interpolated

in space and also in time to correctly resolve the dynamic processes

occurring on the Hvalhnúkur fault, according to the findings of

Bizzarri & Cocco (2003, 2005) (hereafter BC05). In the following,

we will indicate with �σ 2i(x1,x3,t), or more briefly with �σ 2i (i =
1, 2, 3), the results of this spatio-temporal interpolation, which is

described in Appendix A.

Finally, these interpolated perturbations are included in the equa-

tions of motion representing the fully dynamic, spontaneous (i.e.

without prior imposed rupture velocity) rupture problem, solved

by using the truly 3-D (i.e. not mixed-mode) finite difference code

presented in BC05 (details are summarized in Appendix B).

2.2 The response of the extended fault

In the following of the paper, a fault point is considered to fail if the

modulus of its slip velocity vector, v ≡
√

v2
1 + v2

3 , is greater than

or equal to a threshold value v l, assumed to be equal to 0.1 ms–1,

in agreement with Belardinelli et al. (2003), Rubin and Ampuero

(2005) and AEA06. The instant of time at which this occurs is

denoted by the symbol tp, the perturbed rupture (or failure) time.

The first fault point where the condition v ≥ v l is satisfied [i.e.

where the minimum non-zero value of the array tp(x1,x3) is realized]

defines what we call ‘virtual’ hypocentre (indicated with the symbol

H henceforth); the adjective is motivated by the fact that this point

is obtained as a part of the numerical solution. Accordingly, the

least value of the perturbed failure time represents the estimate of

Table 1. Model discretization and constitutive parameters.

Parameter Value

�(FD) Box that extends up to x1end
= 36.5 km along x1, up to x2end

= 10 km along x2 and up to x3end
= 11.6 km along x3

a

� {x|x2 = x f
2 = 5 km}

�x1 = �x2 = �x3 ≡ �x 100 mb

Number of nodes in �(FD) 4289571

�t 1.27 × 10−3 sb

Number of time levels 33650

v l 0.1 ms–1

ϕ(x1, x3, 0) ϕ0 = 180◦
v(x1,x3,0) v init = 6.34 × 10−10 ms–1 (=20 mmyr–1)

�(x1,x3,0) �ss (v init) = 1.577 × 106 s (∼=18.25 d)

σ eff∗
n 2.5 MPa

a 0.003c

b 0.010

L 1 × 10−3 m

μ∗ 0.7

v∗ v init

αLD 0d

aThe boundaries of �(FD) are chosen such that radiation reflected by, or interacting with, the domain boundaries largely does not affect our results in

the time window here considered.
bSee Appendix A for details about the spatio–temporal discretization.
cIn numerical experiments with heterogeneous rheology (see Section 3.3) this is the value in the region 9700 m ≤ x1 ≤ 16500 m.
dWe set αLD = 0 because including the dependence on effective normal stress in the evolution equation for the state variable has a negligible effect in

cases of instantaneous triggering, unlike cases of delayed triggering (see AEA06 for a discussion). In this way, the temporal variations of the effective

normal stress influence the fault traction only through the explicit dependence of τ on σ eff
n .

the origin time of the triggered event provided by this model of an

extended fault.

We would emphasize that this model of an extended fault provides

several additional details of the triggered event with respect to a SS

analogue model of fault. In AEA06, due to the point-like approx-

imation in the modelling of triggering, only the perturbed failure

time in the observed hypocentre was given. Here we can estimate

the rupture history and the slip distribution on the whole fault of

the triggered event. On the other hand, this model requires a more

complex parametrization of the fault surface state than SS model.

The former is built upon a physical model of pore fluid pressure

suitable for the SISZ and upon the comparison of synthetic solu-

tions and other observational constraints on the extended rupture of

the triggered event, reported in Appendix C.

3 R E S U LT S W I T H T H E

D I E T E R I C H – RU I N A L AW

Among the different possibilities proposed in tribology (see for in-

stance Ohnaka 2003; Bizzarri & Cocco 2005, 2006c), we assume for

now that the Hvalhnúkur fault is governed by the Dieterich–Ruina

(hereafter DR) rate- and state-dependent law (Linker & Dieterich

1992; AEA06; Bizzarri & Cocco 2006a, b), which expresses the

frictional resistance τ as a function of the slip velocity v and the

state variable � (accounting for previous slip episodes) according

to the following set of equations

τ = μ(v, �)σ eff
n =

[
μ∗ + a ln

(
v

v∗

)
+ b ln

(
�v∗

L

)]
σ eff

n ,

d

dt
� = 1 − �v

L
−

(
αL D�

bσ eff
n

)
d

dt
σ eff

n . (1)

In eq. (1), μ is the friction coefficient, μ∗ and v∗ are reference

parameters; a, b and αLD are the constitutive parameters, L is a scale

length and σ eff
n is the effective normal stress expressed by (B.3).
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910 A. Bizzarri and M. E. Belardinelli

Table 2. Synoptic list of the selected ensemble of numerical models discussed in this paper. DR stands for Dieterich–Ruina governing law (eq. 1), RD

for Ruina–Dieterich (eq. 2) and OY for Ohnaka-Yamashita slip-weakening (eq. 3). The initial effective normal stress is assumed to vary with depth as

for profile number 3 in Fig. 4(b), unless otherwise specified.

Case Constitutive law Heterogeneous rheology Hypocentre locationa (km) Origin timea (s) Total seismic moment M 0 (Nm) Figures

Ab DR No (16.5,2.9) 23.47 2.23 × 1019 3

B DR No (13.2,7.5) 24.94 6.43 × 1016 5, 7

C DR Yes (13.2,7.5) 24.94 2.27 × 1016 6

D RD Yes (15.7,7.9) 23.44 2.02 × 1016 8

E OY No (22.5,7.7) 23.70 2.49 × 1019 9

Fc DR No (13.2,7.5) 26.42 5.25 × 1016 10

Observational constraints (16.5 ± 0.45, 8.9 ± 1.3) 25.9 ± 0.1 [3.2 × 1016, 1.8 × 1017] N/A

aIn case of model results, we indicate as hypocentre the ‘virtual’ hypocentre H and as origin time the least perturbed failure time (see Section 2.2). All

times are referred to the 2000 June 17 mainshock origin time.
bIn this case: σ eff

n0
= σ eff∗

n .
cThe source time function is a translated form of the original ramp function (see Section 7 for details), having the same characteristic time.

The values of the constitutive parameters used in this paper, if not

otherwise mentioned, are listed in Table 1. In all cases presented in

Sections 3–5 we assume, as in AEA06, that at t = 0 the fault is in

steady state conditions, that is, (d/dt)� = 0 in eq. (1).

3.1 A simple test case

To explain remote instantaneous triggering on the Hvalhnúkur fault

with the DR law, one of the conclusions of AEA06 was that the

parameter A = aσ eff
n , characterizing the direct effect on friction, has

to be small enough. Consequently, due to the possible values of a,

a very small value of the effective normal stress (or equivalently a

near-lithostatic pore fluid pressure) at the hypocentral depth of the

triggered event is required.

We first verified that if pore fluid pressure is hydrostatic at ev-

ery depth, no triggering occurs in this extended fault model. In a

subsequent test case (case A in Table 2), we chose the most simple

configuration (even if physically unrealistic), in which the initial

effective normal stress is everywhere equal to σ eff∗
n = 2.5 MPa, as

estimated by AEA06 in the hypocentre of the studied event. The

resulting rupture times are reported in Fig. 3 from which we can see

that the model rupture reaches the surface in contradiction of the

Figure 3. Distribution of the perturbed rupture times obtained for the test

case A in Table 2. All model parameters are listed in Table 1, the initial

effective normal stress is homogeneous on the whole fault plane and equal

to 2.5 MPa and the Dieterich–Ruina governing law [eq. (1)] is assumed. The

black regions indicate where v < v l . The two dashed grey lines identify the

area I that is expected to behave seismically (see Appendix Section C.1).

observational constraints (Appendix C.1). In fact, the magnitude of

the event, the depth of the hypocentre, the absence of geodetic co-

seismic signals and surface effects (Clifton et al. 2003; Árnadóttir

et al. 2004) and the aftershock distribution (Hjaltadottir & Vogfjör

2005) suggest that the seismic rupture of the induced event is con-

fined below several kilometre depth. From Table 2 we can see that

in case A, the vertical extent of the rupture area is overestimated

as well as the seismic moment, which is calculated as explained

in Appendix C.1. In the following of the paper, we will therefore

illustrate other test cases performed to find whether it is possible to

better reproduce observations by assuming a more realistic initial

effective normal stress profile.

3.2 Experiments with spatially variable initial

normal stress

We introduce an initial effective normal stress (σ eff
n ) that varies with

depth, as physically reasonable for the seismogenic region consid-

ered here (Zencher et al. 2006). The pore fluid pressure is assumed

to be hydrostatic below the depth x∗
3 = 5800 m, and near-lithostatic

for x3 ≥ x∗
3 + D∗ = 8800 m (Fig. 4a). The choice of these depth

values delimiting the so-called transition region is discussed and

justified in Appendix Section C.2.

A first attempt to model σ eff
n0

is profile number 1 (dashed grey line

in Fig. 4b), where we assume a near-lithostatic pore pressure for

x3 > x∗
3 (dashed grey line in Fig. 4a). With this profile, we inhibit the

rupture propagation at shallow depth (x3 < x∗
3). This is a consequence

of the increase of σ eff
n with decreasing depth, which in turn causes

the parameter A to increase. However, with profile number 1, we

overestimate the total seismic moment (M 0 = 1.94 × 1017 N m). A

second attempt is represented by profile number 2 (dotted grey line

in Fig. 4b) where the increase from hydrostatic to near-lithostatic

pore pressure values is linear within the transition region (dotted

grey line in Fig. 4a), as corroborated by the model of Zencher et
al. (2006). In this case, we cannot obtain nucleation at all, since the

threshold value v l is never attained on the fault.

Finally we consider profile number 3 (continuous grey line in

Fig. 4b), in which the effective normal stress is intermediate between

profile number 1 and 2 near the top of the transition region, within

a depth range of a limited extension h∗ (h∗ < D∗), below which

it is closer to profile number 2. Profile number 3 is expressed by

eq. (C.2) in Appendix C. The pore pressure generating profile num-

ber 3 tends more rapidly than profile number 2 to near-lithostatic

values with increasing depth in the transition region (continuous

grey line in Fig. 4a). The results obtained with this profile for

h∗ = 360 m are reported in Fig. 5 (case B in Table 2). The least
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Figure 4. (a) Initial pore fluid pressure profiles considered in this study. (b)

Initial effective normal stress profiles corresponding to the three profiles of

pfluid displayed in panel (a). The solid grey line corresponds to eq. (C.2), with

x∗
3 = 5800 m, D∗ = 3000 m and h∗ = 360 m. The reference initial effective

normal stress σ eff∗
n (vertical thin grey line) is superimposed for comparison

(in case A, we assume σ eff
n = σ eff∗

n as a constant with depth).

value of the perturbed failure time is slightly lower than the observed

origin time; however, as a consequence of the hydrostatic pore fluid

pressure values at shallow depth, the vertical rupture extension now

agrees with observations—it does not propagate above a depth of

6400 m, which is one kilometre below the limit inferred from af-

tershocks distributions (see Appendix Section C.1). By comparison

with case A, in case B we may observe that the increase of the fric-

tional resistance for decreasing depths is able to limit the rupture

in the strike direction too. For this synthetic event, the total seismic

moment estimate is M 0 = 6.43 × 1016 Nm, which corresponds to

a moment magnitude M w = 5.21, in the range of observations. The

underestimates of the observed origin time obtained here can be re-

lated to the source time function used in AEA06, as we will discuss

in detail in Section 7.

Looking at the time snapshots of the slip velocity on the fault

plane (Figs 5b–d), we can see a pulse propagating towards the free

surface and expanding in the strike direction. Below the depth of

7500 m, the fault-slip velocity remains well below v l.

3.3 Heterogeneous rheology

To reproduce the confinement of the triggered rupture along the

strike direction that can be roughly envisaged by the aftershock

distribution (region A defined in Appendix Section C.1), we have

assumed a velocity strengthening rheology (i.e. a > b; a = 0.012)

for x1 < 9700 m and x1 > 16500 m. These regions are associated

with aseismic behaviour and they act like barriers (see Bizzarri

et al. 2001).

The resulting rupture times of this case C are shown in Fig. 6

(see also Table 2). The coordinates of H, its failure time and the

extension along the dip of the rupture are identical to those obtained

in the previous, fully homogeneous case B, that is, the fault evolution

in H is practically unaffected by the presence of the lateral velocity

strengthening areas. However, now the seismic rupture is confined in

the velocity weakening region 9700 m ≤ x1 ≤ 16500 m, as expected

by the imposition of artificial barriers. Consequently, the seismic

moment is now M 0 =2.27×1016 N m (M w =4.90), which is smaller

than the lower bound of the acceptable range (see Appendix Section

C.1). All this information tends to suggest that the ad hoc-imposed

lateral rheological heterogeneities do not significantly improve the

results of numerical model.

4 C O M PA R I S O N W I T H

S P R I N G – S L I D E R R E S U LT S

In this section, we focus our attention on the temporal evolution of

dynamic variables in the location of H for the previously discussed

case B. In Fig. 7, results of this extended fault (3-D model; black

solid squares) are compared with those obtained with a SS analogue

model (grey open circles). In the SS numerical experiment, we in-

troduce the same stress perturbations acting in the target point of

the 3-D simulation. The comparison is made assuming the same

constitutive parameters and governing law.

Looking at Fig. 7(a), we can see that the solutions of the 3-D

and SS fault models agree in the first part of the simulation, for

very low values of slip velocity. This confirms that the quasi-static

approximation used in the SS simulation is adequate for low val-

ues of slip velocity. We emphasize again that in all 3-D numerical

experiments presented in this paper, the system is fully dynamic

in the whole range of variability of fault-slip velocity. The agree-

ment between the two solutions is good until the time tA = 24.10

s (light grey dashed line in Figs 7a, b and d), corresponding to the

largest peak of the shear stress perturbation (−�σ 21 in this nota-

tion) and to the beginning of the acceleration phase in the 3-D model

(Fig. 7b). For t > tA, the two solutions become different—the 3-D

system accelerates up to final instability (tp = 24.94 s, full vertical

line in Figs 7a, b and d) whereas in the SS model, the slip velocity

remains smaller than v l and, after a deceleration phase (ending in

the point B in Fig. 7a), it slowly increases again with time to provide

a delayed failure of the system at t = 3.36 d (not shown in Fig. 7).

This different behaviour of the two models can be explained con-

sidering the different elastic loads exerted on the two systems. Unlike

the SS, the 3-D model in H is also affected by the load fr exerted

by the neighbouring points that, even moving with v < v l, produce

shear and normal loads that at each time level are superimposed on

the stress perturbations due to June 17 main shock (see Appendix B).

This contribution in the strike component of total shear load is clearly

visible in Fig. 7(d), where we can see that for t < tA, the shear loads

are indistinguishable in the two models; but just before the peak of

the shear stress perturbation, the load fr begin to become significant,

increasing the peak of the total shear load in the 3-D model (reached

at t = 24.30 s > tA). This peak is high enough to enhance seismic

slipping in the 3-D model, unlike the SS model.

From the slip-weakening curve (Fig. 7c), we can see that the

maximum value of traction (τ eq
u ) is the same in both models, as well
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912 A. Bizzarri and M. E. Belardinelli

Figure 5. (a) The same as in Fig. 3, but now (case B in Table 2) the initial effective normal stress is variable along the depth as in profile number 3 shown in

Fig. 4(b) (solid grey line). Snapshots of the fault-slip velocity just before the triggered instability (t = 24.76 s; panel b) and after tp, at t = 25.08 s (panel c) and

at t = 25.40 s (panel d). In all panels the dashed grey lines identify the area I that is expected to behave seismically (see Appendix Section C.1).

as the final or level of traction (τ
eq
f ), that is, the kinetic frictional

resistance and the equivalent slip-weakening distance (deq
0 ). The

latter represents the amount of fault-slip over which the traction

decreases from its maximum value down to the residual kinetic

level (Cocco & Bizzarri 2002; Bizzarri & Cocco 2003). The two

curves differ for slip values smaller than the value reached at point

C in Fig. 7(c). Actually, in the SS case there is an early partial stress

release (first weakening episode) that occurs at t ∼= tA when the first

peak of slip velocity is realized (Fig. 7a).

In this study, as in the 2-D study made by Bizzarri & Cocco

(2003), we can note that the failing point accelerates and exceeds

the threshold velocity v l = 0.1 m s–1 (i.e. it behaves seismically—

grey star in Fig. 7d) before the traction reaches its kinetic level,

unlike what was stated by Voisin et al. (2004). This is even more

evident if we decrease the threshold value of sliding velocity—with

v l = 0.05 m s–1 the failure point fails in the middle of weakening

process and with v l = 0.01 m s–1 it is just at the beginning of the

breakdown phase (open black stars in Fig. 7c).

5 I M P O RTA N C E O F T H E G OV E R N I N G

L AW: T H E RU I N A – D I E T E R I C H M O D E L

In this section we assume a different evolution equation for the state

variable, the so-called slip law (Ruina 1983) to quantify how re-

sults are affected by this different governing law. In this constitutive

model—referred as RD thereinafter—the frictional traction can be

written as (Beeler et al. 1994; Bizzarri & Cocco 2006a, b):

τ =
[
μ∗ + a ln

(
v

v∗

)
+ b ln

(
�v∗

L

)]
σ eff

n ,

d

dt
� = −�v

L
ln

(
�v

L

)
−

(
αL D�

bσ
e f f
n

)
d

dt
σ eff

n .

(2)

We adopt the same governing parameters used in simulations

presented in Sections 3.2 and 3.3 (cases B and C) and therefore the

initial conditions are also the same. However, due to the different

evolution of �, for t > 0 the values of the frictional traction τ are

different.

Results for this configuration (case D) are shown in Fig. 8. The

rupture has nearly the same extension along strike as in case C,

because it has been obtained using the same velocity strengthening

regions as rheological barriers. In spite of this, compared to case

C, the vertical extension of the rupture is larger and the seismic

moment M 0 = 2.02 × 1016 Nm (M w = 4.87) is smaller, suggesting

that the RD law predicts a slightly smaller average fault slip than

the DR law.

In this case we obtain the smallest perturbed failure time, tp =
23.44 s (black continuous lines in Figs 8b and c). Perturbed failure

occurs before the time of the peak of the along strike component of

the stress perturbation (now tA = 24.03 s; light grey dashed lines

in Figs 8b and c). Accordingly, the time delay td =
df

tp − tA is neg-

ative, td = −0.59 s (Fig. 8c). These differences can be explained

recalling that the RD law is more unstable than the DR law for the

same initial conditions and constitutive parameters (e.g. Belardinelli
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Figure 6. Perturbed failure times for the case C in Table 2—parameters are

the same as for Fig. 5, but now the parameter a is equal to 0.012 for x1 <

9700 m and x1 > 16500 m. Note that to emphasize the cracked area we

report only a portion of the whole fault plane.

et al. 2003; Bizzarri & Cocco 2003). The traction versus slip curve

(Fig. 8d) shows an equivalent slip-weakening distance nearly 5 mm

long: it is therefore smaller than that arising from the DR law, in

agreement with Bizzarri & Cocco (2003). Finally, we remark that in

the case of RD law also, H accelerates to instability before reaching

the final kinetic frictional level (grey star in Fig. 8d).

With the RD law we perform the same comparison between the

3-D model and the SS model made in the previous section. Unlike

the previous results, using the RD law, the SS model also shows

instantaneous dynamic triggering. Both the SS and the 3-D models

are characterized by negative time delays (see Fig. 8c), but the per-

turbed failure time in the SS model is tp = 23.93 s, larger than in the

3-D model. We can therefore exclude the possibility of estimating

a larger value of origin time of the triggered event by using a more

complex and realistic model of fault, such as the 3-D model, in place

of a SS model, for the same governing law, constitutive parameters,

initial conditions and perturbing stress. Moreover, it is confirmed

that the 3-D model is more unstable than the SS model, due to the

different elastic loads, as discussed in the previous section.

6 T H E N O N - L I N E A R

S L I P - W E A K E N I N G F R I C T I O N L AW

One alternative to the class of rate- and state-dependent governing

equations is represented by the slip-dependent laws; here we have

considered the following non-linear form of the slip-weakening (see

for instance, Ohnaka & Yamashita 1989):

τ =
{[(

τ0

σ eff
n

− μ f

)(
1 + αOY ln

(
1 + u

βOY

))]
e
− u

d0 + μ f

}
σ eff

n ,

(3)

where αOY and βOY are constitutive parameters that control the

slip-hardening phase, μf is the dynamic (or kinetic) value of the

friction coefficient and u is the fault slip. The coupling of fault

strength with stress perturbations is again expressed by eqs (B.1) and

(B.2).

As explained in Appendix D, the governing parameters in

eq. (3) are chosen to reproduce the slip-weakening curve previ-

ously obtained with DR law (Fig. 7c). In this configuration (case E),

H is located at (22500, 7700) m (see Fig. 9a), far from the strike

location of the observed hypocentre, and the estimate of the seismic

moment is M 0 = 2.49 × 1019 N m, much larger than the maxi-

mum value suggested by observations. In this case, unlike case B,

the initial effective normal stress is actually unable to confine the

rupture within the depth interval I suggested by observations (see

Appendix C.1), and a slip velocity of several metres per second is

attained, even at the free surface (see Fig. 9b). On the other hand,

imposing a confinement of the rupture by introducing frictional het-

erogeneities (formally we set a sufficiently high fault strength for

x1 < 9700 m and x1 > 16 500 m and for x3 > x∗
3 +D∗), the threshold

value v l is never attained on the fault.

In principle, we can not exclude that for a specific set of consti-

tutive parameters appearing in eq. (3), the fault strength is such that

nucleation will be confined at depth in agreement with the obser-

vations, but such a systematic exploration of the parameter domain

is certainly beyond the objectives of this work. We only note that,

unlike the rate- and state-dependent laws, for a set of constitutive

parameters giving the same frictional resistance, the non-linear slip-

weakening law (even with its initial slip-hardening phase mimicking

the direct effect of rate- and state-dependent laws) is not able to re-

produce the main physical features of the aftershock considered in

this paper.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we present results of numerical experiments of a truly
3-D fault model where the external perturbations of fault traction

due to a remote earthquake are taken into account, and both com-

ponents of fault-slip and slip velocity (and then rake rotation) are

found from one vectorial constitutive relationship, unlike mixed-

mode fault models. Moreover, different constitutive laws are con-

sidered here for the fault rheology. We focus our attention on the

‘instantaneous’ dynamic triggering phenomenon (triggering real-

ized after the arrival of the seismic waves propagating from the

causative event with a delay smaller than the wave train duration).

This effect, also called ‘immediate’ or ‘with no delay’, can explain

early events occurring after a main shock (at times, of the order of

the traveltime of the seismic wave generated by the main shock).

Transient stress perturbations, such as seismic waves at remote dis-

tance, can induce mainly this kind of short-term triggering effects

according to several models where failure is assumed to be pre-

ceded by an accelerating phase (e.g. Gomberg 2001; Belardinelli

et al. 2003). The observational evidence of early events is scarce

compared with delayed aftershocks that are, instead, widely ob-

served during a seismic sequence (e.g. Ziv 2006). This can be due

to the intrinsic difficulty to detect a seismic event occurring within

the wave train packet generated by a previous event and the pecu-

liarity of regions where these effects were observed and interpreted,

mainly volcanic or geothermal provinces.

Using the rate- and state-dependent laws and a SS model of fault,

instantaneous dynamic triggering can be reproduced provided that

the perturbed fault is in critical conditions (e.g. Belardinelli et al.
2003), that is, assuming fine tuned values of the model parameters.

One of the main motivations of this paper is to see if it is possible
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Figure 7. Comparison of the solutions in H from the 3-D fault model corresponding to Fig. 5 (black solid squares; 3-D) and a spring–slider model (grey

open circles; SS). (a) Fault-slip velocity-time history. (b) Particular of the fault-slip velocity time history in a shorter time window. (c) Slip-weakening curve;

the grey star denotes the state of the system when v = 0.1 m s–1 (at t = tp) whereas the two black open stars denote the points at which v is 0.01 and

0.05 m s–1. In the two slip-weakening curves, points with the same value of slip do not correspond to the same value of time. (d) Total loads (namely

−L(3−D)
1 = − fr1 + τ0 − �σ21 and L(SS) = τ0 − �σ21; fr1 is the strike component of the dynamic load, see Appendix B for details). If we subtract fr1 from

L(3−D)
1 , we obtain the thin grey line, coincident with L(SS), as expected. In panels (a), (b) and (d) vertical light grey dashed lines indicate the time of the peak

in −�σ 21(t = tA = 24.10 s) whereas vertical full lines denote the perturbed failure time for the 3-D model (tp = 24.94 s). The time interval between vertical

full lines and vertical light grey dashed line is the time delay td . The black dashed line in panel (d) indicates the peak of − L(3−D)
1 (t = 24.30 s).

to reproduce this kind of triggering effects with an extended fault

model and adopting different governing laws on the fault.

As an application of the model, we consider the fault interaction

occurred between the 2000 June 17 mainshock in the SISZ and

the early event that occurred after 26 s on the Hvalhnúkur fault,

which is located at a remote distance from the main shock (about 64

km). From a seismological point of view, this event is constrained

the best among the three early aftershocks observed within 30 s

after the 2000 June 17 main shock. Moreover, for this event the

interactions with previous seismic events other than the main shock

can be reasonably excluded. We aim to remark that our model can

be applied to other cases of instantaneous triggering even if, as in

all computational experiments, the value of the parameters of the

model have to be tuned according to the specific event we want to

reproduce, assuming that enough observational knowledge of the

event is available.

The fundamental elasto-dynamic equation accounting for the

stress perturbations due to the main shock is solved without any

approximations in the whole range of fault-slip velocity by using

the finite difference code presented in BC05. Both shear and normal

components of the stress perturbation tensor are accounted for (in

agreement with the Coulomb failure criterion, largely used in fault

interaction studies), as well as the heterogeneous properties of the

elastic medium surrounding the 26 s fault. The stress perturbations

are calculated by using the discrete wavenumber and reflectivity

method on the whole Hvalhnúkur fault plane.

The three early aftershocks observed in the SISZ were analysed

in a previous paper (AEA06) where the conditions to reproduce

the origin time of all of them were already stated by means of a

spring–slider (SS) model. The results presented here are new with

respect to that paper, as well as previously published studies of

instantaneous dynamic triggering that used a 2-D fault model (Voisin

et al. 2000) to describe the fault response. In fact, only by adopting

a 3-D fault model it is possible to obtain, as a part of the solution,

several additional and important details of the simulated triggered

event, such as the rupture history on the whole fault surface and

the seismic moment. These numerical estimates are compared with

available observations.

Our 3-D modelling of the Hvalhnúkur fault inevitably requires

a more detailed parametrization than previous modelling since the

state of the fault should be specified in each point of its surface. In

general, we assume the same homogeneous conditions as in AEA06,

except for the initial effective normal stress σ eff
n0

for which we as-

sume a depth dependence in agreement with an independent phys-

ical model proposed for the SISZ (Zencher et al. 2006) and with

the value estimated by AEA06 at hypocentral depth. In the Zencher

et al. (2006) model, an increase from hydrostatic to near-lithostatic

pore fluid pressure, within the so-called transition zone, is realized
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Figure 8. (a) The same as in Fig. 6(a), but in the case of Ruina–Dieterich model (eq. (2); case D in Table 2). (b) Fault-slip velocity time history in H. (c) Detail

of the fault-slip velocity-time history in a shorter time window. (d) Slip-weakening curve. Black solid squares refer to the 3-D model, while grey open circles

to the spring–slider model. In panels (b) and (c) vertical light grey dashed lines indicate the time of the peak of −�σ 21 (t = tA = 24.03 s) whereas vertical

full lines denote the perturbed failure times (t(3−D)
p = 23.44 s and t(SS)

p = 23.93 s). The grey star in panel (d) denotes the point in the slip-weakening curve

corresponding to the perturbed failure time.

Figure 9. (a) The same as in Fig. 5(a), but assuming the non-linear slip-weakening constitutive model (eq. 3; case E in Table 2). To help the comparison, we

plot rupture times up to the maximum value of Figs 5(a) and 6. (b) Time snapshot of the fault-slip velocity at t = 27 s.

at seismogenic depth (see Fig. 4). In the case of the early aftershock

examined here, this choice was shown to be efficient in explain-

ing the limited vertical extent of the triggered rupture suggested by

several lines of evidence, avoiding the ad hoc introduction of other

kinds of barriers.

One important result of this paper is that we can reproduce dy-

namic triggering effects (i.e. the induced failure) with a model of an

extended fault, regardless the constitutive law. This is not a trivial

result, considering the findings of Belardinelli et al. (2003) who thor-

oughly described the extreme difficulty to model dynamic triggering

with the rate- and state-dependent laws. Moreover, for the 26 s early

event in the SISZ, we show here that with rate- and state-dependent

laws and profile number 3 of Fig. 4, we can obtain estimates of

the perturbed failure time, vertical extension of the fault rupture,

hypocentre location and the seismic moment in general agreement

with the available observational constraints (cases B to D).

The comparison between the two formulations of the rate- and

state-dependent laws (cases C and D) confirms previous results (e.g.

Belardinelli et al. 2003) showing that the RD law (cases D; Fig. 8)

is more unstable than the DR law (case C; Fig. 6). In particular, the

RD law is shown to provide the smallest perturbed failure time.

We have also compared the time evolution of solutions in the

‘virtual’ hypocentre obtained with a SS model and the present

3-D one. These two fault models are intrinsically different, but both
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Figure 10. The same as in Fig. 5(a), but assuming a translated form of the

Bouchon ramp source time function (case F in Table 2).

with the DR law (case B) and with the RD law (case D), we have

observed an excellent agreement during the slow nucleation phase

(when the fault-slip velocity is of the order of the initial one). Dur-

ing the subsequent acceleration phase, unlike the SS model, each

point of the 3-D model is affected not only by the external stress

perturbations due to the causative event but also by the load exerted

by the neighbouring points that are already slipping. This implies

that the estimate of the origin time of the triggered event provided

by the 3-D model is systematically smaller than that given by the

SS model.

Our results clearly show that the least value of the perturbed

failure time on the Hvalhnúkur fault slightly underestimates the ob-

served origin time of the 26 s event. An analogous underestimate

was previously obtained with a SS model. This discrepancy could

be attributed to problems in the estimate of the perturbing stress, re-

lated to (i ) the assumed crustal profile and (ii ) the assumed source

time function. We analyse this second possibility by recomputing

the stress perturbations induced by the June 17 main shock with a

translated and more causal form of the Bouchon source time func-

tion [ f (t) = 1
2
[1 + tanh( t−t0

t0
)]; Cotton & Campillo 1994, again

with t0 = 1.6 s]. Applying these stress perturbations to a 3-D fault

parametrized as in case B, we obtain almost the same spatial feature

of the rupture (compare Figs 5a and 10), but a larger estimate of the

least perturbed failure time (tp = 26.42 s; case F in Table 2), which

is closer to the observations.

We have also considered (case E in Table 2) a non-linear slip-

dependent friction law with an initial hardening stage, as analytically

postulated by Ida (1972; his fig. 1). This formulation can be regarded

as an alternative to the rate- and state-laws and overcomes the non-

physicality of other expressions of the slip-weakening law (Andrews

1976; Voisin 2002; Voisin et al. 2004) that predict that a fault point is

completely locked before traction reaches the maximum yield stress.

Nevertheless, by assuming governing parameters giving the same

frictional resistance of the DR case, it is not possible to reproduce

the 26 s aftershock rupture. In particular, the effective normal stress

is not sufficient to arrest the crack propagation along depth, unlike

the case of rate- and state-dependent laws.

To summarize, the study of the response of an extended 3-D fault

to external stress perturbations performed here provides further sup-

port to a possible mechanism for the instantaneous dynamic trigger-

ing observed in the year 2000 in the SISZ. Our results suggest that

the triggered rupture might be confined within the transition zone

from near-lithostatic (at depth) to hydrostatic pore fluid pressure

values, located just above the brittle–ductile transition depth.
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A P P E N D I X A : I N T E R P O L AT I O N O F

T H E S T R E S S P E RT U R B AT I O N

To have a sufficient spatio-temporal resolution for the fully dynamic

code, we develop an algorithm that employs a C2 cubic spline, often

used in seismological applications (e.g. Ripperger & Mai 2004) to

interpolate the values of the stress perturbation generated by the

June 17 main shock. Quantities �σ 2i(x1,x3,t) (i = 1, 2, 3) in Section

2.1 are the results of such an interpolation described below. The C2

cubic spline is a smooth and one of the most heavily used fourth-

order piecewise polynomial functions, that in general are given by

(in the univariate case):

p(x) =
k∑

r=1

crs
(x − ξs)r−1

(r − 1)!
, for ξs ≤ x < ξs+1, (A.1)

where k is the order (degree k − 1) of their polynomial pieces, ξ ∈ Rn

represents the breakpoint sequence and the {crs} is the k × (n − 1)

matrix of their local polynomial coefficients. The breakpoints of the

spline are the abscissas, while endpoint conditions are automatically

determined by the program. These conditions correspond to the ‘not-

a-knot’ condition (see de Boor 1978), which requires that the third

derivative of the spline be continuous at the second and next-to-last

breakpoint.

Technically, our algorithm proceeds as follows:

1. The original grid of receivers is settled, defining all discrete

receivers coordinates on the fault (xold
1l

, xold
3m

), for l = 1, . . . lend;

m = 1, . . . , mend. In our specific case: lend = 12 and mend = 8.

2. The values of stress perturbations at constant depth (i.e. at con-

stant xold
3 = xold

3m
coordinate) are interpolated in the new grid points

xnew
1i

giving vectors �σ new
2 j

(xnew
1i

, xold
3m

, told), i = 1, . . . , iend, j =
1, 2, 3.

3. Values of stress perturbations at constant xold
1 = xold

1l
coor-

dinate are interpolated in the new grid points xnew
3k

, giving vectors

�σ new
2 j

(xold
1l

, xnew
3k

, told), k = 1, . . . , kend, j = 1, 2, 3.

4. Values of �σ new
2 j

(xold
1l

, xnew
3k

, told) determined at point 3

are interpolated in each new point xnew
1i

, giving new vectors

�σ̃ int(3)

2 j
(xnew

1i
, xnew

3k
, told), i = 1, . . . , iend, k = 1, . . . , kend, j =

1, 2, 3.

5. Values of �σ new
2 j

(xnew
1l

, xold
3m

, told) determined at point 2

are interpolated in each new point xnew
3k

, giving new vectors

�σ̃ int(1)

2 j
(xnew

1i
, xnew

3k
, told), i = 1, . . . , iend, k = 1, . . . , kend, j =

1, 2, 3.

6. The values of the stress perturbations in the new points

(xnew
1i

, xnew
3k

) and at each time told are simply obtained as the

arithmetic average of �σ̃ int(1)

2 j and �σ̃ int(3)

2 j : �σ2 j = 1
2
(�σ̃ int(1)

2 j +
�σ̃ int(3)

2 j ), j = 1, 2, 3.

7. Points 2 to 6 are iterated for each time levels told.

Finally, we have to interpolate in time the spatially interpolated

value of the stress perturbations, obtained as described above. Also

for the temporal interpolation, we use a C2 cubic spline to obtain

the desired temporal discretization �t = 1.27 × 10−3 s. This spatio-

temporal discretization satisfies the convergence and stability condi-

tions discussed in BC05. Considering the adopted crustal profile, the

eq. (A.4) of BC05 gives 173 m = √
3�x > vPmax�t = 8.6 m. From

eq. (A.5) of BC05, we get that the critical spatial and temporal sam-

pling are �t∗ = vSmin
ρmin L

4ωCFLmax [(b−a)σ eff
n ]max

∼= vSmin
ρmin L

4ωCFLmax (b−a)σ eff
n (x1,x∗

3 ,0)
=

27.6 × 10−3 s and �x∗ = v2
Smin

ρmin L

4ω2
C F Lmax

[(b−a) σ eff
n ]max

= 1035 m, respec-

tively (in the latter equation ωCFL is the Courant–Friedrichs–Lewy

ratio, which is ωCFL =
df

vS�t/�x . In our case, ωCFLmax = 0.04826).

Therefore, both the continuum approximation conditions in (A.6)

of BC05 are comfortably satisfied. The discretization used here

gives solutions without numerical oscillation due to spatial grid

dispersion up to a critical frequency f (s)
acc = 3.02 Hz, comparable

to the maximum frequency at which stress tensor perturbations are

calculated (2.78 Hz). Computational efficiency of the numerical

code for the solution of the spontaneous problem does not require

an (auto) adaptive method for numerical integration and therefore

the temporal discretization can be kept constant over the whole

simulation.

In Fig. A1, we plot two time snapshots of the distribution on the

Hvalhnúkur fault of the along-strike component of the shear stress

perturbation before (panels on the left-hand side) and after (panels

on the right-hand side) the spatio-temporal interpolation previously

described. In Fig. A2, we compare in the 26 s hypocentre (black stars

in Fig. A1), the time histories of the perturbations. In Fig. A2(a), we

plot the strike component of the shear traction perturbation and in

Fig. A2(b), the normal component. We emphasize that the (original)

stress values in the black curves of Fig. A2 have been calculated by

using the discrete wavenumber and reflectivity code, but these val-

ues have not been included in the array of the 96 receivers used for

the interpolation. This was to maximize the differences between the

original and the new (interpolated) values (red curves in Fig. A2) to

test the reliability of the proposed interpolation algorithm. Looking

at Figs A1 and A2, we can conclude that all the main features of

the stress perturbation field are preserved after the spatio-temporal

interpolation, and also the local values in the time series are main-

tained. A small difference appears in the normal component, but it

does not affect the results presented and discussed in this paper.

A P P E N D I X B : S O L U T I O N T O T H E

P RO B L E M O F T H E I N D U C E D

E X T E N D E D RU P T U R E

In this paper, times are referred to the 2000 June 17 main shock

origin time. At time t, in each node of the x2 = x f
2 fault plane (�),

we compute the total loads:

Li = fri + T0i + �σ2i (i = 1 and 3). (B.1)

In (B.1), T0i are the components of the initial shear traction (de-

scribed below) and fri are the components of the load fr (namely

the contribution of the restoring forces per unit fault area) ex-

erted by the neighbouring points of the fault. Formally fri =
(M− f +

i − M+ f −
i )/[A(M+ + M−)], where M+ and M− are the

masses of the ‘+’ and ‘−’ half split-node of the fault plane � (see

Fig. 2b) and A is the split-node area (in this vertical fault case is:

A= �x1�x3). From a physical point of view, f+ represents the force

per unit fault area acting on partial node ‘+’ caused by deformation

of neighbouring elements located in the ‘−’ side of � (and vice

versa for f −).

The stress tensor perturbations {�σ 2i} are coupled to the com-

ponents of the fault friction Ti through the following equations:

d2

dt2
u1 = α [L1 − T1] ,

d2

dt2
u3 = α [L3 − T3] ,

(B.2)

where α ≡ A [(1/M+) + (1/M−)]. The boundary condition here

imposed is expressed as T = τ , where T is the modulus of the

total shear traction T (n̂), acting on the fault (T =
√

T 2
1 + T 2

3 , see
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Figure A1. Distribution on the 26 s fault of the shear stress perturbations [namely �σ 21(x1,x3,t)] caused by the June 17 main shock. Panels in the left-hand

column are the original values calculated at the 96 receivers whereas panels in the right-hand column are the interpolated values in the 42 471 fault points (see

Appendix A for the details of the spatio-temporal interpolation algorithm). Panels (a) and (b) are at time t = 13.18 s, panels (c) and (d) at time t = 26.37 s. The

black star is the observed hypocentre of the 26 s event.

Figure A2. Comparison between the original time series (black curves) and the interpolated time series (red curves) for the perturbation of shear stress (panel

a) and normal stress (panel b), namely −�σ 21(x1,x3,t) and �σ 22(x1,x3,t), respectively, in the hypocentre of the 26 s aftershock.

Fig. 2b), and τ is the frictional resistance, which depends on the

adopted constitutive relation and is proportional to the effective

normal traction acting on the fault. The latter is σ eff
n = −(�(n̂) · n̂ +

pfluid) where �(n̂) · n̂ is the normal stress acting on the solid matrix

and pfluid is the pore fluid pressure. At time t, the effective normal

stress is:

σ eff
n = − fr2

+ σ eff
n0

− �σ22, (B.3)

where σ eff
n0

is the initial value of the effective normal stress.

The components of the shear pre-stress acting on the fault are
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T01
= τ0(x1, x3) cos(ϕ0) and T03

= τ0(x1, x3) sin(ϕ0), where

ϕ0 ≡ ϕ(x1, x3, 0) is the initial azimuth (i.e., the initial rake) and

τ 0 (x1, x3) is the initial value of friction resistance prescribed by

the fault governing law. Taking into account that for our geometry

the unit vector normal to Σ is n̂ ||x̂2 ≡ (0, 1, 0) and that the shear

traction is acting on the positive side of Σ, in this case of a right-

lateral fault ϕ0 = 180◦. Here, as in the BC05 and Bizzarri & Cocco

(2006a, b), normal components of the stress tensor are assumed to

be negative for compression; note that the opposite notation was

used in AEA06.

A P P E N D I X C : PA R A M E T R I Z AT I O N

O F 2 6 S FAU LT

C.1 Fault dimension and seismic moment

The 26 s event produced a small geodetic signal and minor surface

effects compared to the 30 s event, suggesting that the rupture area

is deep and relatively small (Clifton et al. 2003, Árnadóttir et al.
2004). Relocated aftershocks of the 26 s event are grouped around

two depths—about 4.5 and 8 km (Hjaltadottir & Vogfjör 2005; their

fig. 12). According to Boatwright and Cocco (1996), Scholz (2002)

and De Martini et al. (2003), the aftershocks tend to group in the

locations where the main rupture produces a stress concentration,

that is, around the rupture perimeter where the crack tip is arrested or

in almost locked regions of the sliding surface. From the aftershock

distribution, we can therefore consider that the seismic part of the

fault extends between the depths x3 = 5400 and x3 = 7400 m; we

will indicate this depth interval with the symbol I. The aftershock

latitudes are between 63.890◦N and 63.951◦N (the latitude of the 26

s hypocentre). This latitude interval corresponds to x1 ∈ [9700, 16

500] m in our local Cartesian reference system Ox1x2x3. A vertical

alignment of unrelocated aftershocks is observed only in the north

end latitude interval. We then define the region A = {x|x1 ∈ [9.7,

16.5] km, x2 = xf
2, x3 [5.4, 7.4] km} as a possible candidate of the

rupture area, even if, on the basis of the aftershock distribution, its

horizontal extent is less constrained than the vertical extent (I).

We can estimate the static seismic moment of the 26 s event

from the well-known relation log(M 0) = 1.5M w + 9 (Kanamori

1977). Considering an estimated magnitude M w
∼= 5 (Vogfjör

2003; Árnadóttir et al. 2006), we obtain M 0 of the order of

3.2 × 1016 N m. This value would increase up to 1.8 × 1017 N

m if a moment-magnitude up to 5.5 is assumed (Árnadóttir et al.
2004; AEA06). We compare the observed value of M 0 with the value

Table C1. Temperature and pore fluid pressure distributions on the fault plane (see

Appendix Section C2 for details).

Layer no. Overpressure Temperature Fluid density Depth of

k ( p̂(litho) − p(hydro)
fluid )k T f

k ρfluid k x3k

(MPa) (◦C) (kg m–3) (km)

1 0.10 5.00 999.99 0

2 18.8 95.0 970.46 1

3 38.1 185 914.40 2

4 58.7 275 818.45 3

5 82.0 365 716.70 4

6 107 455 633.05 5

7 134 545 541.20 6

8 162 635 485.50 7

9 190 725 465.30 8

10 215 745 491.50 9

of the (dynamic) seismic moment M(t), as evaluated at the end of

the numerical simulation. The latter is computed as M(t) = |λ′
1|+|λ′

2|
2

,

where λ1 and λ2 are two of the three eigenvectors of the (dynamic)

seismic moment tensor (t), ordered such that |λ′
1| ≥ |λ′

2| ≥ λ′
3|

(e.g. Dziewonski et al. 1981). For our pure double couple geometry

it is: M(t) = √
M21(t)2 + M23(t)2, where

M2i (t) =
df

; i = 1, 2 , (C.1)

where G is the depth-variable rigidity modulus and u1 and u3 are

fault slip components.

C.2 Initial effective normal stress

The effective normal stress acting at t = 0 on the 26 s fault plane is

assumed to vary only with depth [σ eff
n (x1, x3, 0) = σ eff

n0
(x3)] since it

is evaluated as the difference existing between the lithostatic pres-

sure p̂(litho)(x3) decreased by the normal component �σ (dev) of a

deviatoric stress field of tectonic origin and the pore fluid pres-

sure pfluid(x3) : σ e f f
n0

(x3) = p̂(litho)(x3) − �σ (dev) − pfluid(x3). From

Anderson’s theory and for our parameters we estimate an average

value �σ (dev) = 5.7 MPa. The lithostatic pressure was computed as

p̂(litho)(x3) = ρ̂rockgx3, ρ̂rock being the weighed averaged cubic mass

rock density (using the relation ρ̂rock ≡ ∑4
k=1 ρrockk

x3k −x3k−1

x34
, with

x30
≡ 0) and g, the acceleration due to gravity.

At shallow depths (x3 ≤x∗
3), the pore fluid pressure is assumed

to be hydrostatic, p(hydro)
fluid (x3) = g

∫ x3

0
ρfluid(x ′

3) dx ′
3, where at each

depth, the fluid density (Table C1) is calculated iteratively (assum-

ing constant fluid density in each 1 km depth-interval) by using a

reasonable temperature profile in Iceland (e.g. Beblo & Björnsson

1980; Hersir et al. 1984) and extracting ρfluid (x3) from pressure–

temperature tables of Haar et al. (1984). For x3 ≥ x∗
3 + D∗, we

assume near-lithostatic pore fluid pressure values p(nl)
fluid (x3), giving

σ eff
n0

(x3) = σ eff∗
n = 2.5 MPa, as in AEA06. We recall here that

Hubbert & Rubey (1959) observed that water, provided by dehy-

dration reactions, can exist at near-lithostatic pressures and conse-

quently shear fracturing can occur at very low shear stress. More

recently, the over-pressurized fluids are of particular interest in stud-

ies related to oil reservoir partitions (Hunt 1990; Powley 1990), as

well as to larger-scale crustal processes such as the reduction of

strength of mature faults and the earthquake cycles (Byerlee 1990,

1993; Rice 1992; Miller et al. 1996). High values of pore fluid pres-

sure are also suggested by Crampin et al. (2002), who studied the
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polarization of shear wave splitting data recorded in a seismically

active area in northern Iceland.

Accordingly, we assume a transitional region of vertical width D∗

where pore fluid pressure varies from hydrostatic to near-lithostatic

values in agreement with numerical results of Zencher et al. (2006),

who modelled the behaviour of pore fluid pressure migrating from

a reservoir at lithostatic pressure towards the Earth’s surface after

the rupture of an impermeable barrier of thickness D∗. We associate

x∗
3 + D∗ with the brittle–ductile transition depth, which is around

8 km in the SISZ (Árnadóttir et al. 2006; see their fig. 13 with the

related discussion and AEA06). On the other hand, we believe that

the 26 s rupture developed above the brittle–ductile transition and

then within the transitional region (x∗
3 < x3 < x∗

3 + D∗). Therefore,

looking at the aftershock depth distribution discussed in Appendix

Section C.1, we assume a thickness D∗ = 3 km (a reasonable value

also proposed by Zencher et al. 2006) and x∗
3 = 5800 m. In particular,

we consider a pore fluid pressure that increases with depth towards

near-lithostatic values within a narrow region located in the upper

part of the transitional region and having an ‘extent on’ the order of

h∗ (0 ≤ h∗ < D∗). The profile of the initial effective normal stress

generated by such a pore fluid pressure (see profile number 3 in

Fig. 4b) is expressed by:

σ eff
n0

= σ eff∗
n

(
1 − e− x3−x∗

3
h∗

)
+ �P2e− x3−x∗

3
h∗ , x∗

3 < x3 < x∗
3 + D∗,

(C.2)

where �P2 ≡ p̂(litho)(x∗
3 )−�σ (dev)−p(hydro)

fluid (x∗
3 ) [p(hydro)

fluid (x∗
3) = 48.02

MPa is the resulting fluid pressure at x∗
3 = 5800 m]. In eq. (C.2), h∗ is

a free parameter that was tuned using the results of different forward

dynamic models of the triggered event. A homogeneous value of

effective normal stress σ eff
n0

(x3) = σ eff∗
n within the transitional region

can be obtained from (C.2) by assuming h∗ = 0 (profile number 1

in Fig. 4b).

A P P E N D I X D : D E T E R M I N AT I O N O F

T H E F R I C T I O N A L PA R A M E T E R O F

T H E N O N - L I N E A R S L I P - W E A K E N I N G

G OV E R N I N G L AW ( E Q. 3 )

Looking at Fig. 7(c), in the ‘virtual’ hypocentre, we can estimate the

following parameters—an upper yield strength τ eq
u = 2.62 MPa, a

frictional level τ
eq
f = 2.01 MPa, a hardening distance dh = 3.31 ×

10−4 m and a slip-weakening parameter deq
0 = 2.05 × 10−2 m . The

latter gives a ratio deq
0 /L = 20.5, confirming also results obtained

for a single fault with a homogeneous rheology (Cocco & Bizzarri

2002; Bizzarri & Cocco 2003, 2006b). Considering that τ eq
u =μuσ

eff
n

and τ
eq
f = μf σ

eff
n , we obtain: μu = 0.742 and μf = 0.569. In eq. (3)

we set d0 = deq
0 /5 and, by definition, the parameters αOY and βOY

are determined by simultaneously solving the two transcendental

equations:

d

du
τ

∣∣∣∣
u=dh

= 0, (D.1)

τ (u = dh) = τ eq
u . (D.2)

Numerical solutions of (D.1) and (D.2) are: αOY = 0.115634 and

βOY = 1.31289 × 10−5 m. The choice of d0 = deq
0 /5 guarantees

that the level of kinetic friction τ
eq
f is reached when the cumulative

slip is about 2.05 × 10−2 m (as in the case of DR law; see Fig. 7c in

the main text), nearly equal to 12dh (in agreement with laboratory

observations of Ohnaka et al. 1987; their figs 5a and 6a). We

uniformly apply to all fault points the above-mentioned values for

the constitutive parameters αOY, βOY, d0 and μf . On the contrary, τ 0

(x1, x3) has been set to be exactly equal to that used in cases B and

C presented in the main text, and therefore it is variable with depth.

C© 2008 The Authors, GJI, 173, 906–921

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/3/906/738221 by guest on 09 April 2024


