
Geophys. J. Int. (2010) 183, 1538–1558 doi: 10.1111/j.1365-246X.2010.04814.x

G
JI

S
ei

sm
ol

og
y

Automated multimode phase speed measurements for high-resolution
regional-scale tomography: application to North America

K. Yoshizawa1,2 and Göran Ekström1
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S U M M A R Y
A fully automated method for obtaining multimode phase speed measurements from a single
seismogram has been developed and applied to a large data set of three-component long-
period seismograms in North America, constructing high-resolution phase speed maps on a
continental scale. The method of our phase speed estimation is based on a fully non-linear
waveform inversion by Yoshizawa & Kennett working with a global search method (the
Neighbourhood Algorithm). The entire process of waveform fitting and the evaluation of
the estimated phase speed have been fully automated employing several empirical quantitative
measures, assessing the quality of waveform fit and the relative contributions of each mode
in a chosen time window. The measured phase speed data undergo automatic screening for
quality control, comprising the threshold evaluation of their reliability and outlier detection
and removal. This new automated method has been applied to a large data set recorded
at North American stations, including the latest transportable stations of USArray. Using
long-period three-component seismograms recorded during the past eight years, we have
successfully retrieved large numbers of regional surface wave paths, including over 20 000
paths for the fundamental-mode Rayleigh waves over a wide range of frequencies, and over
10 000 paths for the higher mode Rayleigh as well as the fundamental-mode Love waves. The
consistent results of the automated measurement procedure suggest that the method works well
at regional distances, allowing us to perform a high-resolution mapping of multimode phase
speeds in North America. The results of the automated waveform analysis also indicate some
intrinsic limitations in the higher mode phase speed measurements from a single seismogram
particularly in the short period range, mainly due to the overlapping of higher mode arrivals as
well as coupling between mode branches. Despite such an innate difficulty in the higher mode
dispersion measurements, the automated method allows us to construct reliable multimode
phase speed maps. The current data set of ray paths is significantly biased towards the western
half of North America, resulting in non-uniform horizontal resolution across the continent.
This issue will be resolved by the future migration of the USArray stations to cover the central
and eastern United States. The new automated method can be a useful tool for high-resolution
mapping of regional 3-D shear wave structure including possible anisotropy.

Key words: Inverse theory; Surface waves and free oscillations; Seismic tomography; North
America.

1 I N T RO D U C T I O N

Seismic surface waves provide us with fundamental knowledge
about the Earth’s upper mantle, and have been used to retrieve upper-
mantle structure on global and regional scales. There are several
ways to extract 3-D shear wave structure from surface waves. One
of the common approaches is based on the direct measurements
of path-average phase or group speeds of the fundamental-mode
surface waves. Such an approach has been popular in global-scale
modelling of the upper mantle with a large data set (e.g. Trampert

& Woodhouse 1995; Ekström et al. 1997; Ritzwoller et al. 2002;
Nettles & Dziewonski 2008). The dispersion measurements of the
fundamental mode are relatively straightforward, but they are, even
at long periods, primarily sensitive to the structure above 300 km
depth. The higher modes are more sensitive to the deep structure of
the Earth (Fig. 1), and can provide information that is valuable for
enhancing the vertical resolution of shear wave speed models from
surface waves.

The higher mode information can be used in a framework of
waveform fitting, which does not require the isolation of each mode

1538 C© 2010 The Authors

Geophysical Journal International C© 2010 RAS

Geophysical Journal International
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/183/3/1538/640717 by guest on 24 April 2024



Automated multimode phase speed measurements 1539

0

200

400

600

800

1000

1200

1400

de
pt

h(
km

)

-1 0 1

(a) Spheroidal mode

fundamental

T=96.7s

normalized sensitivity 
-1 0 1

1st higher

T=87.4s

-1 0 1

2nd higher

T=74.1s

-1 0 1

3rd higher

T=57.9s

-1 0 1

4th higher

T=50.9s

0

200

400

600

800

1000

1200

1400

de
pt

h(
km

)

-1 0 1

(b) Toroidal mode

fundamental

T=97.8s

normalized sensitivity 
-1 0 1

1st higher

T=98.6s

-1 0 1

2nd higher

T=71.6s

-1 0 1

3rd higher

T=61.4s

-1 0 1

4th higher

T=50.3s

Figure 1. Vertical sensitivity kernels of (a) spheroidal and (b) toroidal modes calculated for PREM. The solid line is the sensitivity of phase speed to S-wave
speed Kβ , the dotted line to P-wave speed Kα and the grey dashed line to density Kρ . All the sensitivity kernels are normalized so that the maximum amplitude
of Kβ for each mode becomes unity.

in a seismogram. A partitioned waveform approach has been popular
in regional-scale tomography, in which path-average 1-D models are
constrained by waveform fitting with suitably filtered seismograms
or cross-correlograms (e.g. Nolet 1990; Cara & Lévêque 1987).
These 1-D models are then used to constrain the 3-D models. This
kind of two-stage approach has been applied to many regions of
the Earth for constructing regional 3-D shear wave speed models
(e.g. van der Lee & Nolet 1997; Debayle & Kennett 2000a; Lebedev
et al. 2005; van der Lee & Frederiksen 2005; Fishwick et al. 2008;
Bedle & van der Lee 2009), and, in most cases, only Rayleigh
waves are employed, while Love waves are rarely used with few
exceptions (e.g. Debayle & Kennett 2000b). In such partitioned
waveform methods, the 1-D models derived from waveform fitting
are used as an average structure along a specific path (normally
the great-circle path). Therefore, it is not simple to incorporate
the frequency-dependent information such as the off-great-circle
propagation in heterogeneous media and finite-frequency effects.

More rigorous ways of tomographic mapping, incorporating
complex effects of wave propagation in a 3-D structure through
the full waveform fitting, can also be used to constrain the large-
scale upper-mantle structure (e.g. Li & Romanowicz 1996; Takeuchi
2007; Fichtner et al. 2008; Marone et al. 2007). Such approaches
are theoretically more rigorous, but computationally demanding for
high-resolution mapping with a very large data set.

To exploit the theoretical superiority of the finite-frequency ap-
proach, while taking account of the computational efficiency using
a large data set, a multimode dispersion measurement would be

of great help for constraining a 3-D shear wave structure in the
upper mantle. Such an approach has been proposed by Kennett &
Yoshizawa (2002) and Yoshizawa & Kennett (2004) as a three-stage
inversion, recasting the conventional method of two-stage regional
surface wave tomography into three independent stages. In this
approach, we can constrain the 3-D shear wave speed models in
an efficient manner incorporating a variety of information such as
the multimode information, off-great-circle propagation and finite-
frequency effects of surface waves.

Information on multimode dispersion is essential for enhanc-
ing the vertical resolution of surface wave tomography models,
but measuring higher mode dispersion from a single seismogram
is a complicated issue. To achieve reliable multimode dispersion
measurements, Stutzmann & Montagner (1993) used a group of
seismograms recorded at a station from several seismic events
at different depths in a small epicentral area. This method re-
quires similar source–receiver pairs with seismic events at differ-
ent source depths, which tends to limit the number of available
paths.

One of the practical ways for measuring higher mode phase
speeds was developed by van Heijst & Woodhouse (1997, 1999)
employing a mode-branch stripping technique based on the fitting
of mode-branch cross correlations. This technique is effective espe-
cially in the case of long paths for which higher mode branches do
not overlap each other in a seismogram (van Heijst & Woodhouse
1999). However, this method cannot readily be applied to regional-
scale studies for which the average length of the paths is shorter
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than 50◦, and individual contributions of higher modes cannot be
discriminated in an observed seismogram.

An alternative way to estimate the multimode phase speeds from
a single seismogram, regardless of the distance from the seismic
source, has been proposed by Yoshizawa & Kennett (2002a) based
on a fully non-linear waveform fitting method with the neighbour-
hood algorithm (hereafter referred to as NA) of Sambridge (1999a).
In this method, we use the path-specific 1-D shear wave speed profile
as model parameters for the waveform inversion, but we do not con-
sider such path-specific 1-D models as direct representation of the
average structure of the Earth along the path. Instead, we consider
them as summaries of multimode dispersion for the source–receiver
path, and use such 1-D models to estimate the multimode dispersion.

A similar method has recently been employed by Visser (2008) to
estimate multimode dispersion curves for global-scale tomographic
studies (Visser et al. 2007, 2008). The basic procedure of Visser
is similar to that of Yoshizawa & Kennett (2002a), but they added
a robust method of error estimation based on a Bayesian approach
working with the extensive model parameter search using the second
stage of NA (Sambridge 1999b). This process provides rigorous
estimates for uncertainties in the phase speed measurements, though
such resampling of model parameters with the NA tends to be
computationally expensive.

In this study, we propose a fully automated method for mak-
ing multimode phase speed measurements, extending the method
originally developed by Yoshizawa & Kennett (2002a). We intro-
duce some new quantitative parameters for evaluating the measured
phase speeds, so that the method can be applied efficiently to the
rapidly expanding data sets from dense seismic arrays. In such an
automated analysis with a large data set, it is almost inevitable
that some outliers are included in the measured phase speed data.
We will also consider an automated detection and removal of such
outliers to better constrain the phase speed maps.

The fully automated method of multimode phase speed measure-
ments is then applied to a large number of seismograms recorded
on the transportable network of the USArray, as well as at the per-
manent seismic stations in and around North America. The new
method allows us to gather large numbers of regional paths of both
Rayleigh and Love waves, which are subsequently used to con-
struct phase speed models of North America with unprecedented
resolution. The main objective of this paper is to summarize the
new automated method for multimode dispersion measurements
and its application to the large data set currently available in North
America. Thus, obtaining a 3-D shear wave model using these phase
speed maps is beyond the scope of this study, but will be considered
in future work.

2 M E T H O D O F M U LT I M O D E P H A S E
S P E E D M E A S U R E M E N T S

In this study, we use an extended version of the method of mul-
timode phase speed measurements developed by Yoshizawa &
Kennett (2002a), which is based on fully non-linear waveform fit-
ting working with a global search method. We employ the NA of
Sambridge (1999a) which enables us to explore a model parameter
space effectively to fit the observed and synthetic seismograms.

The details of original method, including the practical aspects of
the non-linear model parameter search with the NA, are described
by Yoshizawa & Kennett (2002a). In Section 2.1, we briefly sum-
marize the basic principles of how we implement the non-linear
waveform fitting and extract path-specific phase speed. In the sub-
sequent sections, new aspects of the improved method of waveform

fitting, including empirical parameters for quantitative evaluation
of the measured data are described.

2.1 Non-linear waveform fitting: synthetics and model
parameters

A synthetic seismogram u(�, ω) in the frequency domain at epi-
central distance � and frequency ω in heterogeneous media can
be represented as follows, based on the WKBJ approximation
(Woodhouse 1974; Tromp & Dahlen 1992; Dahlen & Tromp 1998):

u(�,ω) =
N∑

j=0

R j (ω) exp
{
i
(
k0

j (ω) + δk j (ω)
)
�

}
Sj (ω), (1)

where Rj is the receiver term of j-th mode, including geometrical
spreading and attenuation, and Sj is the source excitation of j-th
mode with an appropriate moment tensor at the event location. The
exponential term represents the propagation along a path with a
reference wavenumber k0

j of the j-th mode in the reference model
and the perturbation of the wavenumber δkj caused by a lateral
heterogeneity along the path. N is the number of mode branches
used in the calculation of full synthetic seismograms. We use up to
25 modes for the calculation of synthetics in this study.

The wavenumber perturbation δkj can be represented by a radial
integration of structural perturbations of S-wave speed δβ, P-wave
speed δα and density δρ, multiplied by the corresponding sensitivity
kernels.

δk j (ω)

=
∫ a

0

{
K j

α (r, ω)δα(r ) + K j
β (r, ω)δβ(r ) + K j

ρ (r, ω)δρ(r )
}
dr,

(2)

where a is the Earth’s radius, Kα , Kβ and Kρ represent the sensitiv-
ity kernels of surface-wave phase speed for P-wave speed, S-wave
speed and density, respectively. Some examples of the vertical sen-
sitivity kernels are shown in Fig. 1. Surface waves are sensitive
mostly to S-wave speed perturbations, and the contributions from
P-wave speed and density are relatively small. In many practical
applications, only S-wave speed is considered as an independent
parameter, and P-wave speed and density perturbations are gener-
ally ignored or scaled to the S-wave speed perturbation as explained
in Section 3.2.

The shear wave speed perturbation δβ(r ) is represented by a
set of B-spline functions B(r ) as a function of radius r (Fig. 2),
δβ(r ) = ∑M

i=1 biBi (r ). The coefficients bi are the model parameters
that are searched by the NA to find models with smaller misfits
or global minima. We sample 3050 1-D S-wave models with the
NA, including 50 initial models that are randomly distributed in
the model parameter space. The model parameter search using the
NA is iterated 300 times, sampling 10 new models in each iteration
based on the previous samples. The ensemble of over 3000 models
derived from the NA normally provides satisfactory convergence of
waveform fit between the synthetic and observed waveforms.

Although the NA does not require any linearization of the in-
verse problem to be solved, we use the linearized relation of phase
perturbations with eq. (2). To reduce a computational cost for calcu-
lating normal modes, we employ a single reference starting model
to compute the reference eigenfunctions. Model parameters are then
searched using the NA, allowing up to about ±8 per cent of shear
wave speed perturbations from the reference model.

The reference model for waveform inversion is constructed
from PREM (Preliminary Reference Earth Model; Dziewonski
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Figure 2. A set of B-spline functions for representing shear wave speed perturbations in the Earth’s mantle. Node spacing is increasing with depth so that
wave speed perturbations in the deeper part of the mantle vary smoothly.

& Anderson 1981) with a smoothed 220 km discontinuity. The
crustal structure is corrected using a path-average crustal model
derived from the a priori model 3SMAC (Nataf & Ricard 1996). If
over 50 per cent of the path length traverses continental areas, the
structure of the uppermost mantle above 220 km is replaced with
that of PREMC, which is a modified version of PREM, to better
represent the uppermost mantle beneath the continental lithosphere.

It should be noted that the choice of the crust model does not
have significant influence on the estimated phase speed in this
study, because shear wave speed in the crust is also varied to bet-
ter fit waveforms. Moreover, the purpose of our waveform fitting
is to extract a better phase dispersion, and not to obtain a realistic
1-D wave speed profiles. The starting models used in the applica-
tion of the non-linear waveform fitting are discussed in detail in
Section 3.2.

2.2 Evaluation of waveform misfit

Waveform misfits of synthetic and observed seismograms are eval-
uated in several time windows using multiple bandpass filters to
constrain the path-specific 1-D models, which are subsequently
used for estimating multimode phase speeds.

Fig. 3 shows two examples of the waveform fit after inversion of
Rayleigh waves at the J13A station of the USArray in Idaho, and
Love waves at the nearby J12A station. In this study, all three com-
ponents (vertical, radial and transverse) are inverted independently.
We have used four time windows for Rayleigh waves, and three
time windows for Love waves, which are defined by specific group
speeds as summarized in Table 1. For windows including higher
mode arrivals, which normally follow the S- or SS-wave arrivals
depending on the epicentral distances, the start time of the window
is determined with respect to the arrival time of the S or SS wave
predicted from the AK135 model (Kennett et al. 1995), in a similar
way to the window selection of Visser (2008).

In our non-linear waveform inversion, we use both the waveforms
and the corresponding envelopes to evaluate waveform misfits. The
simultaneous fitting of both waveform and envelope helps to re-
duce the likelihood of a possible phase cycle skip caused by large
perturbations from the starting models during the non-linear model
parameter search.

Misfit function �ij between synthetic and observed waveforms
as well as envelopes for i-th time window with j-th bandpass filter is
calculated using the similar definition given in the original work (see
eq. (5) of Yoshizawa & Kennett 2002a), except that we normalize the
misfit by the length of each time window T w . �ij are then summed
and averaged for all time windows and frequency bands to estimate
the ‘total waveform misfit �’, which represents the average misfit
of multiple time windows from a single seismogram. � is used in
the first step of quality control of our automated measurements.

Empirical selection thresholds for this parameter are discussed in
Section 2.3.

Fig. 3 displays some examples of waveform fitting and Fig. 4
the 1-D shear wave speed model and the estimated phase speeds.
As suggested by Yoshizawa & Kennett (2002a), the phase speeds
estimated from non-linear waveform fitting are fairly robust, while
the 1-D shear wave model itself tends to reflect a significant non-
uniqueness. This effect is apparent in Fig. 4 in which all the 3050
models derived from the non-linear inversion are displayed with
colours representing the misfit values. In this example, the best 500
S-wave models in yellow lines (Fig. 4a), tend to be scattered over the
wide range of parameter space, while the corresponding dispersion
curves (Fig. 4b), derived from the corresponding S-wave models,
are concentrated around the best fit model displayed by the red
lines. This suggests the robustness of the phase dispersion curves
estimated from non-unique 1-D shear wave speed profiles.

2.3 Reliability of multimode phase speed measurements

An issue of measuring multimode phase speed from a single seis-
mogram is that quantitative evaluation of errors and accuracy of the
dispersion measurements is not very simple. Visser et al. (2007)
employed the second stage of the NA (Sambridge 1999b) for a
Bayesian statistical evaluation of the measurement errors, which is
rigorous but is computationally demanding, since it requires exten-
sive resampling of model parameters to estimate meaningful errors.

As a computationally efficient way to estimate the quality of the
measurements, we use the reliability parameter (e.g. van Heijst &
Woodhouse 1997; Yoshizawa & Kennett 2002a) for the quantitative
evaluation of the estimated phase speeds. The advantage of the
use of this parameter is that it provides us with comprehensive
information on the available frequency range and mode branches
with quantitative estimates for quality of the measurements. Here,
we define a new reliability parameter for multimode dispersion,
which have been improved from the original one (Yoshizawa &
Kennett 2002a).

First, we consider three seismograms: the observed seismogram
uobs(t), the full synthetic seismogram usyn(t), and the synthetic seis-
mogram of the j-th mode branch usyn

j (t). We now introduce a mis-
fit seismogram between observed and full synthetic seismograms
umis(t) = uobs(t) − usyn(t), and a residual synthetic seismogram for
j-th mode branch ures

j (t) = usyn(t) − usyn
j (t). Then, we calculate the

corresponding spectrograms Ssyn(ω, t), Ssyn
j (ω, t), Smis(ω, t) and

Sres
j (ω, t) in the frequency–time domain. The spectrograms are de-

rived from the power spectra of the seismograms with moving time
windows.

Now, we consider two parameters; the relative waveform fit f (ω,
t) and the relative power pj(ω, t) for j-th mode branch (Fig. 5). The
relative waveform fit f (ω, t) is a parameter that quantifies how well
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Figure 3. Examples of the results of waveform fitting with multiple time windows for two USArray stations from a seismic event in Chiapas, Mexico at
113 km depth on 2007 July 6. (a) Rayleigh waves (vertical component) for the station J13A, and (b) Love waves (transverse component) for the station J12A.
Black solid lines are observed waveforms and red dashed lines synthetic waveforms. The time windows are determined from group speeds as given in Table 1.
The frequency ranges are (a-1) 5–12 mHz, (a-2) 10–25 mHz, (a-3) 20–50 mHz, (a-4) 5–30 mHz, (b-1) 5–12 mHz, (b-2) 10–30 mHz and (b-3) 20–50 mHz.

Table 1. A summary of time windows used in this study. Group speeds are used to define the start and end time of each window.
Multiple bandpass filters with specific frequency ranges are applied to each time window for appraisal of waveform misfit. Ts indicates
that the start time of the window is determined from the S- or SS-wave arrival calculated from the AK135 model.

Rayleigh wave Love wave

Window ID Group speed (km s−1) Frequency Group speed (km s−1) Frequency

Min. Max. range (mHz) Min. Max. range (mHz)

1 2.9 4.8 5 – 10 3.3 Ts 5 – 10
7 – 12 7 – 12

2 3.2 4.5 10 – 18 3.5 Ts 10 – 20
15 – 25 15 – 30

3 4.3 Ts 20 – 33 4.3 Ts 20 – 33
25 – 50 25 – 50

4 2.9 Ts 5 – 12
10 – 20
15 – 30

the observed waveforms are fit by the synthetic, and is defined as,
f (ω, t) = [exp{−Smis(ω, t)/Ssyn(ω, t)}]3. We use the third power
of the exponential term to make the parameter f more sensitive to
small differences in the waveform misfit. The relative power pj(ω, t)
of the j-th mode represents the relative contribution of the amplitude
of the j-th mode in the full synthetic seismogram, and is defined as,
p j (ω, t) = exp{−Sres

j (ω, t)/Ssyn
j (ω, t)}.

To obtain the reliability parameter rj(ω) as a function of fre-
quency, and across a time window T w , the relative waveform fit
and the relative power of each mode are then multiplied and in-
tegrated over the time window T w at frequency ω as, r j (ω) =
nt

∫
Tw

p j (ω, t) f (ω, t)dt , where nt is a normalization factor of the
reliability. The maximum value of the reliability varies depending
on the time span for which waveforms are matched well and a par-

ticular mode is sufficiently energetic. To simplify the comparisons
among the estimated reliability parameters, we employ nt such that
the reliability becomes 1.0 when we achieve a perfect waveform
fit and relative power (i.e. both f and pj are 1.0) for a 10 s time
window.

An example of the estimated dispersion curves and the corre-
sponding reliability parameters is displayed in Fig. 6. We choose
the frequency range of the dispersion curves of each mode for which
the reliability parameter is higher than a threshold value. The num-
bers of acceptable measurements of multimode phase speeds will
vary depending on the choice of the threshold values for the total
waveform misfit � and the reliability parameter rj. Through ex-
tensive tests using different criteria for the threshold values, we
have determined an appropriate combination of thresholds that
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Figure 4. (a) Path-specific 1-D shear wave speed profiles derived from the global parameter search with the Neighbourhood Algorithm (NA) for the Love
waves in Figs 3(b), and (b) corresponding dispersion curves estimated from the 1-D models in (a). All the 3050 models constructed with the NA are ranked in
order of the smaller misfit, and are plotted with colours varying from green (larger misfit) to yellow (smaller misfit). The red line is the best-fit model, and the
black dashed line is the reference model.

Figure 5. (a) Full synthetic (red line) and observed (black dashed line) seismograms of Love waves in Fig. 3(b), and the relative waveform fit f (ω, t) in
the frequency–time domain. (b) A mode branch seismogram for the first higher mode of Love wave, and the relative power of the mode pj(ω, t) in the
frequency–time domain. (c) Reliability parameter rj(ω) for the first higher mode calculated from (a) and (b).

provides us with a reasonably good waveform fit and reliable dis-
persion curves. The final choice of the combinations of threshold
values is summarized in Table 2. The thresholds for the reliability
parameters vary depending on the waveform misfit � which repre-
sents the overall quality of waveform matching. In the example of
Fig. 6, we set the threshold of reliability to 8.0 for the fundamental
mode and 2.0 for the higher modes.

3 A P P L I C AT I O N T O R E G I O NA L PAT H S
I N N O RT H A M E R I C A

3.1 Data set of seismograms and pre-processing

In this study, we used three-component long-period seismograms
that are available from the IRIS Data Management Center, for

C© 2010 The Authors, GJI, 183, 1538–1558
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Figure 6. (a) An example of estimated dispersion curves for Love waves in
Fig. 3 (b) up to the fourth higher mode, and (b) the corresponding reliability
parameters as a function of period. The coloured dots in (a) indicate the
selected measurements with higher reliability than the threshold values. In
this example, the threshold for the reliability parameter for the fundamental
mode is set to 8.0 and that for the higher modes is 2.0.

Table 2. Threshold values of the reliability rj and normalized radiation
amplitude Ā j of each mode as a function of specific ranges of the total
waveform misfit �. If the waveform misfit is greater than 0.03, the dispersion
curves for none of the modes are used since no portion of synthetic and
observed waveforms could be matched at a satisfactory level.

Waveform misfit Minimum reliability Minimum radiation

� rj( j = 0) rj( j ≥ 1) Ā j

0.00 – 0.01 8.0 2.0 0.5
0.01 – 0.02 9.0 2.5 0.6
0.02 – 0.03 10.0 3.0 0.7

seismic events from 2000 January to 2008 April. The locations
of stations and events are plotted in Fig. 7. The centroid moment
tensors for the synthetic calculations are taken from the Global
CMT catalog (Dziewonski et al. 1981; Ekström et al. 2005). Prior
to the waveform analysis, the instrument response of the original
seismograms is deconvolved to obtain ground displacement, and
horizontal components are rotated to the radial and transverse di-

Figure 7. The distribution of (a) seismic events, (b) stations used in this
study and (c) stations in North America.

rections. Waveforms with low signal-to-noise ratio are discarded
prior to the waveform inversion.

To minimize the large uncertainties of the phase speed measure-
ments in the nodal direction of surface wave radiation, we also
quantitatively evaluate the radiation patterns of each mode at the
seismic source location using the Global CMT. If a station is found
to be located in the nodal direction of surface wave radiation for
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a particular mode, we do not use it. In this study, we consider the
normalized radiated amplitude Aj(ζ , ω)/Amax

j (ω), where Aj(ζ , ω)
is the amplitude of the j-th mode at angular frequency ω in the
azimuth ζ from the source, and Amax

j (ω) is the maximum amplitude
of the surface wave radiation pattern for the j-th mode at frequency
ω. Then, we consider the average of the normalized radiation Ā j (ζ )
over a frequency range. The nodal direction is defined as the az-
imuth ζ for which the average normalized amplitude Ā j (ζ ) is less
than the threshold values given in Table 2.

3.2 Starting model and scaling relation

We perform the waveform inversion using not only the reference
model described in Section 2.1, but also other four different start-
ing models as displayed in Fig. 8. These additional starting models
contain ±1.5 per cent and ±3.0 per cent perturbations from the
original reference model in the uppermost mantle. For each wave-
form inversion initiated with a single starting model, we create 3050
models using the NA. Thus, with five starting models, we evaluate
15 250 models in total for each seismogram. This process allows us
to minimize unwanted results due to phase cycle skip, which could
happen when a chosen initial model is too far from the actual Earth
structure.

In this study, we use the model that provides the best waveform
fit to estimate the phase speeds. In most cases, the best fit model
derived from the NA is very close to the average of the ensemble
of models, and the first several hundred models tend to converge on
nearly identical dispersion curves.

To simplify the representation of wavenumber perturbation in
eq. (2), we consider only the S-wave speed perturbation as an in-
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Figure 8. Five starting models (black lines) used to initiate the non-linear
waveform inversions for examples in Fig. 3. The grey dashed line is PREM
with a smoothed discontinuity at 220 km depth.

dependent variable, and use scaling parameters for P-wave speed
and density; (mα , mρ) = (d ln α/d ln β, d ln ρ/d ln β). There are
many ways for scaling of these parameters depending on the results
from mineral physics as well as seismic and geodynamic modelling
(e.g. Montagner & Anderson 1989; Masters et al. 2000; Deschamps
et al. 2001; Resovsky & Trampert 2003). In this study, we employed
a linearly varying scaling relation for P-wave speed; mα = 0.8 at the
surface and mα = 0.3 at the CMB. For the density scaling, we use
mρ = 0.4. It should be noted that the choice of the scaling pa-
rameters has only secondary effects, and the other choices of
these parameters do not alter the results of our phase speed
measurements.

3.3 Quality control of the measured dispersion curves

The reliability parameters and waveform misfit functions are useful
diagnostic parameters for the automated evaluation of the estimated
multimode dispersion curves from waveform fitting. However, some
outliers can still be included in the measurements derived from a
large number of seismograms. There are several factors that could
cause outliers in the measurements, such as possible errors in the
source locations, origin time and centroid moment tensors, as well
as the effects of phase cycle skips.

To detect outliers included in the ensemble of estimated phase
speeds automatically, we perform a statistical outlier detection using
the Grubbs’ Test (Grubbs 1969). The Grubbs’ Test detects a single
outlier in a normally distributed univariate data set. For the extreme
value xn (maximum or minimum) in the sample, we estimate the
statistic Tn = |xn − x̄ |/s, where x̄ and s are the sample mean and
standard deviation, respectively. If Tn is larger than a critical value
that is derived from the t-distribution and the number of samples n,
the datum is regarded as an outlier and is removed from the sample.
The process is repeated until no outlier is found in the rest of the
sample.

As a first step of detecting outliers, we consider a corridor of
surface wave paths for a group of stations and events located in
a certain area, which is defined as a circular region with a radius,
L sin �, around the reference station or event. � is the epicentral
distance between the reference station and event; we use L = 2.5◦

in this study.
For the dispersion curves derived from the group of paths (or

a surface wave corridor), we conduct the Grubbs’ Test to detect
outliers in the ensemble of measured phase speeds at a certain
frequency. Repeating this process for the entire frequency range,
we can estimate the confidence interval that provides a proper
range of measurements around the average dispersion curve, and
eventually allows us to detect a probable outlier in an automated
manner.

An example of surface wave corridor is shown in Fig. 9(a), and the
measured phase speeds for all the paths are plotted in Fig. 9(b) with
the colour indicating the reliability of each of the measured phase
speeds. The weighted average of the measurements is shown with
the yellow dashed line. The reliability parameter is used as a weight
on each measurement when we calculate the weighted average of
phase speeds. Fig. 9(c) is a histogram of the phase speeds at a
period of 125 s in Fig. 9(b), with a theoretical curve of the normal
distribution. The two red dashed lines in Figs 9(b) and (c) represent
the 99 per cent confidence interval. The measured phase speeds
lying outside of these two red lines can be regarded as outliers, and
are removed from our data set.
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Figure 9. (a) An example of a surface-wave corridor (a group of paths) between groups of stations and events. (b) Measured phase speeds for the
fundamental-mode Rayleigh waves along the paths in (a). The yellow dashed line is the weighted average of observed dispersion curves and the red
dashed lines indicate the 99 per cent confidence interval. (c) A histogram of the measured phase speed at 125 s period in (b), with a theoretical normal
distribution.

Such statistical outlier detection can be used only for surface
wave corridors including at least five or more paths. If there are
only a few paths in the corridor, we cannot perform this type of
statistical analysis, and we include such measurements just relying
on the reliability parameter. It should be noted that, in many cases,
the reliability parameter itself provides an insight into possible out-
lying measurements. This can be seen in Fig. 9(b), which shows
that outlying phase speeds have relatively smaller reliability close
to the threshold value in Table 2, whereas the other phase speeds
within the 99 per cent confidence level have much higher reliabil-
ity. In this study, about 72–79 per cent of dispersion curves, de-
pending on components, are checked by the Grubbs’ Test, while
the remaining ones are selected through the reliability analysis
alone.

3.4 Data set of multimode phase speeds

We have analysed over 66 000 vertical seismograms and 52 000
horizontal seismograms for both radial and transverse components

from 244 events (Fig. 7). The numbers of measurements of multi-
mode phase speeds, which have successfully passed all the required
criteria as described in the preceding sections, are summarized in
Fig. 10. We have gathered more than 20 000 measurements for
the fundamental-mode Rayleigh waves (vertical component) over a
wide frequency range, and over 10 000 for the fundamental-mode
Love waves as well as the higher mode Rayleigh waves, and over
3000 for the higher mode Love waves.

We display two examples of path coverage maps in Fig. 11; one
is the fundamental mode Rayleigh wave at 76.9 s, which includes
23 089 paths, the largest number of all the modes and frequencies,
and the other is the second Love-wave mode with 3714 paths. In
both cases, we achieve good coverage across North America, even
though the ray path density is certainly different between these two
extreme cases.

The majority of the phase speed data are derived from the trans-
portable stations of USArray and the locations of seismic events are
biased to western North America (Fig. 7). Therefore, the ray path
density is much higher in the western United States, particularly
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Figure 10. Numbers of measurements of multimode phase speeds for vertical-component Rayleigh waves (left-hand panel), radial-component Rayleigh waves
(middle panel) and Love waves (right-hand panel), as a function of period.

in the NW–SE directions, whereas the paths in the northeastern
United States are relatively sparse. This situation will improve with
the future deployment of USArray to cover the central and eastern
United States.

4 P H A S E S P E E D M A P S O F N O RT H
A M E R I C A

Using the large number of the measurements of multimode phase
dispersion, we perform inversions for multimode phase speed maps
employing the method developed by Yoshizawa & Kennett (2004).
The finite-frequency propagation effects of surface waves are incor-
porated using the influence zone of surface wave paths (Yoshizawa
& Kennett 2002b).

4.1 Method of finite-frequency phase speed mapping

The method of our finite-frequency phase speed tomography has
been described in detail by Yoshizawa & Kennett (2004). Here,
we briefly summarize the method for the phase speed mapping
incorporating approximate effects of finite-frequency of surface
waves. In a ray-centred coordinate system (s, n), where s is a
length along a path and n is along an axis perpendicular to the
path, the linearized relation of a phase perturbation of seismograms
δψ and a structural phase speed perturbation δc can be written
as

δψ =
∫

path
ds

∫
width

dn Kψ (s, n)
δc(s, n)

c0
, (3)

where Kψ is the 2-D sensitivity kernel for phase speed structures,
and δc/c0 is a fractional phase speed perturbation to be determined
through the inversion. The phase perturbation of the observed seis-
mogram δψobs can be related to the observed phase speed pertur-
bation 〈δc〉obs as, δψobs = −k0�〈δc〉obs/c0, where k0 and c0 are the

wavenumber and phase speed for the reference model, respectively,
and � is the distance along a path,

An example of the sensitivity kernels used in this study is dis-
played in Fig. 12. The finite-width kernels are derived from the
influence zone of surface wave paths, which has been identified as
approximately one-third of the width of the first Fresnel zone in
which surface waves are coherent in phase (Yoshizawa & Kennett
2002b). The width of the influence zone becomes wider at longer
periods because the absolute phase speed is faster and its wave-
length becomes longer. The kernel in Fig. 12 is simplified com-
pared to the more rigorous finite-frequency kernels based on Born
theory (e.g. Zhou et al. 2004; Yoshizawa & Kennett 2005). How-
ever, such kernels based on the influence zone can be a reason-
able approximation of the Born sensitivity kernels (e.g. Levshin
et al. 2005).

The linearized equation (3) can be written in a generalized form,
d = Gm, where d is a data vector, G the kernel matrix and m a vector
of model parameters mj( j = 1, 2, . . .; , N ), where N is the number
of model parameters. To expand the phase speed perturbation on
a sphere, we employ spherical B-spline functions F j (θ, φ) (Wang
& Dahlen 1995) which are defined at the rectangular geographical
grids,

δc(θ, φ)

c0
=

N∑
j=1

m jF j (θ, φ), (4)

where the model parameter mj is the coefficient for the j-th basis
function F j . The grid (or knot) interval used in this study varies
depending on the numbers of paths; we used 1.5◦ for models with
more than 10 000 paths, 2.0◦ for over 5000 paths, 3.0◦ for over
3000 paths and 4.0◦ for over 1500 paths. The total number of model
parameters N depends on the path coverage and knot interval for
each mode and frequency, and it varies in a range between 1000 and
3200.
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1548 K. Yoshizawa and G. Ekström

Figure 11. Path coverage for (a) the fundamental-mode Rayleigh wave at
76.9 s and (b) the second higher mode Love wave at 100 s.

The linear equation is solved with a damped least-squares scheme
using the LSQR algorithm (Paige & Saunders 1982), and we
use the reliability parameters as a weight on each phase speed
datum.

4.2 Horizontal resolution

We performed checkerboard resolution tests with a variety of sizes
of checkerboard patterns, to assess visually the horizontal resolution
of our model. In our checkerboard test, synthetic data are generated
incorporating the finite-frequency effects using the influence zone,
and then the synthetic data are inverted using the same damping as
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Figure 12. Finite-width sensitivity kernels for the fundamental-mode
Rayleigh wave at 100 s, based on the influence zone of Yoshizawa & Kennett
(2002b, 2004).

in the real data inversion. Weighing factors that depend on measure-
ment reliability for each path are also applied.

Fig. 13 displays the input and recovered checkerboard models
for the fundamental-mode Rayleigh waves at 76.9 s, and Fig. 14
the second higher mode Love waves at 100.0 s, with different sizes
of cell patterns. In all cases, the western and southern regions of
North America are retrieved fairly well at large scales. Checkerboard
patterns over 5-degree cells for the fundamental mode and 8-degree
cells for the higher modes are generally retrieved well even with the
smaller data set of other modes and frequencies. We achieve fairly
uniform resolution with horizontal scales about 400–500 km for the
fundamental mode in most regions of the United States, Mexico and
the Gulf of Mexico, but we cannot resolve the Pacific Ocean and
the northeastern region of North America, particularly in eastern
Canada, where we do not have enough crossing paths.

Because a very large data set for the fundamental-mode Rayleigh
waves is available, we resolve smaller scale heterogeneity with 3◦ or
less as shown in Fig. 13(c). For smaller scale patterns, the smearing
effects in the NW–SE direction becomes apparent, particularly in
the western United States. This is mainly because the current ray
coverage is biased towards the western half of the North American
continent, due to the uneven distribution of seismic events and
stations (Fig. 7). Such biased coverage can be remedied as the
USArray stations move towards the centre and eastern United States,
eventually covering the entire United States uniformly.

4.3 Multimode phase speed maps of North America

We display a topographic map of North America with some major
geological features in Fig. 15, and examples of the phase speed
maps for the fundamental mode in Fig. 16 and for the higher modes
in Fig. 17. The corresponding vertical sensitivity kernels for shear
wave speed are shown in Fig. 18. The achieved variance reduc-
tions of the phase speed models are about 52–88 per cent for the
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Automated multimode phase speed measurements 1549

Figure 13. Results of checkerboard resolution tests for the fundamental-mode Rayleigh wave at 76.9 s using cellular patterns with (a) 8.0◦, (b) 5.0◦ and (c)
3.0◦. Input models are displayed on the left-hand panels and output models on the right-hand panels.

fundamental modes and about 51–71 per cent for higher modes,
depending on frequency.

For comparisons of multimode dispersion maps, we display the
global phase speed models of the fundamental-mode surface waves
with enhanced resolution in North America by Nettles (2005) in
Fig. 19, and the isotropic part of the global phase speed maps of
Visser et al. (2008) in Fig. 20, focusing on the North America
region. To compare directly with the phase speed maps in Figs 16
and 17, the models in Figs 19 and 20 are plotted as a perturbation
from an average phase speed estimated from our regional data set
in North America.

4.3.1 Fundamental-mode models

In the fundamental mode models in Fig. 16, a strong velocity con-
trast between the western and central United States across the east-
ern margin of the Rocky Mountains is clearly imaged. Such a fea-
ture of North America has been common in tomography models
of North America from both global scale (e.g. Marone et al. 2007;
Nettles & Dziewonski 2008) and regional-scale studies (e.g. van der
Lee & Frederiksen 2005; Bedle & van der Lee 2009). Large-scale
heterogeneity patterns of our model are fairly consistent with the
North American phase speed model by Nettles (2005) in Fig. 19,
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1550 K. Yoshizawa and G. Ekström

Figure 14. Same as Fig. 13, but for the second higher mode Love wave at 100 s, using cellular patterns with (a) 10.0◦, (b) 8.0◦ and (c) 6.0◦.

though our regional models include richer information on local-
ized heterogeneity in the upper mantle compared to the global-scale
study.

In the Rayleigh-wave model at 62.5 s (Fig. 16c), we see some
conspicuous slow anomalies in the Great Basin. Also a linear, slow
anomaly along the Rio Grande Rift zone can be identified. Similar
slow anomalies are also found in the fundamental-mode Rayleigh-
wave model by Nettles (2005) in Fig. 19(c). These anomalies are
not very clear in the Love-wave models (Figs 16a and b and Figs 19a
and b), indicating possible radial anisotropy beneath the tectonically
active regions in the western United States.

Slow anomalies are found in the west of the Cascade Range in
western North America in Figs 16 and 17. This region locates at the
western edge of the well-resolved area of our model, due to the lim-
ited numbers of crossing paths in the Pacific Ocean, resulting in low
horizontal resolution of small-scale heterogeneity (e.g. Fig. 13c).
Thus, this region is likely to be affected by uncertainties in the mea-
surements and biased path coverage, and we are unable to discuss
the detailed local structure in the Pacific.

Fast anomalies in the central and eastern parts of North America
are prominent in the fundamental mode models of both Love
and Rayleigh waves which are sensitive to structure at depths
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Figure 15. Topographic map of North America. Plate boundaries are taken from Bird (2003). ATL: Atlantic Ocean, APM: Appalachian Mountains, GB: Great
Basin, GC: Gulf of California, JdF: Juan de Fuca Plate, MTJ: Mendocino Triple Junction, PAC: Pacific Plate, RGR: Rio Grande Rift, SN: Sierra Nevada, SRP:
Snake River Plains and YS: Yellow Stone Hotspot.

around 100 km (Figs 16b,c and Figs 18a,b), reflecting the fast
continental lithosphere, whereas such features are weaker in the
models that sample shallower or deeper parts of the mantle
(Figs 16a and d).

The structure of the Gulf of Mexico is also clearly mapped. In
particular, a prominent fast phase speed anomaly is found beneath
the western half of the Gulf of Mexico in the fundamental mode
Love-wave models (Figs 16a and b), which have the highest sensi-
tivity at depths just below the Moho discontinuity (Fig. 18a). Such
fast anomalies are found in both the Atlantic and the Gulf of Mexico
in the Love-wave model at 62.5 s reflecting the oceanic lithosphere
with a thin crust. A similar fast anomaly can be seen in Rayleigh-
wave model at 62.5 s (Fig. 16c) beneath the Atlantic, but is weaker
in the Gulf of Mexico. Similar features of fast anomalies in the
Gulf of Mexico and Atlantic are also seen in the large-scale model
of Nettles (2005) in Figs 19(a) and (c). This is likely to indicate
differences in the thickness of the oceanic lithosphere beneath these
oceanic areas, suggesting thinner lithosphere beneath the Gulf of
Mexico.

4.3.2 Higher mode models

Higher mode models in Fig. 17 show somewhat smaller perturba-
tions of phase speeds. Despite intrinsic differences in the horizontal
resolution and the data sets, we are able to see common features in
large-scale heterogeneity distribution in our regional higher mode
models (Fig. 17) and Visser’s global model (Fig. 20). For exam-
ple, in the second higher mode Love-wave models (Figs 17a and

20a), there is a prominent fast anomaly extending from northwest
to southeast in the middle of North America and a slow anomaly
from Arizona to the Gulf of California.

The higher modes sample the mantle structure in a very different
way from the fundamental mode (Figs 18c and d). The higher mode
Love-wave models in Figs 17(a)–(c) have the largest sensitivity in
the mantle transition zone (second higher mode) or the lower mantle
(third and fifth higher modes). Also, these modes sample the upper
mantle with a similar sensitivity over a wide depth range in the upper
mantle (Fig. 18c). These higher mode Love-wave models share
similar patterns of fast and slow anomalies. This fact indicates that
the majority of the common heterogeneity patterns in these models
may come from the upper mantle to which all of the modes have a
similar sensitivity, and thus we may infer a weak heterogeneity in
the lower mantle to which the third and fifth higher modes have the
peak sensitivity.

It should be noted that the higher mode Love-wave models in
Figs 17(a)–(c) display a fast anomaly in the western United States,
which is consistent with the ongoing subduction of the Juan de
Fuca plate as well as a fragment of earlier subducted Farallon plates
reported by some other studies. (e.g. van der Lee & Nolet 1997;
Burdick et al. 2008; Sigloch et al. 2008).

The higher modes of Rayleigh waves in Figs 17(d)–(f) show
similar patterns of heterogeneity to those of the fundamental mode
Rayleigh wave, although the maximum perturbation is weaker in
the higher mode models. Global models by Visser in Figs 20(d)–(f)
also suggest such a characteristic of the Rayleigh-wave mod-
els. These higher Rayleigh modes have the greatest sensitivity
in the structure in the uppermost mantle above 150 km with
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1552 K. Yoshizawa and G. Ekström

Figure 16. Fundamental-mode phase speed maps of (a) Love wave at 62.5 s, (b) Love wave at 142.9 s, (c) Rayleigh wave at 62.5 s and (d) Rayleigh wave at
142.9 s.

secondary peaks of sensitivity to the deeper part of the upper
mantle below 300 km (Fig. 18d). Since the sensitivities of these
higher mode Rayleigh waves to the shear wave structure share
a common feature with only slight differences in the depth of
peak sensitivity, the phase speed maps tend to display common
characteristics.

The interpretation of the higher mode phase speed maps is gen-
erally not straightforward, because their vertical sensitivity to the
shear waves structure is much more complicated than the funda-
mental mode (Fig. 1). Thus, the more detailed discussions on the
mantle structure should be pursued based on the shear wave models
that can be obtained from the multimode dispersion maps. Com-
bining these high-resolution multimode phase speed models would
allow us to map the detailed image of not only heterogeneity but
also radial anisotropy in a wide depth range of the mantle, which can
be derived from the simultaneous inversions of Love and Rayleigh
waves.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We have developed a fully automated method of obtaining
multimode phase speed measurements, based on the non-linear
waveform inversion of Yoshizawa & Kennett (2002a). Several em-
pirical parameters, such as the reliability parameter and the wave-
form misfit, allow us to select automatically the reliable dispersion
measurements derived from the non-linear waveform fitting. The
supplementary process of automatic outlier detection based on
the statistical approach using the Grubbs’ Test enables us to
refine the measured data set of the multimode phase speeds.
Although the automated method is based on several subjective
parameters, slight differences in chosen threshold values do not
have significant influence on the final results of our phase speed
measurements.

Despite the use of the fully non-linear approach with the NA as
a global optimizer, our method of non-linear waveform fitting is
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Automated multimode phase speed measurements 1553

Figure 17. Higher mode phase speed maps of (a) second higher mode Love wave at 100 s, (b) third higher mode Love wave at 76.9 s, (c) fifth higher mode
Love wave at 45.5 s, (d) second higher mode Rayleigh wave at 100 s, (e) third higher mode Rayleigh wave at 76.9 s and (e) fifth higher mode Rayleigh wave at
45.5 s.
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Figure 18. Sensitivity kernels for shear wave speed Kβ , corresponding to the phase speed maps in Figs 16 and 17. (a) Fundamental mode Love waves at
periods of 62.3 s and 142.0 s. (b) Fundamental mode Rayleigh waves at periods of 62.4 s and 141.3 s. (c) Second higher mode Love wave at 98.8 s, third higher
mode Love wave at 76.2 s and fifth higher mode Love wave at 45.3 s. (d) Second higher mode Rayleigh wave at 99.4 s, third higher mode Rayleigh wave at
76.5 s and fifth higher mode Rayleigh wave at 45.3 s.

reasonable in terms of computation, and thus, it can be applied to
very large data sets from high-density regional seismic arrays, such
as the USArray of the EarthScope project.

It should be noted that the numbers of measurements for the
higher modes tend to be smaller in the higher frequency range
(Fig. 10). The reliability parameters, which practically constrain
the numbers of available paths in this study, tend to be small for
the shorter period range for the higher modes. This is likely a con-
sequence of the limited number of seismic events below 100 km
depth around North America, which typically generate large am-
plitudes of the higher modes. A contributing factor is also that, in
the shorter period range, higher mode branches normally share a

similar group speed; that is, several mode branches arrive at the
station nearly simultaneously at regional distances, and thus the
modal contributions are difficult to separate. Although our method
of fully non-linear fitting does not require the separation of mode
branches in the time domain, we must keep in mind that the cou-
pling between mode branches caused by lateral heterogeneity is
apt to be more significant at shorter periods (e.g. Kennett 1995).
Our data set of multimode phase speeds based on the automatic
selection using the reliability parameter may reflect an appropri-
ate range of frequency, for which several higher modes propagate
independently. Thus, it seems possible that the higher modes in
a certain frequency range, in which the strong effects of mode
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Figure 19. Fundamental-mode phase speed maps of Nettles (2005) in North America for (a) Love wave at 60.0 s, (b) Love wave at 150.0 s, (c) Rayleigh
wave at 60.0 s and (d) Rayleigh wave at 150.0 s. These maps are represented as perturbations from a reference phase speed that is estimated from the average
dispersion curves of a regional data set used in this study.

coupling are expected, are automatically eliminated from our set of
measurements.

Despite such intrinsic limitations in the measurements of higher
mode phase speeds, we were able to gather a large number of
multimode phase speeds across a wide range of frequencies. The
phase speed maps shown in this paper are preliminary, but we have
achieved higher horizontal resolution of North American model
compared to earlier studies of continental-scale models using long-
period surface waves.

We have shown only phase speed maps of multimode Love
and Rayleigh waves, since the main objective of this paper
is to summarize the method of the automated multimode phase
speed measurements and its application to data from the dense seis-
mic network in the United States. The 3-D distribution of radially
anisotropic shear wave speed structure can be obtained from the si-
multaneous inversions of the multimode Love and Rayleigh waves,
which will be discussed in detail in future work.

The new automated method is useful for extracting the multimode
surface wave phase speeds from a rapidly growing numbers of

seismic stations in the United States as well as many other places
on the Earth, which will eventually be the basis for regional scale
mapping of anisotropic heterogeneity in the upper mantle and the
mantle transition zone.
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Figure 20. North American portion of global-scale isotropic phase speed maps of Visser et al. (2008) for (a) second higher mode Love wave at 99.9 s, (b) third
higher mode Love wave at 78.7 s, (c) fifth higher mode Love wave at 46.2 s, (d) second higher mode Rayleigh wave at 99.3 s, (e) third higher mode Rayleigh
wave at 77.8 s and (f) fifth higher mode Rayleigh wave at 46.5 s. These maps are represented as perturbations from a reference phase speed that is estimated
from the average dispersion curves of a regional data set used in this study.
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